
 1

Fast, Accurate Processor Evaluation through
Heterogeneous, Sample-based

Benchmarking
Pablo Prieto, Pablo Abad, Jose Angel Gregorio, Valentin Puente

Abstract— Performance evaluation is a key task in computing and communication systems. Benchmarking is one of the most
common techniques for evaluation purposes, where the performance of a set of representative applications is used to infer
system responsiveness in a general usage scenario. Unfortunately, most benchmarking suites are limited to a reduced number
of applications, and in some cases, rigid execution configurations. This makes it hard to extrapolate performance metrics for a
general-purpose architecture, supposed to have a multi-year lifecycle, running dissimilar applications concurrently. The main
culprit of this situation is that current benchmark-derived metrics lack generality, statistical soundness and fail to represent
general-purpose environments. Previous attempts to overcome these limitations through random app mixes significantly
increase computational cost (workload population shoots up), making the evaluation process barely affordable. To circumvent
this problem, in this paper we present a more elaborate performance evaluation methodology named BenchCast. Our proposal
provides more representative performance metrics, but with a drastic reduction of computational cost, limiting app execution to
a small and representative fraction marked through code annotation. Thanks to this labeling and making use of synchronization
techniques, we generate heterogeneous workloads where every app runs simultaneously inside its Region Of Interest, making a
few execution seconds highly representative of full application execution.

1 INTRODUCTION
EACHING nowadays the 50th anniversary of the com-
mercialization of the first CPU-on-a-chip [1], we have

witnessed technology evolution that has turned compu-
ting devices into the core component of nearly any activity
in our everyday life. Currently, despite the recent emer-
gence of domain-specific processors [2] (led by GPU com-
puting for deep-learning applications), the general-pur-
pose computing model still constitutes a relevant fraction
of the semiconductor market. In this computing model, the
processor runs applications (often concurrently) with quite
dissimilar characteristics. Under these conditions, measur-
ing (and defining) the expected processor behavior (per-
formance) is challenging. Each piece of application code
can interact in a different way with processor microarchi-
tecture and concurrency might introduce “unwanted”
cross-effects, affecting overall system behavior negatively.
Benchmarking is the predominant methodology employed
for performance evaluation, providing a standardized way
to measure and compare alternative processors. A meticu-
lous selection process is usually performed in order to de-
fine a reduced set of applications that are sufficiently rep-
resentative of a much broader usage scenario, correspond-
ing to a specific target environment (scientific [3], NoSQL
serving [4], Machine Learning [5], etc.) or one closer to the
“general purpose” scenario [6][7]. Unfortunately, many of
these benchmarking suites present two important draw-
backs. First, the number of applications under evaluation
is usually limited to a few tens. Even when considered a
representative sample, if we want to model performance

as a random variable, the available number of values is
usually below the recommended limit to reach a reasona-
ble confidence margin in the evaluation process. Second,
most of the CPU market share corresponds to environ-
ments (desktop, cloud computing) where there is limited
control of the kind of applications that run on the same
processor chip simultaneously. Current benchmarking
metrics (latency, rate-mode throughput) might not suffice
to gain insight into the consequences of this resource shar-
ing. Therefore, this makes the re-design of the “representa-
tive workload” and “representative metric” concepts nec-
essary.
A straightforward technique to increase the benchmark
size (and hence the statistical soundness of the results), tar-
geting both heterogeneous and concurrent environments,
consists of a random mix of benchmark applications run-
ning in parallel inside the same computer [8][9][10]. To the
best of our knowledge, this technique is usually employed
with a single benchmark suite, and parallel execution relies
merely on launching every application in a synchronous
way. Despite partly solving traditional benchmarking lim-
itations, this methodology significantly increases the com-
putational cost of the evaluation process (to the point of
being impractical in certain conditions). Relying on the
same principle of random mixing, in this paper we propose
a much more elaborate methodology to avoid these in-
creased costs through the following features:
• Computational resource usage is limited to a small frac-

tion of application code, belonging to its Region of In-
terest (ROI). Our preliminary explorations demonstrate
that many applications from different benchmarks
show a similar loop-based ROI structure that has repet-
itive behavior from the microarchitectural viewpoint.

————————————————
All Authors are with the Computer Engineering Group of the University of
Cantabria, Av. de los Castros SN, 39005, Santander, Spain. E-mail: [prietop,
abadp, monaster, vpuente]@ unican.es.

R

2

• To ensure that every application runs its ROI while per-
formance is being measured a fine-grain synchroniza-
tion process is used. Additionally, automated hard-
ware event counting during evaluation increases the
variety of information available about execution, given
the profuse list of events available in state-of-the-art
processors.

• The methodology is generalized to any application, in-
dependently of its benchmark suite. This allows a sort
of Meta-benchmarking methodology to be created,
which can increase metric coverage. To do this, we for-
mally define the code and execution conditions that
must be met by a new application to be part of the ran-
dom mixes.

Following the proposed methodology, we can increase
performance metric representativeness, yet under con-
strained time. This enables the concurrent exploration of
alternative performance metrics (such as fairness) and the
study of diverse microarchitectural behaviors.
This work expands on previous work [11] by generalizing
our methodology to multiple benchmark suites and en-
hancing evaluation features. In this work, we make the fol-
lowing contributions:
• We develop a multi-benchmark tool for exhaustive and

accurate system evaluation. Thanks to the automated
workload generation, execution and monitoring pro-
cess, the user will gain insight into performance issues
transparently and in a feasible amount of time.

• We define and standardize the process to add new
benchmarks to the initial application pool. Conditions
that must be met by any candidate application are de-
fined. Around 50 applications have been profiled and
employed in this work to test the methodology.

• We carry out a raw performance evaluation of two
counterpart server architectures from the two main
CPU vendors, AMD and Intel. Our evaluation is com-
pared to a “conventional” one, such as the one per-
formed through the SPEC CPU17 benchmark [6].

• Direct access to hardware counters during the ROI ex-
ecution enables elaborate performance evaluation
methodologies such as Top-Down [12] and more subtle
microarchitectural analysis. We extend processor eval-
uation of micro-architectural parametrization (SMT
and hardware prefetching), to prove that the technique
is suitable to enhance understanding of the effect of
these techniques.

2 MOTIVATION
As mentioned in the previous section, computational cost
can hinder the evaluation process when it moves from a
few workloads to several hundreds. This problem has been
widely addressed for simulation-based research, where
the entire execution of an application is, in most cases, un-
attainable. To circumvent the problem, sampling tech-
niques (i.e., measuring performance only in a relevant frac-
tion of the original application) are usually employed
[13][14][15]. Our proposal follows the same approach in a
different context: evaluation of real systems when the
number of workloads to be considered is impractical for
full execution.

The core operation of BenchCast is based on a well-known
observation about the execution structure found in many
programs. As described in [16], computationally bound
applications go through different stages of execution. They
usually start with an initialization phase where data struc-
tures are set up, moving next to a stage corresponding to
the bulk of the execution and ending up with a phase de-
voted to presenting the application’s results. The central
stage of the three described is usually labeled as the Region
of Interest (ROI), because it corresponds to the largest frac-
tion of execution time and is devoted to the resolution of
the main tasks. For this reason, a program’s ROI is the most
relevant stage in terms of performance. This stage usually
has a marked periodical behavior [16] because it tends to
be implemented as a set of hierarchical procedures con-
tained in a main loop. Analyzed in detail, this arrangement
implies non-uniform behavior from a performance view-
point, making it difficult to find an execution phase that is
representative of the whole program’s execution.
Figure 1 shows an example of this time-varying behavior
for the 505.mcf application from the SPEC CPU 2017 bench-
mark [6]. In both graphs, we measured the temporal evo-
lution of alternative performance metrics (instructions per
cycle, branch prediction accuracy and L1D Cache miss
rate) making use of two different granularities. In the up-
per graph, performance metrics were collected through the
Linux perf command [17], with a fixed period of 100 milli-
seconds. In contrast, for the lower graph, events were
measured at the end of each ROI iteration (variable pe-

riod), modifying source code to perform this task.
The obvious differences between the two graphs reveal a
special feature of the aforementioned periodic behavior.
When the sampling period is “randomly” selected as a con-
stant time interval, the high variability makes it hard to
find a single representative execution phase. In contrast,
when the sampling period is somehow adapted to the in-
ternal structure of the program (fitting in this case the

Fig. 1. Time-varying behavior for the SPEC17 application 505.mcf.
Results are shown for IPC, BPRED accuracy, L1D miss rates. (up)
100ms X-axis interval, (down) X-axis interval 1 loop iteration.

