

Accuracy vs. Computational Cost Tradeoff in Distributed

Computer System Simulation

Adrian Colaso

Computer Engineering Group

University of Cantabria

Spain

colasoa@unican.es

Pablo Prieto

Computer Engineering Group

University of Cantabria

Spain

prietop@unican.es

Jose Angel Herrero

Computer Engineering Group

University of Cantabria

Spain

herreroja@unican.es

Pablo Abad

Computer Engineering Group

University of Cantabria

Spain

abadp@unican.es

Valentin Puente

Computer Engineering Group

University of Cantabria

Spain

vpuente@unican.es

Jose Angel Gregorio

Computer Engineering Group

University of Cantabria

Spain

monaster@unican.es

ABSTRACT

Simulation is a fundamental research tool in the computer

architecture field. These kinds of tools enable the exploration

and evaluation of architectural proposals capturing the most

relevant aspects of the highly complex systems under study.

Many state-of-the-art simulation tools focus on single-system

scenarios, but the scalability required by trending applications

has shifted towards distributed computing systems integrated

via complex software stacks. Web services with client-server

architectures or distributed storage and processing of scale-out

data analytics (Big Data) are among the main exponents. The

complete simulation of a distributed computer system is the

appropriate methodology to conduct accurate evaluations.

Unfortunately, this methodology could have a significant

impact on the already large computational effort derived from

detailed simulation. In this work, we conduct a set of

experiments to evaluate this accuracy/cost tradeoff. We

measure the error made if client-server applications are

evaluated in a single-node environment, as well as the overhead

induced by the methodology and simulation tool employed for

multi-node simulations. We quantify this error for different

micro-architecture components, such as last-level cache and

instruction/data TLB. Our findings show that accuracy loss can

lead to completely wrong conclusions about the effects of

proposed hardware optimizations. Fortunately, our results also

demonstrate that the computational overhead of a multi-node

simulation framework is affordable, suggesting multi-node

simulation as the most appropriate methodology.

KEYWORDS

Simulation, Benchmarking, Memory Hierarchy, Distributed

computing systems.

1 INTRODUCTION

The evolution of computing systems into the extremely

complex structures available nowadays has obliged the

development of increasingly sophisticated simulation

frameworks. Simulation tools have in many cases become

complex pieces of software exceeding 100,000 code lines

and mixing multiple programming languages [1]. Under

these circumstances, the tradeoff between accuracy,

computational effort and tool complexity is hard to maintain.

Working with highly detailed tools permits in most cases the

evaluation of the whole software stack (i.e., Operating

System, Runtime and Application) and exposes low-level

micro-architecture details for evaluation. Unfortunately, it

frequently requires a steep learning curve [2] and/or could

lead to unaffordable simulation time [3].

Additionally, conventional and widely employed benchmark

suites such as SPEC CPU2006 [4] and PARSEC [5] are

progressively becoming less representative of many real

usage scenarios [6]. In contrast, applications for distributed

data storing, processing and serving or web services

responding to client-server architecture are becoming

dominant in the software market. The cost constraints,

complexity and scalability of this kind of applications have

obliged the abstraction level to be raised by the programmer.

Therefore, a highly complex software stack, in many cases

in the form of distributed frameworks, is mandatory.

Simulating multiple nodes increases the complexity of many

aspects concerning the evaluation process. Additional

simulated components mean longer execution times and

more required resources to perform simulation. For these

reasons, the cost/accuracy tradeoff becomes even more

fragile. Despite the inherent distributed nature of such

benchmarks, we could be tempted to make use of single-

node system simulation as evaluation methodology (all

benchmark elements running in the same simulated node).

In this case, we will be aggregating a new source of error,

caused by the interference of all benchmark elements sharing

the same hardware. The risk of such approaches is that they

introduce a non-negligible deviation from real system

behavior that could lead to large error margins [7][8][9]

affecting the conclusions derived from their use.

The main target of this work focuses on the quantification of

the error caused by the interaction of the different software

pieces running on top of the same hardware. This way we

will estimate whether the increased complexity of simulating

additional nodes is avoidable or, in contrast, mandatory. To

do so, we have conducted a group of experiments comparing

single-node and multi-node execution of distributed

applications on both real and simulated environments.

Additionally, we carry out an analysis of the simulation

overheads caused by the increased complexity when the

appropriate methodology is employed.

We present our findings and experiment results with the

following structure: Section 2 revises some research works

concerning distributed systems evaluation and related to the

content of this paper. Section 3 performs a detailed

description of the evaluation framework employed,

including benchmarks, simulation tools, workload

configuration, etc. Section 4 describes the experiments and

results performed to quantify the error of inappropriate

methodologies. Section 5 evaluates the overheads of multi-

node simulation, providing deeper insight on the

accuracy/cost tradeoff between single-node and multi-node

simulation. Finally, Section 6 states our main conclusions

and describes the future work lines.

