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Abstract 

The impact of any new architectural proposal must be 

evaluated under realistic working conditions. This class 

of analysis requires trustworthy simulation tools and 

representative workloads that allow us to know the real 

effectiveness of the improvement. In this work, we 

propose a methodology that enables the use of an 

important family of transactional workloads, such as 

decision support system workloads, in a full system 

simulator. In contrast to numerical applications, with this 

type of workload it is not possible to scale down the 

problem size in order to reduce the computational 

requirements of the simulation. We will show the 

stationary behaviour of the workload and how it can be 

employed to reduce computational requirements without 

significant loss. Taking into account this fact, we will 

show how simulating only 3% of the benchmark the 

maximum error in the main system performance metrics 

is approximately 5%. 

1. Introduction 

The methodology to develop new architectural proposals 

requires tools able to evaluate their impact under realistic 

scenarios. Until a few years ago, most high performance 

systems had been almost exclusively used with scientific 

or engineering applications. For this reason, new 

architectural proposals for these kinds of systems were 

analysed employing benchmarks based on numerical 

workloads. However, in recent years, a significant 

percentage of the supercomputer market is being focused 

on transactional workloads [1] and therefore benchmarks 

must also be changed. In fact, an important effort is made 

by software and hardware vendors in order to establish a 

standardized framework for allowing customers to 

analyze their requirements before purchasing systems. 

One of the main organizations playing an important role 

in this trend is the Transaction Processing Performance 

Council (TPC) [2] proposing transactional standards such 

as the TPC-H benchmark, which we are focusing on. This 

benchmark emulates a Decision Support System (DSS) in 

cooperation with an Online Transaction Processing 

system (OLTP).  

The main problem when using these new types of 

benchmarks in simulation tools, compared to numerical 

ones, is the dramatic increase of computational 

requirements. In order to know the impact of any 

architectural change, full system simulators, including the 

operating system, are essential. This is the only way that 

transactional loads can be employed for determining the 

performance variations against new architectural 

proposals. But this new scenario implies an important 

difficulty for the computer architect and it is necessary to 

reduce the complexity of the problem without altering its 

representative nature.  

In numerical applications, this reduction is quite 

straightforward: scaling down both the problem size and 

the system hardware elements. On the contrary, working 

with transactional workloads is not so easy because the 

relationship between the workload size and the work 

carried out by the system is too complex. Therefore, 

reducing computational requirements this way can 

completely modify the workload characteristics and hence 

other alternatives must be explored. 

Statistical approaches have also been proposed [11] in 

order to improve simulation speed. This kind of 

methodologies offers a general solution that could be 

useful on all kind of workloads and simulation platforms. 

Rather than use a general approach we would like to use 

the workload characteristics to improve performance.  

In this work we will show how to reduce computational 

demand when a transactional workload is used as an 

effective benchmark. The stationary behaviour of the 

system throughout the workload execution allows us to 

reduce the necessary simulation time. This fact can be 

taken into account in order to estimate the impact of any 

architectural change in the system by just analyzing a 

reduced portion of the benchmark. In this way, we can 

considerably reduce the time requirements to study the 

phenomenon with a moderate loss of precision and this 

can be very important for exploring the design space. 

The remainder of this paper is organized as follows: 

Section 2 summarizes the main differences between 

numerical and transactional workloads from the point of 

view of their study under simulated environments. 
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Section 3 introduces the workload considered in this 

study and its implementation. The framework employed 

is shown in Section 4. Section 5 details the behaviour of 

the benchmark within a real environment and Section 6 

confirms the proposed methodology in a simulated 

environment. Finally, the main findings of this research 

are summarized in Section 7. 

2. Numerical versus transactional 

workloads. 