0

20

40

60

80

100

0

0.5

1

1.5

2

1
10

1
20

1
30

1
40

1
50

1
60

1
70

1
80

1
90

1
10

01
11

01
12

01
13

01
14

01
15

01
16

01
17

01
18

01
19

01
20

01
21

01
22

01
23

01
24

01

Bp
re

d/
L1

D
 M

is
s

R
at

e

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Execution runtime (100ms intervals)

IPC BPRED L1D-miss-rate

0

20

40

60

80

100

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Bp
re

d/
L1

D
 M

is
s

R
at

e

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Execution runtime (ROI loop iterations)

IPC L1D Miss Rate Bpred Miss Rate

 3

length of a ROI iteration), the performance metrics become
much steadier, and average metrics are close to the global
ones. According to this observation, we hypothesize that
the execution of a single ROI iteration can represent the
whole application with accuracy.
The next step in this process consisted of the exploration of
a large set of applications to verify our hypothesis. We ex-
tended this kind of analysis (see Section 3.4 for system con-
figuration) to all the applications from three different
benchmarks focused on stressing the system’s processor
and memory subsystem: SPEC CPU17 [6], Parsec [7] and
NAS Parallel Benchmark [3]. SPEC CPU is an industry-
standardized suite with 23 benchmarks (rate mode) orga-
nized in two different suites (int and float), representative
of very different application areas (from desktop to scien-
tific). Similarly, the Parsec suite contains 13 applications fo-

cused on emerging fields (computer vision, animation
physics, financial analytics, etc.), attempting to be repre-
sentative of next-generation software. Finally, the eight
workloads from the NAS Parallel Benchmarks have a more
specific target, all of them being derived from computa-
tional fluid dynamics.
Figure 2 summarizes the results obtained in our explora-
tion. We were able to identify a loop-based ROI in 47 out
of 50 applications (94%). For each of these 47 applications,
we measured performance values for each ROI iteration,
calculating average and standard deviation of each metric

dataset. Next, average values were compared to full-exe-
cution results, calculating their relative error, which was
the value represented by the horizontal bars in Figure 2.
The relative error of each performance metric formed the
graph and, as can be seen, almost every application pre-
sented a total value below 10%.
Therefore, in most cases, it seems accurate to consider that
a single iteration of the main loop inside the ROI represents
the whole execution with a high degree of confidence. This
means it could be possible to reduce the computational ef-
fort required to evaluate heterogeneous workloads. If ROI
execution can be sychronized, then simply running one (or
a few) iteration of the ROI loop of each application simul-
taneously would be enough to characterize system perfor-
mance for each workload. This is the cornerstone of the
proposed methodology, mixing smart sampling and syn-
chronization to build a computationally feasible and statis-
tically sound evaluation methodology. Through the rest of
the paper the proposal is thoroughly described (Section 3)
and alternative evaluation procedures are presented (Sec-
tion 4). To facilitate access to the tool by other researchers
and simplify the adoption of their own modifications, a
public source code repository and project management
tools have been made available (https://github.com/prie-
top/BenchCast).

3 METHODOLOGY (BENCHCAST)
The three main features of BenchCast are described in detail
in the following subsections.

3.1 Application Profiling & ROI Evaluation
Despite being found in most applications analyzed, not
every workload code corresponds to the loop-ROI struc-
ture, or the observed steady state between iterations. For
this reason, every new application proposed as part of
BenchCast must fulfill the set of requirements defined in
this section. The profiling process was standardized to
guarantee minimal deviation between the fraction of ROI
executed and the whole application. Unfortunately, given
the heterogeneous nature of the methodology (multi-lan-
guage, multi-benchmark, etc.), the complete automatiza-
tion of this profiling process was nearly impossible, and
minimal manual work was required to identify and label
the ROI.
In summary, this preliminary process involves the follow-
ing steps:

• ROI identification: the application is profiled to iden-
tify those functions consuming the largest fraction of
execution time.

Fig. 2. Relative error comparing ROI iteration (average value) to
global execution. Error was estimated for three different performance
metrics: IPC, L1D Hit rate and Branch predictor accuracy.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

IS[NPB] 806

bwaves[SPEC] 503.3

DC[NPB] 803

bwaves[SPEC] 503.1

bwaves[SPEC] 503.4

bwaves[SPEC] 503.2

CG[NPB] 802

dedup[PARSEC] 704

raytrece[PARSEC] 709

blender[SPEC] 526

nab[SPEC] 544

canneal[PARSEC] 703

mcf[SPEC] 505

lbm[SPEC] 519

x264[SPEC] 525.1

omnetpp[SPEC] 520

leela[SPEC] 541

freqmine[PARSEC] 708

ferret[PARSEC] 706

exchange2[SPEC] 548

povray[SPEC] 511

xz[SPEC] 557.1

imagick[SPEC] 538

x264[PARSEC] 712

blackscholes[PARSEC] 701

deepsjeng[SPEC] 531

xz[SPEC] 557.2

parest[SPEC] 510

MG[NPB] 808

EP[NPB] 804

cam4[SPEC] 527

xz[SPEC] 557.3

x264[SPEC] 525.2

facesim[PARSEC] 705

fluidanimate[PARSEC] 707

cactuBSSN[SPEC] 507

x264[SPEC] 525.3

swaptions[PARSEC] 711

fotonik3d[SPEC] 549

bodytrack[PARSEC] 702

FT[NPB] 805

LU[NPB] 807

SP[NPB] 809

namd[SPEC] 508

roms[SPEC] 554

streamcluster[PARSEC] 710

UA[NPB] 810

BT[NPB] 801

IPC

L1D-Hit

Bpred

4

• Loop labeling: previous functions are analyzed look-
ing for the outer loop structure. Code is annotated to
measure the fraction of time spent in that loop, consid-
ering only applications returning values over 70%.

• Variability analysis: several performance metrics are
measured for every loop iteration. Variability is meas-
ured to find out the sample size (number of iterations)
required for a pre-defined error and confidence inter-
val.

• Execution time: the time required to execute the num-
ber of iterations calculated previously is estimated.
Only those applications with a value below a certain
threshold (in this case the maximum ROI is set to 20
seconds) are eligible. Total time required to perform the
measurement is highly sensitive to this parameter (and
hence, the chosen threshold is relatively small).

To gain insight into this process, we will walk through a
specific example in detail. Figure 3 describes the steps for
the 505.mcf application, corresponding to the SPEC
CPU2017 benchmark.
The process starts with hot code-paths exploration (ROI
candidates). Stack traces are captured to generate their as-
sociated call-graph (calling relations between code func-
tions) and the later profiling can be performed with the
scripting tools provided with perf (stackcollapse) or by gen-
erating a graphical representation called Flame Graph [18].
Both solutions provide alternative representations of
equivalent information. Figure 3 shows the Flame Graph
for 505.mcf (Step 1), where we can identify the function
chain consuming the largest fraction of execution time. It
corresponds to the following stack: main→ global_opt→ pri-
mal_net_simplex→ master→ primal_bea_mpp→ spec_qsort.
This part of the process, automated in BenchCast, finishes
by locating the source code files where these functions are
defined. The information generated in this process facili-
tates the manual annotation performed in the next step.
Main loop identification is the only supervised action in
this process. This search is performed from bottom to top
of the flame graph (the bottom functions in Figure 3 are
those consuming a larger fraction of time). Every function
is examined looking for the outermost loop structure. In
this case, main and global_opt functions can be found in the
same file, mcf.c. It is easy to identify a while declaration in-
side global_opt consuming about 90% of the execution time.
Once located, it is necessary to verify that this loop con-
sumes a significant fraction of total execution time. In our
experiments, only those loops consuming more than 70%
of total execution time are considered as a suitable ROI.
The loop code is annotated to measure both execution time
and performance metrics for every iteration. As Figure 3
(Step 2) shows, we make use of the PAPI C interface to ob-
tain a precise event count every iteration.
Once identified as a valid ROI loop, the next step consists
of a variability analysis of performance metrics across loop
iterations. The mean and standard deviation of IPC, Bpred
accuracy and L1Cache hit rate values are obtained (Step 3).
Making use of these values, the sample size (number of it-
erations to be executed) can be estimated for a pre-defined
error rate and confidence level.
Previous evaluations [11] show that a 10% Error with a

95% confidence interval is enough to ensure the represent-
ativeness of the workloads generated. In the 505.mcf appli-
cation, the required number of iterations is 2 (the maxi-
mum of the three Ns obtained). As a final step, the execu-

tion time required to run N iterations is calculated, and
only when this value is below the 20-second threshold, the
application is included as part of BenchCast.