2 DISTRIBUTED COMPUTING

EVALUATION

The relevance of non-conventional benchmarks targeting

client-server applications with multiple execution nodes is

visible in the increasing number of studies devoted to the

analysis of this kind of applications. The literature provides

benchmarks covering a wide range of multi-node scenarios.

Some benchmarking suites target specific software, such as

Hadoop [10] environments (Hibench [11]) or NoSQL

databases (YCSB [12]). In contrast, alternative benchmark

suites such as CloudSuite [6] and BigDataBench [13] cover

a much wider range of domains, such as offline analytics,

real-time analytics and online services. Until now, many of

the research works making use of these benchmarks have

focused on the microarchitectural characterization of these

applications [14][15][16][17][18][19], relying on

methodologies based on performance profiling tools such as

perf [20] or VTune [21].

The scope of profiling tools is mainly limited to

characterization, while testing the functionality and

performance of new hardware mechanisms requires the

utilization of simulation tools such as the ones employed in

this work. Some recent works have already explored the

utilization of gem5 for the evaluation of client-server

applications. The authors in [22] describe how to run client-

server benchmarks in x86 dual-system mode on gem5. To do

so, they perform the required modifications to gem5 original

code in order to set up a dual system communicating through

an Ethernet link. In [23], the authors have developed a fully-

distributed version of gem5 (dist-gem5), supporting the

simulation of multiple nodes on multiple physical hosts (one

host for each simulated node). Communication among nodes

is performed through the real network, usually Ethernet. The

speedup and scalability of dist-gem5 is evaluated by

simulating up to 63-node cluster.

In this work we have combined the utilization of emerging

benchmarking suites such as SPECweb [24] and the Yahoo!

Cloud Serving Benchmark(YCSB) [12] with a gem5

implementation with a similar functionality to dist-gem5. In

contrast to the dist-gem5 approach, our gem5 framework

also simulates communication elements, running every

simulated piece on a single physical node. This is a similar

approach to the one employed in [22]. To the best of our

knowledge, this is one of the few works where multi-node

applications are evaluated making use of a full-system

simulation running the whole software stack.

3 EVALUATION FRAMEWORK

In this section, we present a detailed description of the tested

software and simulation tools, as well as our experimental

methodology.

3.1 Distributed Applications

In order to work with applications more representative of a

real scenario, we will make use of the SPECweb [24] and the

Yahoo! Cloud Serving (YCSB) [12] benchmarks for all the

experiments in this document. Making use of these two

benchmarks we are able to generate 15 different workloads

for evaluation, summarized in Table 1 and briefly described

in this section.

SPECweb is a complex benchmark developed to assist in the

performance evaluation of web servers. It has four major

components (prime-client, clients, web-server and back-end

simulator) that correspond to a client-server architecture

design, suitable for multi-node environments. The

benchmark clients generate HTTP requests to the server and

receive responses. Their behavior is controlled by the prime

client. The Web server is the collection of hardware and

software in charge of managing client requests. Finally, the

back-end simulator emulates an application server that the

Web server must communicate with in order to complete

HTTP responses. Three different workloads are provided,

matching different realistic use scenarios: banking, e-

commerce and support. Banking workload, related to online

banking, is based on the study of web server logs from a

major Texas bank. The E-commerce workload simulates a

Web server that sells computer systems. Finally, Support

workload simulates a vendor´s support web site.

Table 1. Workloads

Bench Workload Description

S
P

E
C

w
eb

BANK Online banking. Rampup=60 seconds,

Warmup=60 secs, Run = 300 secs.

E-COMM Sales web. Rampup=60 seconds,

Warmup=60 secs, Run= 300 secs.

SUPP Vendor’s support. Rampup= 60 secs,

Warmup=60 secs, Run=300 secs.

Y
C

S
B

 +
 (

C
as

sa
n
d
ra

/M
o
n
g
o
D

B
)

WA Update heavy. 50% reads, 50% writes.

Record count = 1000

WB Read mostly. 95% reads, 5% writes.

Record count = 1000

WC Read only. 100% read. Record count =

1000

WD Read latest. 95% read, 5% insert. Record

count = 1000

WE Short ranges. 95% scan, 5% insert.

Record count = 1000

WF Read-Modify-write. 50% read, 50% r-m-

w. Record count = 1000

YCSB is a benchmarking framework to assist in the

evaluation of cloud systems. It consists of a workload-

generation client (with six different standard workloads) and

a Database interface layer to connect to different cloud

serving stores. The core package includes a set of pre-

defined workloads that try to model different applications,

such as picture tagging, user status updates or threaded

conversations [12]. These workloads are described in Table

1. The database tested, generated with YCSB, consists of

several million records, for a total size of over 12GB.