The execution pattern of numerical workloads is 

characterised by consecutive computation and 

communication phases. The inherent characteristics in 

both phases are quite different and consequently their 

demands on the underlying hardware are different. Under 

these conditions, in order to establish the final impact of 

an architectural change the whole benchmark must be 

executed. However, in order to reduce the computational 

requirements it is possible to scale down both the problem 

size and the architectural parameters of the simulated 

system [3]. This reduction is possible because the 

relationship between problem and system size and the 

computation and communication characteristics is easily 

found.

Nevertheless, the execution pattern of transactional 

workloads is not so clear. In this case the main phases 

are: connection establishment, query execution and 

connection termination. The first and last phases can be 

considered transitory with a low impact on the workload 

execution, but the behaviour of the central phase is 

complex and it is not easy to find a relationship between 

problem size and its demands on the architecture.  

On the one hand, the amount of work of a 

transactional system, as well as its pattern of execution, 

depends on the complexity of the database employed. The 

same relational scheme but with different data size can 

cause a completely different behaviour of the system. In a 

DSS, queries usually include a large number of tables. 

Depending on the number of occurrences between these 

tables, the amount of work needed to carry out a query 

will be different. For example, in a situation where two 

tables must be related using a particular condition, if there 

is no tuple in the first table that matches this condition 

then a search is not necessary in the second table. 

Because of this, the database size must be carefully 

selected in order not to break the significance level of the 

workload. 

On the other side, the database management system 

scheduler estimates the number of data sets to choose the 

most suitable query resolution method. Then, depending 

on the number of occurrences estimated for a particular 

table and its distribution, a query can be solved using 

sequential scanning or indexes. In other words, if the 

scheduler estimates that the number of occurrences that 

matches the query’s condition is small then indexes will 

be used. However, if the number of estimated occurrences 

is high or they are physically contiguous then a sequential 

search will be employed. 

When the load size is large enough, using indexes to 

resolve queries improves task performance, but it can 

generate locks among different processes trying to access 

the same data simultaneously.  For this reason, if we use a 

reduced size of data, the scheduler always tries to use 

sequential methods because most occurrences would be 

probably contiguous. Under these conditions the 

behaviour can change dramatically and the significance 

level drops below the real conditions if we scale down 

database size. In consequence, it is necessary to work 

with a data set size large enough to assure both behaviour 

extremes exist. 

In numerical workloads, the dependences on the 

operating system are practically negligible. The main 

influence can be motivated by the memory management 

subsystem. Because of this it is not usual to include the 

operating system effects in the analysis of architectural 

proposals. Consequently, tool complexity and the 

simulation process itself are notably simplified.  

On the other hand, in transactional workloads a high 

dependence on the operating system appears [4]. This 

influence is determined by the mechanism employed to 

share date among the different processes and the use of 

these loads over the I/O subsystems. This dependency 

between the database management mechanisms and the 

host operating system makes indispensable the inclusion 

of the operating system effects in any computer 

performance analysis using transactional workloads. For 

this reason, a significant number of full system simulators 

have appeared that incorporate not only high detail 

hardware components but also commercial operating 

systems (or a slight modification of them). One of the 

most popular of these tools is SimOS [5], a full system 

simulator developed at Stanford University able to 

simulate MIPS, Alpha or Power PC architectures running 

slightly modified versions of the commercial operating 

systems IRIX, Digital Unix and AIX. This is the 

simulator we use in this work. 

3. Workload description. 

TPC-H [6] standard models a Decision Support 

System belonging to a multinational corporation. This 

system includes a database of customers, suppliers, orders 

and line items throughout 25 nations and 5 geographic 

regions. The DSS system is synchronized periodically 

with an On-Line Transaction Processing system, which 

receives new orders and updates existing ones. This 

synchronization is emulated by inserting new orders and 

deleting existing ones. These processes are known as 

refresh functions. 
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Over this database two tests are made whose geometric 

average gives us the numerical result of the benchmark. 

The first test, known as the Power Test, is done by the 

sequential execution of the refresh functions and a stream. 

A stream is the name given to the sequential execution of 

22 DSS queries from the same connection. The aim of 

this test is to obtain the best response time of the system 

under test. 