Fig. 3. Graphic description of the profiling process required for every
application to be part of BenchCast workloads (exemplified with
505.mcf).

 5

A similar process to the one described here was done for
every application in Figure 2. The values in Table 1 sum-

marize the results of this profiling process, showing infor-
mation about ROI fraction of total execution time (second
column), per-iteration average and standard deviation of
main performance metrics (IPC, L1D, L1I, Bpred columns)
and N-iterations execution time (last column).
The literature does not provide a formal definition of
which fraction of execution is required to establish that a

portion of code makes up a ROI. To select an appropriate
value for this threshold, we decided to guarantee that the
IPC measured for the whole ROI and the whole application
should have a relative error below 5%. A 70% ROI keeps
the applications listed in Figure 2 below this error rate.
Similarly, the 20-second threshold for ROI execution ful-
fills two conditions. First, it is small enough to ensure an
evaluation process at least one order of magnitude faster
than a whole one (in this case, the average execution time
of whole applications is ~300 seconds). Second, it is large
enough to fulfill the representativeness error and confi-
dence interval margins for most applications.
For some applications, a large variability was observed be-
tween iterations (high Stdev values), caused mainly by a
variable ROI behavior across different execution phases. In
many of these cases we observed that phases respond to
simple patterns, it being feasible to split the application
into multiple workloads, one for each phase [11].
After this analysis, only 5 applications were ruled out.
Three of them with a ROI execution fraction below the 70%
limit (538, 704, 806) and the remaining two exceeding the
20-second threshold imposed for ROI execution (510, 710).
Relative error and 20-second ROI are mutually related. Re-
laxing error-related values could lead to a smaller number
of discarded applications if ROI length is maintained or to
an even shorter ROI execution for the same applications.

3.2 ROI Annotation & Synchronization
Once the ROI of the selected application is known, hetero-
geneous workloads will be defined. This will increase the
available number of samples on our evaluation mecha-
nism. All applications running in any workload will be ex-
ecuting their region of interest simultaneously. Each appli-
cation should execute at least one iteration of the main
loop. To achieve this, we create a master application
launcher that executes each application of the workload
and synchronizes them at the beginning of their ROI.
BenchCast uses a POSIX thread barrier mapped onto a
shared memory region through a POSIX shared memory
object. The barrier and the shared memory object are cre-
ated by BenchCast master launcher. We append barrier
calls within the ROI annotation code located in the previ-
ous section. The BenchCast master launcher then creates
child processes for each application to be executed in the
workload, attaching each process to a different core (or
hardware context) of the system under evaluation, using
Linux sched setaffinity system call. BenchCast master and
the applications wait at the same barrier until all the appli-
cations reach their ROI. This process can be repeated as
many times as needed, and in our experiments, workloads
usually begin after all applications have executed at least
one ROI loop (so the workload starts the second time the
barrier is reached). Then, the barrier is raised and disabled,
and measurements can begin with all the applications exe-
cuting their ROI concurrently.
BenchCast comes with code annotations for SPEC17, PAR-
SEC and NPB applications. BenchCast includes the neces-
sary information to launch the applications of these bench-
marks as well as the PATH to the local installation.
To add a new application to the pool (provided it complies

TABLE 1. APPLICATION PROFILING RESULTS

IPC L1D L1I Bpred

App ROI Mean Stdev Mean Stdev Mean Stdev Mean Stdev TEVAL

503.1 99.3 1.649 0.733 93.4 2.578 100.0 0.001 99.8 0.036 25.3
6

503.2 99.5 1.511 0.616 92.9 2.178 100.0 0.001 99.9 0.031 18.6
2

503.3 99.3 1.559 0.670 93.0 2.420 100.0 0.001 99.8 0.025 19.8
6

505 100.0 0.935 0.103 81.8 5.258 100.0 0.003 92.1 2.220 18.4
1

507 99.1 1.367 0.008 78.0 0.025 91.4 0.028 99.9 0.003 3.46

508 100.0 2.689 0.005 95.5 0.022 100.0 0.002 95.2 0.260 3.68

510 79.0 1.934 0.058 90.4 0.674 99.9 0.139 98.0 0.227 71.0
5

511 99.5 2.416 0.152 93.1 1.422 95.0 1.906 99.2 0.279 29.1
1

519 99.3 1.836 0.004 84.1 0.239 100.0 0.000 99.7 0.003 0.08

520 99.3 0.741 0.021 88.5 0.268 98.8 0.252 96.8 0.114 1.06

521 99.0 1.235 0.112 95.1 0.315 99.0 0.236 98.9 0.059 0.57

525.1 96.7 2.796 0.329 97.9 1.180 97.8 1.143 94.3 2.934 0.05

525.2 99.7 3.269 0.153 98.8 1.368 97.2 0.580 97.1 0.635 0.20

525.3 97.1 3.244 0.137 98.9 0.249 97.7 0.649 97.4 0.702 0.27

526 92.5 0.907 0.092 91.6 0.524 8.3 7.331 99.3 0.540 3.43

527 93.3 1.847 0.054 91.9 1.503 96.5 0.566 97.9 0.254 4.59

531 99.8 1.836 0.081 99.0 0.151 97.6 1.530 95.1 0.614 1.80

538 38.9 1.970 0.023 100.0 0.001 100.0 0.000 98.9 0.120 0.07

541 99.8 1.264 0.059 98.3 0.381 99.9 0.068 86.1 1.818 0.61

544 97.4 1.622 0.148 96.3 0.684 100.0 0.003 98.8 2.286 1.68

548 99.5 2.145 0.102 100.0 0.001 99.5 0.417 98.3 0.306 3.13

549 96.9 1.095 0.063 88.8 0.007 100.0 0.005 99.9 0.018 0.20

554 99.5 1.920 0.028 92.0 0.367 99.9 0.010 99.8 0.021 2.56

557.1 88.0 0.775 0.056 92.8 0.609 100.0 0.003 91.7 0.292 5.33

557.2 96.1 2.133 0.049 95.8 0.699 100.0 0.006 98.2 0.132 4.44

557.3 95.6 1.428 0.281 96.3 0.675 100.0 0.020 93.8 1.625 10.2
8

701 85.8 1.726 0.000 99.6 0.003 100.0 0.001 99.4 0.001 1.19

703 73.9 0.260 0.012 68.7 0.694 99.9 0.009 91.0 0.876 0.02

704 45.2 1.821 0.013 97.7 0.018 97.8 0.726 94.1 0.087 3.36

705 99.5 2.603 0.006 97.3 0.011 97.2 0.066 98.7 0.029 2.80

706 99.4 1.492 0.114 95.6 1.575 99.8 7.833 95.3 0.555 0.10

707 99.5 1.976 0.232 98.8 0.264 100.0 0.000 94.2 1.367 0.51

708 96.6 1.897 0.230 97.9 0.731 99.7 5.443 97.3 2.116 0.52

709 75.1 2.353 0.012 99.7 0.005 100.0 0.003 88.7 0.170 0.64

710 79.9 0.853 0.001 95.8 0.007 100.0 0.000 99.5 0.095 80.8
0

711 99.1 2.349 0.006 98.4 0.047 100.0 0.002 98.2 0.015 1.58

712 96.5 2.082 0.111 94.7 1.905 88.9 1.424 91.7 3.393 0.20

801 89.5 2.762 0.002 93.2 0.000 100.0 0.000 99.4 0.020 4.01

6

with the previous section’s requirements), some infor-
mation must be provided to the master launcher program,
such as the PATH to the new application and its launch
command.

3.3 Workload Generation and Execution
BenchCast both creates workloads and evaluates their be-
havior during execution. Making use of the PAPI library
and attaching PAPI events to the applications executing on
the system, BenchCast can measure any performance coun-
ter available through the PAPI interface. The PAPI library
and PAPI event initialization is performed by the
BenchCast master launcher, and the event list is provided
through an easy to modify configuration file. Examples for
top-down analysis and basic performance analysis config-
uration files are provided.
To perform an evaluation using BenchCast, we dynamically
generate sufficient variety of workloads so the results are
statistically significant. Workloads are generated choosing
randomly among the available applications in the pool
(SPEC2017, PARSEC and NPB out of the box). By default,
BenchCast launches one application per available core in
the system under test. If the number of selected applica-
tions is fewer than the number of available cores, multiple
copies of each application are launched until all hardware
contexts are allocated.
Once the applications reach the synchronization point, at
the beginning of their ROIs, they start running simultane-
ously. The master launcher then starts the PAPI measure-
ment, for the duration of at least one loop of the ROI (at
least 20 seconds). Once the execution completes, BenchCast
stops the measurement and stops all the applications, so
the next workload execution can be initiated. The results
obtained through the performance counters are written in
a results file when each workload ends.
Among others, BenchCast provides the following parame-
ters to perform an evaluation of a system:
• Number of cores: number of cores to use on the system.