The first serving database is Apache Cassandra [25], a

popular Java implementation of a column-family NoSQL

database. This system has been designed to work with large

data volumes on top of commodity hardware, providing high

availability and fault tolerance features. Cassandra makes

use of its own query language (Cassandra Query Language

or CQL) and also provides Hadoop integration. Nowadays,

more than 600 companies employ Cassandra software,

according to [26]. The second data-management application,

MongoDB [27], is a document-oriented database designed

to provide scalability, performance and high availability.

Documents are stored as binary JSON objects, supporting

field and range queries as well as regular expression

searches. Data distribution across multiple machines is

implemented through sharding, while high availability and

fault tolerance are implemented through replica sets. As in

the case of Cassandra, MongoDB is also one of the most

popular document stores, with a great diversity of users [26].

Figure 1. Multi-node structures simulated with gem5

3.2 Simulation Framework

The structure of the proposed experiments imposes tough

requirements on the simulation framework, such as detailed

full-system hardware description and multi-node simulation.

Gem5 [1] implements the necessary features and therefore,

is the tool that we choose to conduct our evaluations. This

enables the evaluation of clustered configurations such as the

ones shown in Figure 1 and employed for SPECweb

simulation (Section 6).

To achieve multi-node simulation at an affordable cost

(simulation time) only accurate hardware simulation is used

during the execution of a significant fraction of the Region

Of Interest (ROI). In the case of the applications under

evaluation, the records needed to generate both Cassandra

Figure 2. Workload generation process for SpecWeb and YCSB. Each application is fast-forwarded to the ROI making use of kvm-

assisted execution.

and MongoDB databases as well as the warm-up phase of

SPECweb should be discarded, but still requires several

minutes to complete in a real system. To reduce the

simulation time, we follow a two-step approach to generate

our workloads, as described in Figure 2. First, we “fast-

forward” applications to the region of interest, taking

checkpoints once the application reaches this state (a

checkpoint includes the architectural state of processor and

memory and it is kept in persistent storage). Afterwards,

these checkpoints are employed as workloads, loaded with

detailed architectural simulation.

3.3 Hardware & Software Stack Configuration

We run all our experiments (single-node and distributed

configurations) on both real hardware and full-system

simulation framework. Physical nodes have two Intel Xeon

X5650 chips running at 2.67 GHz (24 threads) and a main

memory of 48 GB. In the multi-node setup, nodes are

connected through a 1Gbps Ethernet network. We access the

Performance Monitoring Unit (PMU) of the processor

through the Linux perf tool [20]. Simulation-based

experiments mimic the micro-architecture configuration of

the real machines, only scaling down the number of

processor cores from 12 to 4 to speedup simulations.

The complete software stack is employed for evaluation in

both real and simulated environments. SPECweb and YCSB

benchmarks run on top of a Linux OS (Debian 8 distribution,

kernel version 3.18.34) + Oracle’s open source Java Virtual

Machine, 1.5 and 1.7 versions respectively.

Multiple runs are always used to ensure that we fulfill a strict

95% confidence interval. Although some memory models

(ruby) support trace driven warm-up from the checkpoints,

we used the gem5 classic memory model, which does not do

so. Starting from a checkpoint, the memory hierarchy is

warmed up during enough cycles before starting to collect

statistics.

Figure 3. Load and Store profile (events per kilo-instruction)

making use of two different execution environments (real

hardware vs. gem5)

3.4 Simulation Framework Validation

As our experiments combine the utilization of PMU

profiling and Full-system simulation, we carry out a

preliminary experiment trying to validate the joint utilization

of both methodologies. To do so, we will make use of YCSB

workloads running on both environments and measuring the

load/store footprint of each environment. In both cases, real

hardware and gem5, the database content is replicated

generating a 1GB database with the same YCSB commands.

We run a fixed number of records (one thousand) on both

Cassandra and MongoDB databases and measure the

fraction of Load and Store operations for each workload.

Figure 3 shows the results obtained. The y-axis represents

the fraction of Load and Store operations for each one

thousand instructions executed. Solid blue bars represent

0

50

100

150

200

250

300
C

A
SS

-W
A

C
A

SS
-W

B

C
A

SS
-W

C

C
A

SS
-W

D

C
A

SS
-W

E

C
A

SS
-W

F

M
O

N
-W

A

M
O

N
-W

B

M
O

N
-W

C

M
O

N
-W

D

M
O

N
-W

E

M
O

N
-W

F

LD
 &

 S
T

o
p

s
p

er
 k

ilo
-i

n
st

ru
ct

io
n

SPKI_gem5 LPKI_gem5 SPKI_perf LPKI_perf

simulated results (gem5) while dotted green bars show the

numbers obtained with perf. As can be seen, deviation is

minimal, less than 5% on average.

