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Abstract 

  This work presents the design and evaluation of an adaptive packet router aimed at 

supporting CC-NUMA traffic. We exploit a simple and efficient packet injection mechanism to 

avoid deadlock, which leads to a fully adaptive routing by employing only three virtual channels. In 

addition, we selectively use output buffers for implementing the most utilized virtual paths in order 

to reduce head-of-line blocking. The careful implementation of these features has resulted in a good 

trade-off between network performance and hardware cost.  The outcome of this research is a High-

Performance Adaptive Router (HPAR), which adequately balances the needs of parallel 

applications: minimal network latency at low loads and high throughput at heavy loads. 

The paper includes an evaluation process in which HPAR is compared with other 

adaptive routers using FIFO input buffering, with or without additional virtual channels to reduce 

head-of-line blocking. This evaluation contemplates both the VLSI costs of each router and their 

performance under synthetic and real application workloads. To make the comparison fair, all the 

routers use the same efficient deadlock avoidance mechanism. 

 In all the experiments, HPAR exhibited the best response among all the routers tested. 

The throughput gains ranged from 10% to 40% in respect to its most direct rival, which employs 

more hardware resources. Other results shown that HPAR achieves up to 83% of its theoretical 

maximum throughput under random traffic and up to 70% when running real applications. 

Moreover, the observed packet latencies were comparable to those exhibited by simpler routers. 

Therefore, HPAR can be considered as a suitable candidate to implement packet interchange in 

next generations of CC-NUMA multiprocessors. 

 

Index Terms: Interconnection Networks, Adaptive Routing, Hardware Router Design, 

Shared Memory Multiprocessors. 
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1. Introduction 

Nowadays, the advances in microelectronic technology offer computer architects a lot of raw 

logic power, allowing the implementation of traditional off-chip modules on the processor die. 

However, when considering medium to large-scale parallel systems, it is evident that the off-chip 

interconnection network will become a crucial component, affecting the whole system 

performance. On the one hand, the performance of a parallel system will be seriously penalized if 

the network is not able to handle the increasing volume of information generated by the 

processing elements when executing intensive data interchange workloads. On the other hand, 

message latency will be as critical as maximum sustained throughput when executing latency-

sensitive workloads. Both kinds of traffic patterns are present in common parallel applications. 

Moreover, it is very usual to encounter several execution phases in a single application managing 

different workload types.  

This paper presents a detailed router architecture for parallel machines, designed to optimize 

network throughput while maintaining a low node pass time, thus fulfilling the requirements of 

the next-generation multiprocessor systems. In this work, we focus on the CC-NUMA class of 

multiprocessors, which is one of the most popular architectures in the high-performance 

computing field due to its good scalability and easy programming. We consider a CC-NUMA 

machine having a 2D torus topology, which is a common selection for medium-to-large 

multiprocessor systems due to its good cost/performance ratio [1][7].  In addition, we employ 

virtual cut-through (VCT) flow control. Although several commercial systems use wormhole 

flow control, they all provide large buffers with capacity for hundreds of flits. In fact, the Cray 

T3E also sets a maximum packet size, narrowing the barrier between the two flow control 

techniques. However, VCT simplifies switching among multiple virtual channels and it is less 

deadlock-prone. Thus, recent routers such as those used in the BlueGene/L supercomputer [2] 

and the Alpha 21364 microprocessor [3] incorporate VCT flow control.   

It is well known that many parallel applications present specific communication patterns, in 

general far from uniform distributions. A deterministic router while simple will limit the 

maximum packet throughput due to its unbalanced use of network resources. Adaptive routing is 

preferable although it implies more complex routing logic. Moreover, this complexity translates 

to other key components such as the arbiter and the internal switching fabric. Consequently, for a 

new adaptive routing proposal to succeed, it needs to achieve a good cost/performance ratio. A 

simple deadlock avoidance mechanism for adaptive VCT routers known as �Bubble Routing� 

can lead to different high-performance router designs as the one shown in [18], which will be the 
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base router employed in this paper. Actually, the BlueGene/L supercomputer from IBM employs 

an adaptive packet router based on this mechanism [2].  