By default, the number of cores available, but a lower
number can be provided and some of the cores of the
system under test will not be used for the evaluation.
These include simultaneous multithreading hardware
contexts.

• Number of applications: number of different applica-
tions that will be used in each workload. Multiple cop-
ies of each application are launched until the selected
number of cores has one application each.

• Number of workloads: number of different workloads
that will be generated for the complete evaluation.

• Event list: A file containing the list of PAPI events that
will be measured for each application in each work-
load.

• Measurement time: the execution time each application
runs for the evaluation. Typically, 20 seconds, to guar-
antee at least one iteration of the ROI loop.

3.4 Methodology Validation
For the experiment in this section, we used a desktop-like
computer configuration, an Intel i5-7500 4-Core chip run-
ning at 3.4GHz with 6MB of cache and a main memory of

16GB. The software stack corresponds to Debian 9 distri-
bution (Linux kernel 4.9.0). 1000 random combinations are
generated, enough to guarantee that variables follow a
normal distribution. For TOTAL workloads, each core
runs a single application of the combination in an “infinite
loop” and execution is terminated when every application
completes at least one execution. BenchCast results are ob-
tained executing 20 seconds of their synchronized ROIs.
For this number of applications and execution-time values
(20 sec. ROI vs. 300 seconds average app execution time),
BenchCast can reduce the computational cost from more
than a week to only 20 hours. These savings remain con-
stant for each experiment performed, meaning that all the
data included in this paper were obtained in less than 7
days, in contrast to the multiple months that would have
been necessary without the proper methodology.
Figure 4 shows the IPC histogram for both experiments.
The degree of similarity between the two measurements,
suggests that the performance figures of BenchCast are
equivalent to full application, at a fraction of the computa-

tional cost. This postulation is statistically supported
through a two-sample Kolmogorov-Smirnov (henceforth
KS) test [19]. This is a nonparametric test used to compare
the equality (probability distribution fit test) of two data
samples. The KS statistic is based on the largest vertical dif-
ference between the cumulative distribution function
(CDF) of both samples and is defined as,

𝐷𝐷 = 𝑚𝑚𝑚𝑚𝑚𝑚1≤𝑖𝑖≤𝑁𝑁|𝐶𝐶𝐷𝐷𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖) − 𝐶𝐶𝐷𝐷𝐶𝐶𝐼𝐼𝑇𝑇𝐼𝐼𝑇𝑇𝑇𝑇(𝑖𝑖)|

where CDFITER and CDFTOTAL are the samples under test
and N the number of observations. This KS statistic is
meant for testing the (null) hypothesis of both samples
coming from a common distribution. The hypothesis re-
garding the distributional form is rejected if the test statis-
tic D is greater than a critical value obtained from a table
[19]. In this case, with a number of samples larger than 40
and a 1% significance level, the critical value can be calcu-
lated as,

𝐶𝐶 =
1.63
√𝑁𝑁

According to the data collected for both samples, the max-
imum difference is 0.0109, which is less than the critical
value. Therefore, we would accept, at the 1% significance
level, the hypothesis that both sample distributions come
from the same population.
To gain even more insight into similarity we evaluate the

Fig. 4. Distribution comparison with a 1000-workload sample. Histo-
grams for ITER (BenchCast) and TOTAL executions.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

3.
1

3.
3

3.
5

3.
7

3.
9

Fr
eq

ue
nc

y
H

is
to

gr
am

Instructions Per Cycle

TOTAL SAMPLE

 7

random variable e(w) defined as

𝑒𝑒(𝑤𝑤) = 1 −
𝐼𝐼𝐼𝐼𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑤𝑤)
𝐼𝐼𝐼𝐼𝐶𝐶𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡(𝑤𝑤)

In words, e(w) is the per-workload IPC relative error be-
tween TOTAL and ITER results. Both IPCsample and IPCtotal
can be approximated by a normal distribution [11], and as
results in Figure 5 show, the generated error variable e(w)
seems to fit into a similar kind of distribution. As can be
seen, the average value of error distribution is 0.0012, while
the standard deviation is 0.014. These values mean that er-
ror remains below 5% (4.374% exactly) with a 99% confi-
dence level.

4 SYSTEM EVALUATION THROUGH BENCHCAST
In this section, we will describe the versatility of the
BenchCast methodology to carry out alternative perfor-
mance evaluations. It should be noted that all these evalu-
ations would also be possible running complete applica-
tions, but at a prohibitive computation cost.
The flexibility of hardware performance counters enables
the evaluation of many events, which provides not only
performance metrics, but also enables the analysis of the
hidden architectural causes explaining these results. For
this reason, each of the experiments presented provides
both the raw performance numbers and additional infor-
mation about microarchitectural behavior, which leads to
a much more consistent discussion of results.
The number of potential experiments is nearly as large as
the number of events available in the performance moni-
toring unit. In this work we limit the content to three basic
experiments that provide a reasonable idea of the strengths
of our tool. These experiments are described in the next
three subsections.

4.1 System-wide Performance
The first experiment will compare two alternative com-
mercial processors using the proposed methodology. Basic
performance evaluation with BenchCast is carried out
measuring the total number of instructions retired during
the 20-second ROI interval (IPC is not a valid latency met-
ric in this case due to the different frequency of operation
in the processors evaluated and potential power scaling
across measurements). Two similar servers with AMD and
Intel processors will be used. The first server configuration

is a two-socket with two Intel Xeon Silver 4216 chips run-
ning at 2.10 GHz, with 22MB of cache and a main memory
of 110GB. The counterpart server configuration corre-
sponds to a two-socket AMD EPYC 7352 with a 24-Core
processor per socket (48 cores in total) at 1.5 GHz (up to 3.2
GHz) with 128MB of cache and 110GB of main memory.
The software stack is the same in both systems. The same
1000 workloads are generated, executed and profiled to ob-
tain final results in both systems. Our performance results
are compared to the SPECrate metrics collected through
the “official” procedure described in the “Run and Report-
ing Rules” section of SPECCPU documentation [6].
Both SPECrate (above) and BenchCast (below) results are
presented in Figure 6. In both cases, the performance met-
rics are represented with a frequency histogram (bars) and

its estimated probability distribution function (lines). Re-
sults are normalized to Intel’s Average value. As observed
in Figure 6.above, SPECrate evaluation estimates a 2.33
times better average performance of the AMD server com-
pared to the Intel one. With 1.5 times the core count (32 vs.
48), AMD seems to obtain a better per-core performance
than its counterpart. Unfortunately, the small number of
workloads employed by SPECrate provides two probabil-
ity distributions with a large standard deviation, reducing
the confidence interval below 50%, which is far from sta-
tistical standards.
Comparing SPECrate results to BenchCast ones, we observe
two significant differences. First, the number of workloads
evaluated with BenchCast enables a drastic reduction in
standard deviation. Second, the margin of AMD is reduced
from 2.33 to 1.62 in this case. This result indicates that
when a large, heterogeneous number of workloads is

Fig. 5. Histogram and estimated normal distribution for the “relative
error” random variable.

Fig. 6. Execution comparison of AMD-based and Intel-based server
configurations. (Above) SPECrate methodology and (Below)
BenchCast methodology.

0.00

0.01

0.02

0.03

0.04

-0
.1

-0
.0

92
-0

.0
84

-0
.0

76
-0

.0
68

-0
.0

6
-0

.0
52

-0
.0

44
-0

.0
36

-0
.0

28
-0

.0
2

-0
.0

12
-0

.0
04

0.
00

4
0.

01
2

0.
02

0.
02

8
0.

03
6

0.
04

4
0.

05
2

0.
06

0.
06

8
0.

07
6

0.
08

4
0.