4 EXPERIMENTAL RESULTS

In this section we conduct multiple experiments evaluating

different components of the memory hierarchy, as well as

overall system performance. We measure the miss rate of L1

instruction cache, data and instruction translation lookaside

buffer and last level cache under two different scenarios,

client+server running on the same node against client and

server running on two different nodes.

Figure 4. Evolution of ICACHE miss rate (normalized to 1-

node values) as the number of simultaneous client sessions

grows. (up) SPECweb support results. (mid) Cassandra, WA

results. (down) MongoDB, WA results. Miss rate values (bars)

and individual client/server deviation (lines)

4.1 L1I Cache and Translation Lookaside Buffer

Figure 4 and Figure 5 present L1I cache and TLB miss-rate

results for client and server running on the same node (1N)

and independent client and server execution (2N). The

evolution of Client and Server Miss Rate (normalized to 1-

node results), as the number of simultaneous client

sessions/threads ramps up, is provided. For the sake of

simplicity only results corresponding to one workload of

each benchmark suite are provided. This way, Figure 4.up

shows results for the support workload from the SpecWeb

benchmark, while Figure 4.mid and Figure 4.down

corresponds to Workload A from YCSB (Cassandra and

MongoDB respectively). The values of this section have

been obtained measuring PMU features on real hardware.

Figure 5. Evolution of DTLB miss rate (normalized to 1-node

values) as the number of simultaneous client sessions grows.

(up) SPECweb support results. (mid) Cassandra, WA results.

(down) MongoDB, WA results. Miss rate values (bars) and

individual client/server deviation (lines)

ICACHE results show that only a marginal deviation is

caused by the joint execution of client and server code. On

the client side, deviation is nearly imperceptible. In contrast,

on the server side this difference grows up to 20% in the

most adverse cases, such as YCSB querying Cassandra

database. The main reason behind this difference could be in

the dissimilar size of client and server instruction working

sets. While clients of these benchmarks are “simple”

synthetic request generators, serving applications are known

by the large working set associated to their instructions.

0

10

20

30

40

50

60

70

80

90

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1N
 d

ev
ia

ti
o

n
 o

ve
r

2N
 r

es
u

lt
s

(%
)

1N
-n

o
rm

al
iz

ed
 IC

A
C

H
E

 M
is

s
R

at
e

Number of simultaneous client sessions

CLIENT-2N SERVER-2N CLIENT-1N

SERVER-1N SERVER DEVIATION CLIENT DEVIATION

10 100 500 1000 1400 1500 1600 1700

0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

1N
 d

ev
ia

ti
o

n
 o

ve
r

2N
 r

es
u

lt
s

1N
-n

o
rm

. I
C

A
C

H
E

 M
is

s
R

at
e

Number of Client Threads
2 8 16 24 32 40 48 56 64

0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

1N
 d

ev
ia

ti
o

n
 o

ve
r

2N
 r

es
u

lt
s

1N
-n

o
rm

. I
C

A
C

H
E

 M
is

s
R

at
e

Number of Client Threads
2 8 16 24 32 40 48 56 64

0

10

20

30

40

50

60

70

80

90

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1N
 d

ev
ia

ti
o

n
 o

ve
r

2N
 r

es
u

lt
s

(%
)

1N
-n

o
rm

al
iz

ed
 D

TL
B

 M
is

s
R

at
e

Number of simultaneous client sessions

CLIENT-2N SERVER-2N CLIENT-1N

SERVER-1N SERVER DEVIATION CLIENT DEVIATION

10 100 500 1000 1400 1500 1600 1700

0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

1N
 d

ev
ia

ti
o

n
 o

ve
r

2N
 r

es
u

lt
s

1N
-n

o
rm

al
iz

ed
 D

TL
B

 M
is

s
R

at
e

Number of Client Threads
2 8 16 24 32 40 48 56 64

0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

1N
 d

ev
ia

ti
o

n
 o

ve
r

2N
 r

es
u

lt
s

1N
-n

o
rm

al
iz

ed
 D

TL
B

 M
is

s
R

at
e

Number of Client Threads
2 8 16 24 32 40 48 56 64

For those results concerning TLB in Figure 5, we observe

how the error caused by single-node execution increases. In

this experiment deviation moves to values ranging from 20%

to 70%. Main deviation is observed on the client side, but

also server results consistently exceed 20%. These values are

far from negligible, suggesting that single-node

simplification might lead to incorrect conclusions. To

confirm these observations we extend our experiments to

alternative elements of the memory hierarchy, such as the

Last Level Cache.

Figure 6. Evolution of LLC miss rate (normalized to 1-node

values) as the number of simultaneous client sessions grows.