Once we provide sufficient buffer capacity and adaptive routing at a bounded cost, Head-of-

Line Blocking (HLB) becomes the main limitation for achieving higher packet throughput. When 

the first packet in a FIFO queue blocks, any following packets do so. However, it is quite 

probable that one or more of those queued packets wish to reach a free output port. Thus, we 

will explore the use of buffer structures different to the standard input FIFO queues, which are 

the main source of HLB. Although many mechanisms have been proposed in the literature, their 

complexity usually result in higher base latencies that may counteract the gains in throughput. In 

this research, HLB is nearly eliminated by selectively using multiport output buffers to implement 

the most utilized queues of the router. This constitutes a clear application of Amdahl�s Law. 

Other router alternatives avoiding HLB in a different way will be also considered in this paper for 

comparison purposes.  

In short, the outcome of this paper is a High-Performance Adaptive Router (HPAR) that 

simultaneously uses packet adaptivity and an internal organization able to minimize the 

performance degradation due to HLB. We can find examples of routers that have employed 

adaptive routing [3][20] and other examples providing some mechanism to avoid HLB [10] [23]. 

We will demonstrate in this work that adaptive routing with reduced HLB can be implemented in 

a realistic scenario at an affordable cost. To support the feasibility of our proposal, a detailed 

HPAR hardware implementation will be presented, evaluated and compared against other router 

alternatives. The performance exhibited by the different solutions under study will be evaluated 

twofold: under synthetic traffic and executing real parallel application by means of different 

simulation environments.   

The rest of this paper is organized as follows: Section 2 presents the basic motivations under 

this research and reviews some of the most related works. Section 3, which constitutes the kernel 

of this paper, presents the HPAR architecture basis, a suitable router organization and in-depth 

study of a particular hardware implementation. Section 4 presents a succinct but self-contained 

description of the router alternatives considered to compare with our proposal and the evaluation 

of their corresponding hardware costs. Section 5 presents a complete performance analysis of 

each router under synthetic and real workloads. Finally, Section 6 concludes the paper 

summarizing our main findings. 
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2.  Motivations and Previous Works 

The design of a high-performance network router is a trade-off between the gains achieved 

by sophisticated routing and buffering mechanisms and their costs in terms of router�s area and 

speed. In one extreme we have the simplest designs which implement oblivious or Dimension 

Order Routing (DOR) and FIFO input queues, limiting network throughput to a fraction of its 

theoretical maximum [6]. Not more than 60% is achieved for random traffic, dropping below 

30% for non-uniform patterns such as perfect-shuffle or bit-reversal permutations. On the other 

extreme we have more sophisticated designs such as the Chaos router [15], which achieve higher 

network throughput but their complexity prevent them from being implemented in a real system. 

Nevertheless, when considering clock frequencies, the simple designs translate, in most cases, 

into higher absolute values of packets delivered per time unit as well as lower packet latencies. 

For these reasons, oblivious routers have been used in some commercial systems. Somewhere in 

between lies the appropriate router architecture under the current implementation technology. It 

should incorporate mechanisms that increase network throughput, provided that their gains 

offset the added implementation complexity. In this Section, we describe the basic functions that 

must incorporate a high-performance packet router and their corresponding implementations 

that will determine its cost/performance ratio. 

 

2.1 Deadlock Avoidance and Adaptive Routing  

As we mentioned before, we focus in this research on k-ary n-cube networks, specifically on bi-

dimensional tori in which packets are transferred under VCT flow control. These two features in 

conjunction with the selected routing mechanism will determine the nature of packet deadlocks 

in the system. It is perfectly known that the performance and complexity of any router is 

extremely sensitive to the methods employed to deal with potentially deadlocked packets. 

An extension of virtual cut-through switching, known as Bubble Flow Control (BFC) [5], was 

successfully proved to avoid deadlock in deterministic tori with virtually no cost. A torus can be 

seen as a collection of uni-dimensional rings, which under DOR are visited in a specific order.  

BFC prevents the injection of a packet into any of these rings if it exhausts the ring�s buffer space 

at the corresponding local router. Fulfilling this condition ensures the existence of a �bubble� (a 

free packet buffer) in any possible cycle of the network topology, then avoiding packet deadlock.  

One of the best known methods to design deadlock-free adaptive networks is to add fully 

adaptive virtual channels to a given deadlock-free network, the later constituting an escape subnet 

for any packet potentially deadlocked [9]. This subnet was chosen to be a BFC DOR virtual 

network in a previous adaptive router presented by the authors [18].  That router employed a 
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second virtual channel per input link in which the packets were adaptively routed under VCT 

flow control. When using this switching technique, packets always try to travel through the fully 

adaptive virtual channels, changing dimensions only when blocked at a router. If all the adaptive 

paths for a packet are blocked, then the packet will use a BFC DOR escape virtual channel. 