09
2

Fr
eq

ue
nc

y
H

is
to

gr
am

IPC Relative Error (ITER vs. TOTAL)

HISTOGRAM
NORMAL

0

0.02

0.04

0.06

0.08

0.1

0.12

0.
05

0.
25

0.
45

0.
65

0.
85

1.
05

1.
25

1.
45

1.
65

1.
85

2.
05

2.
25

2.
45

2.
65

2.
85

3.
05

3.
25

3.
45

3.
65

3.
85

Fr
eq

ue
nc

y
H

ist
og

ra
m

Performance (Normalized to Intel results)

Intel
AMD
Intel Normal Dist
AMD Normal Dist

0

0.02

0.04

0.06

0.08

0.1

0.12

0.
05

0.
25

0.
45

0.
65

0.
85

1.
05

1.
25

1.
45

1.
65

1.
85

2.
05

2.
25

2.
45

2.
65

2.
85

3.
05

3.
25

3.
45

3.
65

3.
85

Fr
eq

ue
nc

y
H

ist
og

ra
m

Performance (Normalized to Intel results)

Intel
AMD
Intel Normal Dist
AMD Normal Dist

8

evaluated, per-core performance becomes nearly equal in
both server configurations and the only advantage of the
AMD server comes from the number of cores. This sub-
stantial difference between the two evaluation methodolo-
gies could be a determining factor in a tradeoff metric such
as performance-cost in certain multitenancy environments,
such as cloud providers.
BenchCast enables us to move one step further in the per-
formance comparison process. Thanks to event counting
tools, we can explore in detail the divergence observed in

SPECrate and BenchCast results. To do so, we will explore
the per-core performance of both processors defining the
random variable D(w) as:

𝐷𝐷(𝑤𝑤) = 𝐼𝐼𝑒𝑒𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖𝑡𝑡(𝑤𝑤) − 𝐼𝐼𝑒𝑒𝑃𝑃𝑃𝑃𝑇𝑇𝐴𝐴𝐴𝐴(𝑤𝑤)
D(w) is the Performance difference between AMD-based
and Intel-based servers running the same workload w.
Since both performance variables can be approximated by
a normal distribution [11], D(w) is also normal. Since we
are interested in the performance of a single core (not a
hardware context, SMT is disabled for this experiment), we
divide the performance results by the number of cores of
each processor chip. We show the results in Figure 7. In
this graph, the x-axis indicates which processor performs
better (Intel for positives, AMD for negatives), confirming
the similar behavior pointed out in Figure 6 (BenchCast).
The estimated distribution mean is -0.01, which represents
a marginal advantage of AMD cores over Intel ones. With
this value, we can conclude that on average, both cores per-
form similarly, and AMD-server benefit is derived nearly
exclusively form core count.
Despite the near-zero mean, the standard deviation indi-
cates the presence of many non-zero values where proces-
sors perform differently. This dataset can be useful to con-
tinue obtaining relevant performance information, divid-
ing workloads executed into two groups, depending on
their side of the x-axis. Thus, we could determine whether
the workloads from each side have different features
which could indicate the strengths and weaknesses of each
processor microarchitecture.
For this group analysis we will employ a performance
analysis methodology known as Top-Down [12]. It is a
practical method to identify true bottlenecks in out-of-
order processors, built on top of existing performance
counters in Intel microarchitectures. From total pipeline
slots (number of instructions that can be issued/retired per

cycle), Top-Down estimates which fraction is utilized by
“good instructions” and which fraction remains empty
due to stalls from different parts of the processor pipeline.
Processor stalls are classified following a hierarchical
approach. At the top of this hierarchy four major categories
are defined:
• Frontend Bound: fraction of slots wasted because the

frontend undersupplies instructions to the backend,
fetching and decoding issues mainly

• Backend Bound: fraction of slots wasted because no uops
are delivered at the issue pipeline, due to a lack of
required resources, memory hierarchy or functional
unit issues.

• Bad Speculation: fraction of slots wasted due to incorrect
speculations associated with branch prediction.

• Retiring: issued uops that get retired. Slots utilized by
“good instructions” (a 100% Retire corresponds to the
maximal IPC of the given microarchitecture).

In this experiment we will evaluate the behavior of the two
application groups (x-axis sides) analyzing whether Top-
Down results differ. We limit this evaluation to the Intel
server, which is enough to provide a preliminary idea

about what makes each processor core better/worse from
a software perspective. For the same number of workloads
employed throughout this section we obtained the
probability distribution function of each of the four
categories, shown in Figure 8. With one graph per
category, we pair the results of both groups, in order to
check for any observable difference. Both Frontend Bound
and Bad Speculation categories seem to obtain quite similar
results, which means that no particular difference is noted
for these parts of the pipeline between both groups. In
contrast, there is a significant difference in the Backend
Bound category, where we can observe that those
applications with a more relevant bottleneck in the
backend seem to behave better in intel processors than in
AMD. Those applications pressuring core backend seem to
be better suited to the Intel-based server. To understand

Fig. 7. Per-core Performance difference between Intel and AMD serv-
ers. Frequency histogram.

Fig. 8. Frequency histogram for each Top-Down First Level Category.
AMD-winning vs. Intel-winning workloads.

0

0.04

0.08

0.12

0.16

0.2

-1
-0

.9
-0

.8
-0

.7
-0

.6
-0

.5
-0

.4
-0

.3
-0

.2
-0

.1 0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Fr
eq

ue
nc

y
H

ist
og

ra
m

Performance Difference

Intel-AMD Histogram

Normal

0

200

400

0 0.1 0.2 0.3 0.4

Fr
eq

ue
nc

y
H

ist
og

ra
m

Fraction of total slots

FE BOUND
Intel wins
Intel looses

0

200

400

0 0.1 0.2 0.3 0.4
Fr

eq
ue

nc
y

H
ist

og
ra

m

Fraction of total slots

BAD SPEC

Intel wins
Intel looses

0

100

200

0.2 0.4 0.6 0.8

Fr
eq

ue
nc

y
H

ist
og

ra
m

Fraction of total slots

BE BOUND
Intel wins

Intel looses

0

200

400

0 0.2 0.4 0.6 0.8

Fr
eq

ue
nc

y
H

ist
og

ra
m

Fraction of total slots

RETIRE Intel wins

Intel looses

 9

the source of inefficiencies of the AMD backend, this
exploration should analyze the lower levels of top-down
hierarchy. However, this is beyond the scope of this work,
which is limited to demonstrating that this kind of
systematic analysis is feasible through the BenchCast tool.

4.2 Simultaneous Multithreading
Simultaneous Multithreading (SMT) is a performance en-
hancement technique present in almost every modern gen-
eral-purpose processor. It basically consists of the splitting
of a physical core into multiple (usually two) virtual cores
known as hardware threads or hardware contexts. This or-
ganization allows two instruction streams to run simulta-
neously through the same pipeline, improving aggregate
ILP by improving processor resource utilization (espe-
cially if some of the threads have a clear bottleneck in some
of the stages of the execution pipeline). Final performance
improvement is usually far from the theorical upper limit
of adding the IPC of each thread in the aggregate thanks to
the second thread. The hardware resources available are
shared with a “rival” and this has significant impact,
which is dependent on the nature of each thread (even to
the point of being detrimental under certain scenarios or
resource sharing policies). Using BenchCast it is possible to
estimate the actual benefit of enabling SMT in a general
scenario, as well as understanding how each shared re-
source can impact on performance.
For this exploration, we limit our experiments to the Intel-
based server configurations employed in the previous sec-
tion. 1000 randomly generated applications were executed,
first with SMT activated, then deactivating SMT through
EFI settings. The results of both executions are shown in
Figure 9, represented by a frequency histogram (bars) and

its estimated probability distribution function (lines). Per-
formance values were normalized to NoSMT results
(mean=1 for NoSMT distribution). According to the graph,
SMT improves raw processor performance by 25% on av-
erage. The SMT measured benefit is far below the theoret-
ical upper limit, which means that vCPUs perform 40%
worse than physical cores.
As mentioned previously, the access to every performance
counter available allows us to look for the multiple sources
of inefficiency and their contribution to the observed per-
formance gap. Concerning SMT, we can distinguish be-
tween two kinds of shared resources: core-level and pro-
cessor-level resources. Core-level resources correspond to

those shared inside each physical core, such as L1 cache,
branch prediction, issue queue, etc. Processor-level re-
sources are those shared among all cores, such as Last
Level Cache or memory bandwidth. Through the appro-
priate selection of hardware events, BenchCast enables the
fast exploration of the performance effect of SMT on differ-
ent Core-level and processor-level resources. For this work
we limit our experiments to the most performance sensi-
tive elements, branch prediction and cache hierarchy (Both
L1 and LLC).
First, we evaluate the different behavior of three core-level
resources in the presence and absence of SMT: branch pre-
dictor, L1 data and instruction caches. Results for these
metrics are presented in Figure 10, as the cumulative fre-
quency graph of misses/misspredictions per kilo instruc-
tion (MPKI). In this kind of graph, the x-axis represents the

parameter under test while the y-axis indicates the fraction
of workloads that are below that MPKI value. The presence
of two instruction streams doubles, on average, the num-
ber of misses per kilo-instruction. Contrary to the intuitive
idea of sharing the instruction cache between two threads,
the final impact of this degradation on overall performance
seems to be insignificant, because in both cases very low
miss rates are observed. The negative impact of SMT is
more subtle on both branch prediction and L1D perfor-
mance. In the case of branch prediction, the low values on
the x-axis indicate that degradation might have a minimal

Fig. 9. Performance effect of SMT. IPCT histogram and estimated
normal distribution.