(up) SPECweb support. (mid) Cassandra WA. (down)

MongoDB WA. Miss rate values (bars) and individual

client/server deviation (lines)

4.2 Last Level Cache

We extend our evaluation to LLC performance under single-

node and multi-node configurations, because this is one of

the components where client-server interaction becomes

more evident. For the first LLC experiment we employ the

same methodology (PMU features) as in previous section,

presenting Figure 6 LLC miss-rate results as the number of

clients grows for client and server running on the same node

(1N) and independent client and server execution (2N). As

can be seen, the deviation for 1N results from the “realistic”

(2N) scenario is much more significant than the observed

results in L1I, ranging from 20% (SPECweb) to 80%

(Cassandra and MongoDB) for server LLC accesses and

from 20% (SPECweb and Cassandra) to 60% (MongoDB)

in the case of benchmark clients.

Figure 7. Miss rate evolution with LLC size. (left column) 3-

node simulation, (mid column) 2-node simulation and (right

column) 1-node simulation. Banking (up row), Ecommerce

(mid row) and Support (down row).

Given the adverse effect that these deviation values could

have on performance estimations, we decided to extend the

LLC evaluation. Allowed by the proposed simulation

framework and methodology, we focus our attention on the

performance impact of variable LLC size. Making use of the

simulated environment we are able to explore how the

deviation evolves as the LLC size grows from 1MB to

64MB. It must be noticed that this kind of experiment is only

available through simulation frameworks like the one

employed here or those proposed in [22][23].

0

10

20

30

40

50

60

70

80

90

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1N
 d

ev
ia

ti
o

n
 o

ve
r

2N
 r

es
u

lt
s

(%
)

1N
-n

o
rm

al
iz

ed
 L

LC
 M

is
s

R
at

e

Number of simultaneous client sessions

CLIENT-2N SERVER-2N CLIENT-1N

SERVER-1N SERVER DEVIATION CLIENT DEVIATION

10 100 500 1000 1400 1500 1600 1700 1800

0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

1N
 d

ev
ia

ti
o

n
 o

ve
r

2N
 r

es
u

lt
s

1N
-n

o
rm

al
iz

ed
 L

LC
 M

is
s

R
at

e

Number of Client Threads
2 8 16 24 32 40 48 56 64

0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

1N
 d

ev
ia

ti
o

n
 o

ve
r

2N
 r

es
u

lt
s

1N
-n

o
rm

al
iz

ed
 L

LC
 M

is
s

R
at

e

Number of Client Threads

2 8 16 24 32 40 48 56 64

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1MB 2MB 8MB 64MB

Client

Server (SUT)

Backend

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1MB 2MB 8MB 64MB

Client

Server+Backend

Server (SUT)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1MB 2MB 8MB 64MB

Client+Server+
Backend

Server (SUT)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1MB 2MB 8MB 64MB

Client

Server (SUT)

Backend

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1MB 2MB 8MB 64MB

Client

Server+Back
end
Server (SUT)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1MB 2MB 8MB 64MB

Client+Server+
Backend

Server (SUT)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1MB 2MB 8MB 64MB

Client

Server (SUT)

Backend

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1MB 2MB 8MB 64MB

Client

Server+B
ackend
Server
(SUT)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1MB 2MB 8MB 64MB

Client+Serv
er+Backend

Server
(SUT)

Figure 8. Miss rate evolution with LLC size (YCSB +

Cassandra). 1-node vs. 2-node results, workloads A to F.

According to the SPECweb deployment guide, the System

Under Test (SUT) corresponds exclusively to the Web

Server (node 1 in Figure 1.c). We analyze the effect of fusing

the remaining components and their interference on LLC

performance. Figure 7 shows miss-rate evolution in LLC as

the size of this component is increased. Each row in the

figure corresponds to the three workloads from Spec-web

benchmark, Banking (up) E-commerce (mid) and Support

(down). The left column in Figure 7 provides SUT results

simulating a 3-node distributed system, as sketched in Figure

1.c. This could be considered as the closest configuration to

a real scenario. Central and right columns show the results

obtained for the same metric (LLC miss-rate) as

configuration is gradually simplified to simulate just a

single-node. Dotted lines in central and right columns

represent the results obtained for SUT on a realistic 3-node

system. The deviation of solid lines from this reference

dotted line shows the error caused by inadequate simulation.

It can be observed that this error strongly depends on the

workload, ranging from less than 5% (Banking) to more than

20% (Support). This deviation could be defined as the error

made if we try to evaluate Server behavior with a single-

node system (all software pieces running on the same node).

Figure 9. Miss rate evolution with LLC size (YCSB +

MongoDB). 1-node vs. 2-node results, workloads A to F.

Figure 8 and Figure 9 present a similar study for Cassandra

and MongoDB workloads respectively. In this case, we limit

our evaluation to 1-node and 2-node configurations. For all

the workloads analyzed results show that miss-rate curve is

shaped by the memory operations performed by the client.