Executing several streams concurrently with the 

refresh functions does the second one, known as the 

Throughput Test. The main objective of this test is 

checking the response capability of the system with heavy 

workloads. 

Database size is proportional to a variable known as 

scale factor. Final size comes from the product of the 

scale factor and the basic size of the database. The basic 

size used is 1 GB of raw data. The scale factor is chosen 

depending on the market area of the system. Raw size 

increases several times when it is loaded into a relational 

scheme. This growth depends on the security mechanisms 

provided for the database, such as recovery logs, 

mirroring, etc. 

3.1. Benchmark implementation. 

In order to create a benchmark following the TPC-H 

standard we have chosen PostgreSQL [7] as RDBMS. 

PostgreSQL is a DBMS originally developed at the 

University of Berkeley. The main target of this project 

was the development of a free DBMS providing the same 

capabilities as a commercial one. 

PostgreSQL uses a client-server scheme [8], that is, for 

each new client connection a new server process is 

created in order to answer the client’s requests. Each 

server has its own memory area in which intermediate 

data is processed. As well as this dedicated area, all 

server processes are connected to a shared memory area 

whose integrity is guaranteed by semaphores. This shared 

area works as a cache, storing data used previously by 

any server. All data modifications are done in this shared 

area. After a modification is done, it has to be transferred 

to disk in order to guarantee data durability. Once 

durability is guaranteed, all servers may access modified 

data.  

PostgreSQL does not allow query-level parallelism, 

that is, a query cannot be divided among processors. Due 

to this lack of parallelism, and in order to generate the 

biggest possible workload, during the Throughput Test 

we will run a stream for each processor in the system. 

We will use a scale factor of 0.1 which gives us a raw 

database size of 100 MB. Raw size becomes 

approximately 500 MB when it is loaded into a relational 

scheme, generating indexes in order to speed up queries 

and providing recovery and roll-back mechanisms. 

In previous works [9] we proved that this database size 

preserves the complexity of the standard and allows all 

data to fit in main memory. Fitting all data in main 

memory isolates the execution from the performance of 

disk devices. Even though this scale factor does not agree 

with TPC-H specifications since valid scale factors are 

integer values, we will use it because we want to focus 

our analysis on the architecture of the system. Using a 

scale factor not fitting data in main memory would imply 

that there would be a bottleneck in the I/O system. In 

order to avoid this problem and be able to find other 

bottlenecks we could use perfect disk models. Using these 

models would remove the impact of refresh functions and 

integrity mechanisms, resulting in a different execution 

scheme. Taking all of this into account we will use a 

complex disk model and a scale factor of 0.1 in order to 

avoid I/O bottlenecks and preserve the execution scheme. 

4. Simulated environment. 

4.1. SimOS Simulator.

.

SimOS provides three execution models based on 

MIPS architecture [10]: 

• Embra. - This is the fastest execution model 

available in SimOS. Using a direct execution system, 

that does not simulate CPU or caches, allows users to 

prepare workloads and to interact with the operating 

system in the simulated environment. This model is 

able to run applications with an execution time just 

ten times higher than real systems. There is a 

modification of embra that provides a simple cache 

model.  

• Mipsy. - This model provides a pipelined CPU 

like R3000/R4000 processors. In addition it provides 

two levels of cache memory and is able to simulate 

UMA and NUMA architectures ranging from 1 to 32 

processors. Execution time is hundreds of times 

higher than the real system. 

• MXS. - This model provides a superscalar 

processor similar to the MIPS R10000. It is able to 

simulate the same architectures that Mipsy does. At 

present, this model is incomplete and it only admits 

the R3000 instruction set. Simulation time is 

thousands of times higher than the real system. 

Slowdowns are for one processor, as SimOS is a 

sequential application, simulating more than one 

processor increases execution times.  