Fig. 10. SMT Effect (cumulative frequency distribution) on different
hardware resources: Branch Prediction (above), L1I MPKI (mid) and
L1D MPKI (below).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.
05

0.
25

0.
45

0.
65

0.
85

1.
05

1.
25

1.
45

1.
65

1.
85

2.
05

2.
25

2.
45

2.
65

2.
85

3.
05

3.
25

3.
45

3.
65

3.
85

Fr
eq

ue
nc

y
H

is
to

gr
am

Instructions Per Cycle (normalized to NoSMT results)

NoSMT
SMT
NoSMT Normal Dist
SMT Normal Dist

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Fr
ac

tio
n

of
 a

pp
s b

el
ow

 x
-

ax
is

 v
al

ue

Branch Misspredictions per Kilo-instruction

SMT NoSMT

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

Fr
ac

tio
n

of
 a

pp
s b

el
ow

 x
-

ax
is

 v
al

ue

L1I Misses per Kilo-instruction

SMT NoSMT

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

Fr
ac

tio
n

of
 a

pp
s b

el
ow

 x
-

ax
is

 v
al

ue

L1D Misses per Kilo-instruction

SMT NoSMT

10

impact on performance. In contrast, L1D MPKI results are
one order of magnitude larger, which could indicate that
the pressure on it has more impact on performance results.
Concerning uncore resources, we close this section analyz-
ing the impact of SMT on L3 performance. As can be seen
in Figure 11, SMT produces a similar degradation to that
observed in L1D. While LLC capacity remains constant, the
number of active working-sets doubles with SMT, increas-
ing the number of misses per kilo instruction. The explora-
tion enabled by event counting in BenchCast allows us to

conclude that the pressure imposed by application da-
tasets on the memory hierarchy has a more noticeable ef-
fect on performance than doubling Instruction working
sets or branch patterns.

4.3 Hardware Prefetching
The last BenchCast use-case example is focused on Hard-
ware prefetching, which is a fundamental technique to tol-
erate cache miss latency in state-of-the-art processors
[20][21]. Proactively fetching data from slower locations to
a faster cache level in advance might significantly reduce
average memory access time. Nearly every modern proces-
sor includes some hardware prefetching support, exploit-
ing simple and regular access patterns. This is the case of
many Intel microarchitectures (starting with Nehalem),
where four different types of data prefetchers are imple-
mented in hardware. Two of these prefetchers, known as
DCU, are associated with L1 Data cache, where prefetching
is triggered by load instructions when certain conditions
are met [22]. The streaming prefetcher is triggered by an
ascending access to recent loads, assuming that it is part of
a streaming algorithm, automatically fetching the next line.
A PC-based prefetcher keeps track of individual load in-
structions looking for a regular stride. When found, a
prefetch is sent to the next address which is the sum of the
current address and the stride. The two remaining
prefetchers are associated with L2 cache. The L2 Spatial
Prefetcher strives to complete every cache line fetched to
the L2 cache with the pair line that completes it to a 128-
byte aligned chunk. The L2 Streamer prefetcher monitors
read requests (loads, stores, L1 prefetches and code
fetches) from the L1 cache for ascending and descending
sequences of addresses. When a stream of requests is de-
tected, the anticipated cache lines are prefetched.
Again, the purpose of this section is to demonstrate the
versatility of BenchCast, carrying out a detailed analysis of
the performance effect of prefetching. The Model Specific
Register (MSR) with address 0x1A4 will be used to control
the activation/deactivation of these prefetchers. We define

different combinations of enabled/disabled prefetchers,
analyzing performance metrics for each of them. Figure 12
shows the IPC distribution of every prefetcher enabled
(ALL), L1 prefetching disabled and L2 enabled (L2), L2 dis-
abled and L1 enabled (L1) and every prefetcher disabled
(NONE). In this graph, all performance values were nor-
malized to NONE mean.
As expected, the absence of prefetching has a negative ef-
fect on performance, and the average IPC decreases from
1.6 to 1.29, which corresponds to a 20% performance deg-
radation. Another observable result is the unbalanced con-
tribution of L1 and L2 prefetchers to performance im-
provement. The activation of prefetching at each level has
a positive effect in both cases but seems to be more relevant
in the case of L2. The reason for this result might be the

large penalty of LLC misses and the larger LLC cache size
minimizing the negative pollution effects caused by
prefetching. A noteworthy result is that when both
prefetchers are combined, there is no benefit when com-
pared to L2 only prefetching.
In order to establish which fraction of workloads undergo
a performance degradation caused by prefetching, we also
define the following performance-difference variables:

𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑤𝑤) = 𝐼𝐼𝑒𝑒𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇(𝑤𝑤) − 𝐼𝐼𝑒𝑒𝑃𝑃𝑃𝑃𝑁𝑁𝑇𝑇𝑁𝑁𝐼𝐼(𝑤𝑤)
𝐴𝐴2 −𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑤𝑤) = 𝐼𝐼𝑒𝑒𝑃𝑃𝑃𝑃𝑇𝑇2(𝑤𝑤) − 𝐼𝐼𝑒𝑒𝑃𝑃𝑃𝑃𝑁𝑁𝑇𝑇𝑁𝑁𝐼𝐼(𝑤𝑤)
𝐴𝐴1 −𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑤𝑤) = 𝐼𝐼𝑒𝑒𝑃𝑃𝑃𝑃𝑇𝑇1(𝑤𝑤) − 𝐼𝐼𝑒𝑒𝑃𝑃𝑃𝑃𝑁𝑁𝑇𝑇𝑁𝑁𝐼𝐼(𝑤𝑤)

The normal distribution of these three variables is shown
in Figure 12. In this graph, all values below zero represent
those workloads with poorer performance after prefetch-
ing activation. As can be seen, the activation of both or L2
prefetchers improves performance in a consistent way. Ac-
cording to measured mean (0.296, 0.27) and stdev (0.117,
0.105), less than 1% applications will suffer from perfor-
mance degradation. In the case of L1 prefetch, this fraction
grows to 3% applications (0.151 mean, 0.068 stdev). It still
represents a small fraction, but combined with the lower
IPC improvement on average, explains its worse results

Fig. 12. (above) Performance effect of prefetching. IPCT distribution,
normalized to NONE mean value. (below) Performance difference
observed after prefetching activation, normal distribution.

Fig. 11. SMT Effect (cumulative frequency distribution) on L3 MPKI.

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2

Fr
eq

ue
nc

y
H

is
to

gr
am

Instructions per Cycle (normalized to NONE)

NONE L1 L2 ALL

0

0.1

0.2

0.3

0.4

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

 D
is

tr
ib

ut
io

n

Performance Difference

L2-NONE

L1-NONE

ALL-NONE

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Fr
ac

tio
n

of
 a

pp
s b

el
ow

 x
-

ax
is

 v
al

ue

LLC Misses per Kilo-instruction

SMT NoSMT

 11

when compared to L2 prefetching.
Again, the access to event counting allows us to get a sense
of the result. In this case, we analyzed how different hier-
archy levels react to the changes in the prefetcher. As an
initial step, we focused our attention on the L2 Cache, as it
is the closest-to-processor level where prefetches are stored
[22]. Figure 13 shows the cumulative frequency distribu-
tion of the MPKI for each prefetcher combination. These
results are consistent with the performance ones, showing
a MPKI improvement as more prefetchers are activated.