Server+Client (1-Node system) and Client (2-Node system)

results follow a similar progression, miss-rate reducing as

LLC size increases. In contrast, if we analyze the standalone

behavior of server side, we observe that cache size is not

able to improve miss-rate values for the range of LLC

capacities evaluated. Making use of the correct methodology

(2-Node system, server running standalone), our results

show that LLC size has few or none influence on miss rate.

In contrast, miss rate in single-node systems shows a great

dependency on LLC size, which is completely false because

server behavior has been completely masked by client cache

accesses. In this case, The main reason for these results is the

unbalanced working-set size of the code running on Client

and Server sides. Client code, corresponding to the YCSB

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1MB 2MB 8MB 64MB

Server+Client(1Node)

Server(2Nodes)

Client(2Nodes)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1MB 2MB 8MB 64MB

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1MB 2MB 8MB 64MB

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1MB 2MB 8MB 64MB

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1MB 2MB 8MB 64MB

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1MB 2MB 8MB 64MB

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1MB 2MB 8MB 64MB

Server+Client(1Node)

Server(2Nodes)

Client(2Nodes)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1MB 2MB 8MB 64MB

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1MB 2MB 8MB 64MB

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1MB 2MB 8MB 64MB

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1MB 2MB 8MB 64MB

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1MB 2MB 8MB 64MB

benchmark is merely in charge of generating the requests to

the database, which requires only a moderate working-set.

Most of the LLC accesses corresponding to the client end-

up with a hit. On the other hand, the Server side runs the

software implementing the database engine, which works

with randomized queries to a 1GB data set. Such a large

working-set obtains few benefit from a LLC increase from

1MB to 64MB.

This last group of results is useful to state the main

contribution of this work. The potential error caused by a

simplified simulation methodology is not irrelevant and has

led to incorrect conclusions. In this particular case, the

decision of provisioning the system with cores with larger

cache, based on the single-node evaluation, would have been

completely useless. If we try to evaluate a micro-

architectural proposal to improve the performance of a

database engine, single node simulation is an unsuitable

methodology. Running server and client code on the same

hardware leads to a load/store behavior mostly dominated by

the client side. This means that it is difficult to evaluate the

effects of any proposal on server performance, it being

necessary to adopt more elaborated simulation

methodologies such as the one employed in this paper or

those proposed in [23][22].

Figure 10. Client + Server (1-node simulation) IPC

normalized to server standalone results.

4.3 Overall System Performance

We complete this section measuring the overall IPC

deviation caused by client-server interaction in single-node

system. The same system configuration is maintained,

setting LLC size to 8MB in this experiment. Figure 10

represents the IPC values of single-node system normalized

to the IPC obtained by the server running standalone. As can

be seen, client-server interaction modifies IPC results,

reaching deviation values up to 15%. IPC deviation seems to

be much more relevant in the case of YCSB workloads,

caused by a more dissimilar behavior between client and

server performance (total IPC is artificially increased by the

higher IPC values observed in the client). We can conclude

that a 10% error would be added to performance evaluation

process merely by letting client and server code share LLC

resources, which is not representative of a real scenario.

5 SIMULATION OVERHEAD

This last section analyzes the computational overhead added

by distributed system simulations. We evaluate the

computational effort required for correct client-server

application benchmarking, as well as the execution time

overhead and the additional memory footprint of dual-node

simulation compared to a single-node configuration.

Even with the fastest non-assisted simulation mode in gem5

(i.e. atomic), database generation and SPECweb warm-up

would require an unfeasible amount of time. Therefore,

multi-threaded virtual-machine assisted fast-forward is a key

element in our tool. Given the coarse synchronization

between simulator and virtual machine monitor, and the use

of gem5 support for multithread event queues, this setup

allows the application to be “fast-forwarded” to the interest

point at near-native speed (if the running server has the same

number of cores than the simulated machine).

We have conducted an experiment to measure the time

overhead required to reach the Region Of Interest for the

YCSB-related workloads (for checkpoint generation) under

three execution modes: real, kvm and atomic. This process

requires to complete the required number of database queries

to fully load a Cassandra database. We provide in Figure 11

the results obtained for two different database sizes, 10MB

and 1GB. The x-axis represents the required completion time

in minutes (10MB) or hours (1GB). As can be seen, both

kvm and atomic present a large execution-time overhead

with respect to real hardware. Making use of atomic

execution mode, even the generation of a non-realistic

database (10MB) requires nearly a week to be completed. In

contrast, this time is reduced to barely 10 minutes through

hardware-assisted simulation (kvm-multithread). The big

difference is that making use of hardware-assisted

simulation is the only way to allow for the generation of a

1GB database at an affordable cost, less than 24 hours. Once

the database is completely loaded a checkpoint can be taken,

so this process only needs to be done once. If we try to

generate the same database through atomic simulation mode,

the execution time will increase up to a year, which is a

completely unrealistic delay (it should be noted that the

atomic results for the 1GB database have been extrapolated

from 10MB results, given the inability to perform such long

simulations). Similar results have been obtained for the

SPECweb warm-up phase, as hardware-assisted simulation

is mandatory in both cases.