The simulated system includes a complete Memory 

Management Unit with exception handling in such detail 

that translation of virtual addresses into physical ones is 

done in the same way as the real system does.  
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SimOS also provides both complex and fixed latency 

hard disk models. The complex disk model includes a 

SCSI drive controller that uses DMA and interrupts in 

order to transfer data from/to main memory.  

The simulation environment runs the IRIX operating 

system version 6.4 which allows the execution of actual 

applications but that cannot be upgraded to later versions. 

The old OS version with the limited instruction set 

lessens (but does not remove) the capacity to run current 

applications.  

4.2. Computational systems used in this work. 

In this work we have used two computational systems: 

• A SGI PowerChallenge system with UMA 

architecture and eight 200-MHz MIPS R10000 

processors, 1 GB of RAM memory, 2 MB secondary 

unified cache, 32 KB instruction cache and 32 KB 

data cache. This will be the system under test, so all 

real and simulated measurement will be done on it. 

• A SGI Origin 3200 system with NUMAflex 

architecture and 2 nodes with four 400-MHz MIPS 

R12000 processors and 2 GB of RAM memory each 

node. 8 MB secondary unified cache, 32 KB 

instruction cache and 32 KB data cache. This system 

will be use as host of the simulation environment. 

Both architectures can be used within the simulation 

environment so, once stationarity is verified, both 

architectures can be simulated. 

5. Simulation methodology. 

5.1. Considerations about simulation 

environment. 

The simulation speed of an eight-processor system, 

using the Mipsy model, is about 1.8x105 instructions per 

second. Knowing that the execution of the entire 

benchmark needs about 1.5x1012 instructions, about a 

hundred of days would be necessary to finish the 

simulation using this model. If we use the MXS model, 

simulation would take more than three years to finish. 

This time limitation forces us to develop another 

simulation methodology that allows us to study possible 

architectural improvements in a reasonable amount of 

time. 

As has been said before, application size scaling brings 

about different behaviour. This different behaviour is due 

to the different methods used to solve queries, index 

usage, and especially due to the different number of 

occurrences between tables in the database. With all of 

this we are compelled to run the same workload that has 

proven effective in real systems. 

Once we established that database workloads could not 

be scaled as numerical workloads are, we explored the 

possibility of doing a temporary scaling. To achieve this 

scaling we use the checkpoint and restart capability 

provided by SimOS. This capability allows swapping 

between processor models within the same simulation 

process. 

In order to make a checkpoint, it is necessary to set a 

stop point somewhere in the code. Nevertheless, SimOS 

does not allow this checkpoint if a branch instruction is 

being evaluated in any of the system processors. 

Temporary scaling must be done in such a way that it 

assures that the working point in the simulation 

environment is the same as in real system. Thus, it would 

be possible to study the effect of enhancements in the 

system. 

As has been said, PostgreSQL does not allow intra-

query parallelism so, as our working area is aimed at 

multiprocessor architectures, we will focus the simulation 

on the Throughput Test. This focus allows the Power 

Test’s simulation to be done with a less detailed model; 

this gives us a total simulation time of 60 days using the 

Mipsy model.  

The execution pattern of the Throughput Test shows a 

transitory zone at the beginning, due to connexion 

establishment, and another at the end, due to connexion 

termination and result storage. All the remaining 

execution shows a stationary behaviour pattern.  

5.2. Testing for statonarity. 

Next we will show the behaviour of the workload 

during its execution. Obviously, this measurement could 

not be made in the simulation environment because we 

need to know the behaviour of the whole execution, so it 

must be done in the real system. We will analyze different 

pieces of the execution trying to find the deviation of the 

principal parameters of the system with respect to the 

average of the execution. We will focus on instruction 

count per cycle and L1 data cache hit ratio.   
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Figure 1. Error made by approximating L1 data hit ratio 
with the average of a time interval.

To obtain this data series we will use the information 

provided by the hardware counters included in MIPS 

processors. This measurement will be done using a 

dynamic loadable module, which induces a deviation of 

less than 3%. 