This result shows that L2 MPKI improvement has a direct
impact on performance, a similar tendency being observed
for both metrics. Despite seeming very obvious, we high-
light this conclusion because, as we will see next, this rela-
tionship is not as straightforward for every metric, and in
some cases a closer look is necessary.
Next, focusing the attention on LLC metrics, we obtained
the MPKI results shown in Figure 14 (above). As can be
seen, in this case we obtained an evolution of MPKI incon-
sistent with performance results. The best MPKI results
were obtained when no prefetcher was activated and they
degraded progressively as they were activated. This ap-
parently contradictory behavior has a simple explanation:
if the raw LLC access numbers are analyzed, it can be im-
mediately observed that the activation of hardware
prefetching doubles the number of LLC accesses on aver-
age. If we move to alternative events and measure Miss
rate in LLC (see Figure 14 (below)), we can observe how,
in this case, the results are consistent with performance re-
sults and also with the expected prefetching behavior.

5 RELATED WORK
The search for tools and methodologies targeting com-
puter performance evaluation has been constant over time.
However, both hardware and (mainly) software heteroge-
neity have increased the complexity of this task. Conse-
quently, many benchmark suites are currently available,
representative of multiple environments where computing
systems can be found. Thus, hardware environments such
as image processing (GPUs) or High-Performance Compu-
ting (HPC) employ specific benchmark suites. Some exam-
ples of GPU benchmarking tools are Rodinia [23], Parboil
[24] and Lonestar [25]. In contrast, HPC employs suites
such as NAS Parallel Benchmark [3] (parallel performance
measurement developed by NASA), High-Performance
Linpack [26] (CPU’s FP performance, employed for setting
up the Top-500 rank), High-Performance Conjugate Gradi-
ents [27](HPCG) as an alternative to HPL and HPCC suite

[28].
From a software perspective, emerging environments such
as Big Data, Cloud Computing or Deep Learning have gen-
erated the necessity of new benchmarking tools to allow a
representative evaluation for these computing fields. Some
of the most representative examples of benchmark suites
targeting these environments are MLPerf [29], CloudSuite
[30], BigDataBench [31], YCSB [4] or HiBench [32] .
General purpose hardware relies on heterogeneous bench-
mark suites such as PARSEC [7] or SPEC [6], in an attempt
to be representative of a computing environment where

applications cover a wide spectrum. Focused on the evalu-
ation of commercial CPUs, the initial public release of
BenchCast already includes workloads generated from ap-
plications from these two suites, as well as from the NAS
Parallel Benchmark. However, BenchCast was designed to
be a sort of meta-benchmarking framework, like Google’s
PerfKit Benchmarker [33]. The rules for including new ap-
plications are simple and new benchmarks can be easily
added.
Some performance evaluation processes are not suitable
for the aforementioned benchmarks. This is the case of de-
tailed architectural simulation [34], where the execution
time required to run a complete application makes it unaf-
fordable in practice. In those cases, many studies have fo-
cused on alternative solutions to reduce the computational
cost required for evaluation. One of the most common
techniques is known as simulation sampling [15][16][13],
where the evaluation process is limited to only a small rel-
evant fraction of each application. SimPoints [35] is a well-
known sampling methodology that automatically identi-
fies long, repetitive execution phases in benchmarks, and
limits simulations to a few instances of these phases. Simi-
larly, [36] and [37] make use of statistical tools to evaluate
the representativeness of a benchmark. This means limit-
ing the execution of an application to a reduced number of
instructions, able to maintain representativeness. With a

Fig. 14. LLC Cache Misses per Kilo Instruction (up) and Miss Rate
(down). Cumulative frequency distribution for different Prefetching
configurations.

Fig. 13. L2 Cache Misses per Kilo Instructions. Cumulative frequency
distribution for different Prefetching configurations.

0

0.5

1

0 0.5 1 1.5 2
Fr

ac
tio

n
of

 a
pp

s b
el

ow
 x

-a
xi

s
va

lu
e

Misses per Kilo-Instruction

LLC MPKI

NONE
L1
L2
ALL

0

0.5

1

0 0.5 1 1.5 2

Fr
ac

tio
n

of
 a

pp
s b

el
ow

 x
-a

xi
s

va
lu

e

Miss Rate

LLC Miss Rate

NONE
L1
L2
ALL

0

0.5

1

0 1 2 3 4 5 6

Fr
ac

tio
n

of
 a

pp
s b

el
ow

 x
-a

xi
s

va
lu

e

Misses per Kilo-Instruction

L2 MPKI

NONE

L1

L2

ALL

12

similar objective, Craeynest and Eeckhout [9] analyze the
problem of the limited validity of current practices in
multi-core simulation. Velazques et al. [8] carried out a
benchmark selection, which was as small as possible, also
analyzing alternative sampling methods and Singh and
Awasthi [38] evaluated the accuracy of characterizing the
SPEC CPU2017 benchmarks using SimPoints methodol-
ogy. Loop-dominant programs are targeted in [39]. For
each loop found, the authors define a signature, creating a
signature vector for each application. Through the similar-
ity scores process, they reduced the representative score
and created micro-benchmarks for emulating the original
one.
In a similar way, our work also looks for a subset of in-
structions able to resemble a whole application. In contrast,
targeting real hardware execution, we have much more
flexibility to choose sample size. This enabled the defini-
tion of a single sample per application, as well as its precise
labeling for synchronization purposes. These two features
enabled an easy, uniform and statistically sound evalua-
tion process for multicore architectures running heteroge-
neous workloads. Runtime sampling makes the synchroni-
zation process more difficult, and the large number of sam-
ples defined by simulation tools makes it nearly impossible
to build BenchCast on top of existing simulation sampling
techniques. Alternative application modifications such as
iteration or working set reduction were discarded. Reduc-
ing iterations is not always possible, as some applications
presentconvergent algorithms without a predefined num-
ber of iterations. Similarly, reducing the working set to
non-realistic inputs could reduce the execution time, but
modifies the micro-architectural behavior.

6 CONCLUSIONS
In this work we presented a processor evaluation method-
ology suitable for both performance and microarchitec-
tural analyses. Taking advantage of some basic execution
features present in many applications, we identified, la-
beled and synchronized the execution of their ROIs. This
process was standardized to include applications from dif-
ferent benchmarks, starting with the three (SPEC, PAR-
SEC, NPB) already provided in the public release of the
tool. The number of combinations (and therefore work-
loads) was large enough to provide statistically-sound re-
sults. Additionally, we demonstrated that a small fraction
of the ROI is, in most cases, representative of the whole-
program execution, which significantly reduces the com-
putational effort required for evaluation. The experiments
that previously required several days can now be finished
within hours.
The accuracy of 20-second ROI execution was amply vali-
dated, demonstrating its suitability when statistical analy-
sis is required. Hybrid workloads, where different applica-
tions run simultaneously on the same system, enabled the
exploration of alternative performance metrics such as fair-
ness. Finally, the utilization of hardware events for evalu-
ation enabled the exploration of multiple microarchitec-
tural parameters (as many as were available in the PMU of
the system under evaluation).
We defined and presented three simple experiments that

demonstrate the flexibility of BenchCast. We carried out a
deep performance comparison of two commercial proces-
sors, providing more accurate results than existing meth-
odologies and establishing the architectural implications
on performance. We also extended the evaluation process
to configurable hardware features, such as SMT or
prefetching. We encourage readers to adapt the tools to the
huge number of possibilities provided. All the code gener-
ated for this work is open access, with the intention of fa-
cilitating its utilization by the research community.

ACKNOWLEDGMENT
The authors wish to thank Jose Angel Herrero for his val-
uable assistance with the computing resources within the
datacenter 3Mares. This work was supported by the Span-
ish Government (Agencia Estatal de Investigacion) under
grant PID2019-110051GB-I00.

REFERENCES
[1] F. Faggin, “The Making of the first microprocessor,” IEEE

Solid-State Circuits Mag., vol. 1, no. 1, pp. 8–21, 2009, doi:
10.1109/MSSC.2008.930938.

[2] J. Dean, D. Patterson, and C. Young, “A New Golden Age in
Computer Architecture: Empowering the Machine-Learning
Revolution,” IEEE Micro, vol. 38, no. 2, pp. 21–29, 2018, doi:
10.1109/MM.2018.112130030.

[3] H. Jin, M. Frumkin, and J. Yan, “The OpenMP
implementation of NAS parallel benchmarks and its
performance,” Natl. Aeronaut. Sp. Adm. (NASA), Tech. Rep.
NAS-99-011, Moffett Field, USA, no. October, 1999, Accessed:
Oct. 07, 2011. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.65.1321&rep=rep1&type=pdf.