0.6

0.7

0.8

0.9

1

1.1

1.2

SU
P

P

B
A

N
K

E-
C

O
M

M

C
A

SS
-W

A

C
A

SS
-W

B

C
A

SS
-W

C

C
A

SS
-W

D

C
A

SS
-W

E

C
A

SS
-W

F

M
O

N
-W

A

M
O

N
-W

B

M
O

N
-W

C

M
O

N
-W

D

M
O

N
-W

E

M
O

N
-W

F

G
M

EA
N

N
o

rm
al

iz
ed

 I
PC

Figure 11. Database load time (checkpoint generation) with

different methodologies, 10Mbyte (up) and 1Gbyte (down).

The results in Figure 12 have been obtained from the

simulations performed in previous sections. Figure 12.up

represents the additional simulation time required to

complete the same task in a dual-node system when

compared to an equivalent simulation of a single-node

system. In both cases the number of total cores simulated is

the same. As can be seen, the addition of a second node does

not incur a simulation time increase. The effect of the extra

simulated node over execution time is negligible.

Figure 12. Dual-node simulation overhead. Execution time

(up) and memory footprint (down) of the simulation.

Normalized results.

A similar result is obtained from the analysis of the amount

of memory consumed by each kind of simulation. This

memory footprint joins gem5 memory and the amount of

main memory assigned to simulated machines, both client

and server. For our experiments, the amount of memory

devoted to the client node was reduced to 1GB (the

minimum required to run YCSB and SPECweb clients), in

contrast to the 4GB of the server node. Figure 12.down

shows that the additional 1GB required by client node only

translates into less than 10% memory consumption

overhead, where the most consuming components is the

server node and the simulator itself.

8 CONCLUSIONS

In this work we have carried out a group of experiments that

illustrate the relevance of choosing the appropriate

simulation methodology. We showed that the error induced

by the combined execution of distributed workloads on a

single-node is far from negligible in some cases. We

conclude that more suitable methodologies are required to

work with workloads suitable for multi-node environments,

providing Gem5 the required features for such a complex

task (multi-node simulation support as well as hardware

assisted simulation). Making use of these features we

conduct a set of simulation experiments that confirm the

unsuitability of single-node evaluations of distributed

(client-server or multi-node) workloads.

Our next step to extend our conclusions will consist of

adapting additional benchmark suites for gem5 simulations

in order to analyze a broader range of environments. We also

plan to extend our evaluation to more architectural

components where interference could lead to incorrect

results, such as L1 Instruction cache or branch predictor.

9 ACKNOWLEDGEMENTS

This work was supported in part by the Spanish Government

(Secretaría de Estado de Inverstigación, Desarrollo e

Innovación) under Grants TIN2015-66979-R and TIN2016-

80512-R.

REFERENCES

[1] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M.

Shoaib, N. Vaish, M. D. Hill, D. A. Wood, B.

Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A.

Basu, J. Hestness, D. R. Hower, and T. Krishna,

“The gem5 simulator,” ACM SIGARCH Comput.

Archit. News, vol. 39, no. 2, p. 1, 2011.

[2] J. Power, “Little shop of gem5 horrors,” in Second

gem5 User Workshop.

[3] D. Sanchez and C. Kozyrakis, “ZSim: Fast and

accurate microarchitectural simulation of thousand-

core systems,” Proc. Int. Symp. Comput. Archit., pp.

475–486, 2013.

[4] SPEC Standard Performance Evaluation

Corporation, “SPEC 2006,” https://spec.org. .

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The

PARSEC benchmark suite: Characterization and

architectural implications,” Proc. Int. Conf. Parallel

Archit. Compil. Tech., 2008.

[6] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M.

Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu, A.

Ailamaki, and B. Falsafi, “Clearing the Clouds: A

Study of Emerging Scale-out Workloads on Modern

6.656,47

0 10 20 30 40 50 60 70 80 90 100

Gem5 Atomic

KVM Multithread

Real Hardware

Database Load Time (minutes)

~5-day simulation

9,208.1

16.9

0.8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Gem5 Atomic

KVM Multithread

Real Hardware

Database Load Time (hours)

~ 1-year simulation

0 0.2 0.4 0.6 0.8 1 1.2

SINGLE-NODE

DUAL-NODE

Normalized execution time

0 0.2 0.4 0.6 0.8 1 1.2

SINGLE-NODE

DUAL-NODE

Normalized memory fottprint

Hardware,” in ASPLOS’12, 2012, vol. 40, no.