In order to test for stationarity, we will study the 

Throughput Test. It must be said that the safest place to 

introduce a checkpoint is the point where the Power Test 

finishes and the Throughput Test begins. Beginning 

detailed model execution at this point includes in the 

measurement the transitory effect of connection 

establishment and cold start misses. Thus, in Figure 1, 

error made by approximating L1 data hit ratio with the 

average of a time interval is shown. The percentage of 

execution time that this interval represents with respect to 

the execution of the whole Throughput Test is also 

shown. 

As can be seen, data cache hit ratio shows a stationary 

behaviour. With 10 seconds of execution time, the error 

committed is less than 5%. With 2 minutes the further 

error made is less than 1%. Using this result we can say 

that the behaviour of memory hierarchy can be 

characterized by simulating 10 seconds with an error of 

less than 5%. 

In Figure 2, error committed by approximating 

instruction per cycle per processor with the average of a 

time interval is shown. The percentage of execution time 

that this interval represents with respect to the execution 

of the whole Throughput Test is also shown. 

Figure 2. Error made by approximating instruction per 
cycle per processor.

As can be seen, for short intervals, there is a 

substantial error, but from 20 seconds and further, the 

error made by approximating total average by interval 

average is always below 5%.  

Instruction per cycle count is an important indication 

of the behaviour of entire system. Thus any variation in 

the hit rate of caches, branch predictor or TLB is shown 

in it. So the stationary behaviour shown by IPC is a 

reflection of system stationarity. This stationary 

behaviour allows us, by simulating a piece of the whole 

application, to obtain the relative impact of any 

architectonic improvement with this workload. 

If the error is desired to be lower than 5%, a 

simulation interval of at least 20 seconds must be used. 

This interval represents only 3% of the original time 

required. 

6. Simulation results. 

In this chapter we will verify that this stationary 

behaviour is reflected by the simulation environment. We 

will simulate a PowerChallenge system, identical to that 

used, employing a Mipsy model.  We will simulate during 

10 days trying to get enough information about the 

simulation environment’s behaviour. With the data series 

obtained, we can observe the evolution of IPC and L1 

data hit ratio. 

Figure 3 shows instantaneous IPC during simulation, 

moreover, total average and interval average are shown.  
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Figure 3. IPC value, average and interval average 
versus simulated times.

Figure 4 shows the same numbers as before but for L1 

data cache hit ratio. As can be seen, as we increase 

interval size, the error made is constantly reducing. It has 

to be said that these data have been taken from a piece of 

the whole execution therefore the value given for total 

average may not be accurate. According with the real 

system’s results, this inaccuracy is less than 5% in IPC 

and less than 1% in data cache hit ratio. On the other 

hand, data could not be compared with the real system 

since we are simulating a pipelined processor and real 

systems have superscalar ones. 

Those figures agree with the estimations obtained 

during execution in real systems. Thus, they demonstrate 

the suitability of the simulation’s methodology. 

Figure 4. L1 data cache hit ratio, average and interval 
average versus simulated time.

7. Conclusions 

The increasing use of transactional workloads in high 

performance computing compels us to include them in 

our work plan in order to check the effectiveness of new 

architectural proposals.  

The unaffordable computation time required to execute 

complex transactional workloads in complete system 

simulators obliges us to take a less restrictive approach. 

In this work we have shown the stationary nature of a 

TPC-H benchmark done on a database created using 

PostgreSQL. Using this stationary nature we are able to 

test relative performance of new proposals simulating a 

twenty-second interval. The wall clock time of this 

simulation, using 400 MHz MIPS R12000 processors, is 

less than 36 hours. Using a low detailed model allows us 

to get the workload ready in less than three hours for an 

eight-processor system. Since we are using checkpoint 

and restart, this workload only has to be prepared once 

for each system.  

Taking all of this into account, we may evaluate a new 

proposal in only two days, for an eight-processor system, 

knowing that the error found would be less than five 

percent. 
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