[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R.
Sears, “Benchmarking cloud serving systems with YCSB,” in
Proceedings of the 1st ACM symposium on Cloud computing -
SoCC ’10, Jun. 2010, p. 143, doi: 10.1145/1807128.1807152.

[5] V. J. Reddi et al., “MLPerf Inference Benchmark,” 2020, doi:
10.1109/ISCA45697.2020.00045.

[6] “SPEC CPU 2017,” 2017. https://www.spec.org/.
[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC

benchmark suite,” in Proceedings of the 17th international
conference on Parallel architectures and compilation techniques -
PACT ’08, 2008, p. 72, doi: 10.1145/1454115.1454128.

[8] R. A. Velasquez, P. Michaud, and A. Seznec, “Selecting
benchmark combinations for the evaluation of multicore
throughput,” in ISPASS 2013 - IEEE International Symposium
on Performance Analysis of Systems and Software, 2013, pp. 173–
182, doi: 10.1109/ISPASS.2013.6557168.

[9] K. Van Craeynest and L. Eeckhout, “The multi-program
performance model: Debunking current practice in multi-
core simulation,” in Proceedings - 2011 IEEE International
Symposium on Workload Characterization, IISWC - 2011, 2011,
pp. 26–37, doi: 10.1109/IISWC.2011.6114194.

[10] M. Van Biesbrouck, L. Eeckhout, and B. Calder,
“Representative multiprogram workloads for multithreaded
processor simulation,” in Proceedings of the 2007 IEEE
International Symposium on Workload Characterization, IISWC,
2007, pp. 193–203, doi: 10.1109/IISWC.2007.4362195.

[11] P. Prieto, P. Abad, J. A. Herrero, J. A. Gregorio, and V.
Puente, “SPECcast: A Methodology for Fast Performance
Evaluation with SPEC CPU 2017 Multiprogrammed
Workloads,” 2020, doi: 10.1145/3404397.3404424.

[12] A. Yasin, “A Top-Down method for performance analysis
and counters architecture,” 2014, doi:
10.1109/ISPASS.2014.6844459.

 13

[13] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically characterizing large scale program
behavior,” in Tenth international conference on architectural
support for programming languages and operating systems -
ASPLOS ’02, 2002, p. 45, doi: 10.1145/605397.605403.

[14] T. M. Conte, M. A. Hirsch, and K. N. Menezes, “Reducing
state loss for effective trace sampling of superscalar
processors,” 1996, doi: 10.1109/iccd.1996.563595.

[15] T. Lafage and A. Seznec, “Choosing Representative Slices of
Program Execution for Microarchitecture Simulations: A
Preliminary Application to the Data Stream,” in Workload
Characterization of Emerging Computer Applications, 2001.

[16] T. Sherwood, E. Perelman, and B. Calder, “Basic Block
Distribution Analysis to find periodic behavior and
simulation points in applications,” 2001, doi:
10.1109/pact.2001.953283.

[17] A. C. de Melo, “The New Linux ‘perf’ Tools,” 17 International
Linux System Technology Conference. Nuremberg, 2010,
[Online]. Available: http://www.linux-
kongress.org/2010/slides/lk2010-perf-acme.pdf.

[18] B. Gregg, “The flame graph,” Commun. ACM, 2016, doi:
10.1145/2909476.

[19] F. J. Massey, “The Kolmogorov-Smirnov Test for Goodness
of Fit,” J. Am. Stat. Assoc., vol. 46, no. 253, pp. 68–78, 1951,
doi: 10.1080/01621459.1951.10500769.

[20] S. Mittal, “Survey of recent prefetching techniques for
processor caches,” ACM Comput. Surv., 2016, doi:
10.1145/2907071.

[21] B. Falsafi and T. F. Wenisch, “A primer on hardware
prefetching,” Synth. Lect. Comput. Archit., 2014, doi:
10.2200/S00581ED1V01Y201405CAC028.

[22] I. Corporation, “Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3 (3A, 3B & 3C): System
Programming Guide,” vol. 3, no. 253665, pp. 1–1386, 2013,
[Online]. Available:
papers3://publication/uuid/B767D5D8-AF4B-46BB-9893-
D8046A5460AB.

[23] S. Che et al., “Rodinia: A benchmark suite for heterogeneous
computing,” in 2009 IEEE International Symposium on
Workload Characterization (IISWC), Oct. 2009, pp. 44–54, doi:
10.1109/IISWC.2009.5306797.

[24] J. A. S. C. Rodrigues et al., “Parboil: A Revised Benchmark
Suite for Scientific and Commercial Throughput
Computing,” IMPACT Tech. Rep., 2012.

[25] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study
of irregular programs on GPUs,” in 2012 IEEE International
Symposium on Workload Characterization (IISWC), Nov. 2012,
pp. 141–151, doi: 10.1109/IISWC.2012.6402918.

[26] J. J. Dongarra, P. Luszczek, and A. Petite, “The LINPACK
benchmark: Past, present and future,” Concurr. Comput.
Pract. Exp., vol. 15, no. 9, pp. 803–820, 2003, doi:
10.1002/cpe.728.

[27] J. Dongarra, M. A. Heroux, and P. Luszczek, “High-
performance conjugate-gradient benchmark: A new metric
for ranking high-performance computing systems,” Int. J.
High Perform. Comput. Appl., 2016, doi:
10.1177/1094342015593158.

[28] P. R. Luszczek et al., “The HPC Challenge (HPCC)
benchmark suite,” in Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, SC’06, 2006, pp. 213-es, doi:
10.1145/1188455.1188677.

[29] P. Mattson et al., “MLPerf Training Benchmark,” arXiv, Oct.
2019, [Online]. Available: http://arxiv.org/abs/1910.01500.

[30] M. Ferdman and E. Al., “Clearing the Clouds: A Study of
Emerging Scale-out Workloads on Modern Hardware,” in
ASPLOS’12, 2012, vol. 40, no. Asplos, pp. 37–48, doi:
10.1145/2189750.2150982.

[31] L. Wang et al., “BigDataBench: A big data benchmark suite
from internet services,” in Proceedings - International
Symposium on High-Performance Computer Architecture, 2014,

pp. 488–499, doi: 10.1109/HPCA.2014.6835958.
[32] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The

HiBench benchmark suite: Characterization of the
MapReduce-based data analysis,” in Lecture Notes in Business
Information Processing, 2011, vol. 74 LNBIP, pp. 209–228, doi:
10.1007/978-3-642-19294-4_9.

[33] google, “PerfKit Benchmarker.”
https://github.com/GoogleCloudPlatform/PerfKitBenchm
arker (accessed May 31, 2021).

[34] J. Lowe-Power et al., “The gem5 Simulator: Version 20.0+∗ A
new era for the open-source computer architecture
simulator,” arXiv, 2020, [Online]. Available:
https://arxiv.org/abs/2007.03152.

[35] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood,
and B. Calder, “Using SimPoint for accurate and efficient
simulation,” ACM SIGMETRICS Perform. Eval. Rev., vol. 31,
no. 1, pp. 318–319, 2003, doi: 10.1145/885651.781076.

[36] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe,
“SMARTS: Accelerating microarchitecture simulation via
rigorous statistical sampling,” in Conference Proceedings -
Annual International Symposium on Computer Architecture,
ISCA, 2003, pp. 84–95, doi: 10.1109/isca.2003.1206991.

[37] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John,
“Measuring program similarity: Experiments with SPEC
CPU benchmark suites,” 2005, doi:
10.1109/ISPASS.2005.1430555.

[38] S. Singh and M. Awasthi, “Efficacy of Statistical Sampling on
Contemporary Workloads: The Case of SPEC CPU2017,”
2019, doi: 10.1109/IISWC47752.2019.9042114.

[39] E. M. Shaccour and M. M. Mansour, “A Loop-Based
Methodology for Reducing Computational Redundancy in
Workload Sets,” IEEE Access, vol. 6, pp. 9570–9584, 2018, doi:
10.1109/ACCESS.2017.2788921.

	1 Introduction
	2 Motivation
	3 Methodology (BenchCast)
	3.1 Application Profiling & ROI Evaluation
	3.2 ROI Annotation & Synchronization
	3.3 Workload Generation and Execution
	3.4 Methodology Validation

	4 System Evaluation through BenchCast
	4.1 System-wide Performance
	4.2 Simultaneous Multithreading
	4.3 Hardware Prefetching

	5 Related Work
	6 Conclusions
	Acknowledgment
	References