Asplos, pp. 37–48.

[7] S. Srinivasan, L. Zhao, B. Ganesh, B. Jacob, M.

Espig, and R. Iyer, “CMP Memory Modeling: How

Much Does Accuracy Matter?,” in Fifth annual

workshop on Modeling, Benchmarking and

Simulation, 2009.

[8] T. E. Carlson, W. Heirmant, and L. Eeckhout,

“Sniper: Exploring the level of abstraction for

scalable and accurate parallel multi-core

simulation,” 2011 Int. Conf. High Perform. Comput.

Networking, Storage Anal., no. September, pp. 1–

12, 2011.

[9] A. Patel, F. Afram, S. Chen, and K. Ghose,

“MARSS: A Full System Simulator for Multicore

x86 CPUs,” in DAC’11, 2011, pp. 1050–1055.

[10] K. Shvachko, H. Kuang, S. Radia, and R. Chansler,

“The Hadoop Distributed File System,” in 2010

IEEE 26th Symposium on Mass Storage Systems and

Technologies (MSST), 2010, pp. 1–10.

[11] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang,

“The HiBench benchmark suite: Characterization of

the MapReduce-based data analysis,” in Lecture

Notes in Business Information Processing, 2011,

vol. 74 LNBIP, pp. 209–228.

[12] B. F. Cooper, A. Silberstein, E. Tam, R.

Ramakrishnan, and R. Sears, “Benchmarking cloud

serving systems with YCSB,” in Proceedings of the

1st ACM symposium on Cloud computing - SoCC

’10, 2010, p. 143.

[13] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He,

W. Gao, Z. Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu,

K. Zhan, X. Li, and B. Qiu, “BigDataBench: A big

data benchmark suite from internet services,” in

Proceedings - International Symposium on High-

Performance Computer Architecture, 2014, pp.

488–499.

[14] A. J. Awan, M. Brorsson, V. Vlassov, and E.

Ayguade, “Performance Characterization of In-

Memory Data Analytics on a Modern Cloud

Server,” in 2015 IEEE Fifth International

Conference on Big Data and Cloud Computing

(BDCloud), 2015, pp. 1–8.

[15] R. Panda, C. Erb, M. LeBeane, J. H. Ryoo, and L. K.

John, “Performance Characterization of Modern

Databases on Out-of-Order CPUs,” in 27th

International Symposium on Computer Architecture

and High Performance Computing (SBAC-PAD),

2015, pp. 114–121.

[16] M. Malik, S. Rafatirah, A. Sasan, and H. Homayoun,

“System and Architecture Level Characterization of

Big Data Applications on Big and Little Core Server

Architecture,” in IEEE International Conference on

Big Data (Big Data), 2015, pp. 85–94.

[17] Z. Jia, L. Wang, J. Zhan, L. Zhang, and C. Luo,

“Characterizing data analysis workloads in data

centers,” in Proceedings - 2013 IEEE International

Symposium on Workload Characterization, IISWC

2013, 2013, pp. 66–76.

[18] S. Kanev, J. P. Darago, K. Hazelwood, P.

Ranganathan, T. Moseley, G. Y. Wei, and D.

Brooks, “Profiling a Warehouse-Scale Computer,”

IEEE Micro, vol. 36, no. 3, pp. 54–59, 2016.

[19] A. Yasin, Y. Ben-Asher, and A. Mendelson, “Deep-

dive analysis of the data analytics workload in

CloudSuite,” in IISWC 2014 - IEEE International

Symposium on Workload Characterization, 2014,

pp. 202–211.

[20] “perf: linux profiling with performance counters.”

[Online]. Available: https://perf.wiki.kernel.org/.

[21] J. Reinders, VTune Performance Analyzer

Essentials. Intel Press, 2005.

[22] H. Wu, F. Liu, and R. B. Lee, “Cloud Server

Benchmarks for Performance Evaluation of New

Hardware Architecture,” IEEE Comput. Archit.

Lett., vol. 16, pp. 14–17, 2017.

[23] M. Alian, G. Dozsa, U. Darbaz, S. Diestelhorst, D.

Kim, and N. S. Kim, “dist-gem5: Distributed

Simulation of Computer Clusters,” in IEEE

international symposium on Performance Analysis

of Systems, 2017.

[24] “SPECweb2005.” [Online]. Available:

https://www.spec.org/web2005/.

[25] A. Lakshman and P. Malik, “Cassandra,” ACM

SIGOPS Oper. Syst. Rev., vol. 44, no. 2, p. 35, Apr.

2010.

[26] “DB-Engines Ranking.” [Online]. Available:

http://db-engines.com/en/ranking. [Accessed: 15-

May-2017].

[27] “MongoDB.” [Online]. Available:

https://www.mongodb.com. [Accessed: 15-May-

2017].