Packets may change at any time from an escape channel to an adaptive one. In that work, we 

analyzed deterministic and adaptive versions of wormhole and BFC routers by designing the 

different alternatives at the VLSI level. It was demonstrated that the BFC adaptive routers 

outperform their wormhole counterparts both in packet latency and network throughput.  

A switching technique based on this mechanism has recently been implemented in the 

BlueGene/L supercomputer [2]. Henceforth, we will use an evolution of a BFC router, denoted 

as �Adaptive Bubble Router� [18], as the baseline for this new research and explore other design 

alternatives in order to improve its performance.  

 

2.2 Avoiding Head-of-Line Blocking  

Router performance depends not only on its functional characteristics such as routing, flow 

control and deadlock avoidance mechanisms, but also on its structural characteristics such as the 

placement and organization of the internal buffers. A FIFO queue located at each input link is 

the most popular implementation as it requires single-port memories. Nevertheless, as mentioned 

before, this buffer organization exhibits Head of Line Blocking (HLB). A router suffering from 

HLB tends to exhibit poor performance. Under synthetic traffic loads with a random pattern for 

accessing the output ports, the router saturates at about 60% of its total capacity, wasting a 

significant fraction of its link bandwidth [11].   

The solutions to this problem come from using non-FIFO input buffers and/or locating the 

storage space in a central queue or at the output links. Another common scheme is to use 

multiple input buffers, one for each output port, in the form of virtual channels [21]. The 

implementation of non-FIFO input queues implies the use of complex management hardware. 

For example, it is possible to use dynamic access queues (DAMQ) in order to service packets out 

of order as in [26].  Another possibility is to use a memory with multiple read ports to service one 

or more packets from the queue in a single cycle as in HIPIQS [22].   

The use of a centralized queue shared between the input and output channel as in the IBM 

SP-2's router [23] entails a more efficient use of the buffer space but requires multiple reads and 

writes per cycle. Placing the buffers at the output links still needs multiple writes to accept 

multiple incoming packets, but only one read per cycle. Although the efficiency in the use of the 
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storage space is worse than in the centralized case, the silicon area needed diminishes 

considerably.  

The viability of any of these buffer organizations will depend on the implementation 

complexity of the multiport memories associated to each design. A true multiport memory is 

extremely expensive and, usually, its application is limited to processor register files. Some 

proposals to provide high memory performance with lower cost include interleaved and wide 

memories. Such approaches have also been used in network routers such as the �Knockout 

Switch� [28] and the �Vulcan Switch� from IBM [24]. However, interleaved or wide memories 

have a serious drawback as it is necessary to wait for the reception of a wide word (in this 

context, a packet), before it can be written into memory. Therefore, its application would impose 

Store and Forward flow control or the use of an additional crossbar that allows the packets under 

low-load conditions to cut-through without using the memory [23].  

The cost of the pipelined memory structure presented in [12] is similar to that of an 

interleaved memory but by exploiting the spatial locality of the accesses, it provides a fast and 

cheap VLSI implementation of multiport memories for packet routing purposes.  The number of 

independent banks must be greater or equal to the number of write ports. Writes and reads in 

such a memory are produced in a pipelined manner. The memory controller is quite simple 

because the write or read address in each one of the banks is that used by the previous bank in 

the preceding clock cycle. 

In this research, we will investigate the use of this memory technology to implement some of 

our router�s virtual channels as multiport output buffers, specifically the ones belonging to the 

adaptive virtual sub-network. We will show how this technique greatly reduces HLB leading to a 

very high packet routing performance. We will demonstrate the viability of our proposal by 

comparing it with a router having multiple virtual channels in the form of FIFO queues located 

at the input ports. This alternative represents our most directed contender in terms of both cost 

and performance.   

 

3. High-Performance Adaptive Router (HPAR)  

As mentioned before, our goal is to design a high-performance adaptive router for k-ary 2-

cube networks, specially conceived to manage traffic generated by a standard CC-NUMA 

multiprocessor. The reactive traffic properties of CC-NUMA machines can give rise to 

application deadlock due to the limited capacity of the consumption queues at the network 

interface. The mechanism usually employed to avoid this kind of deadlock is to use two different 

virtual networks for request and reply traffic. This solution has been adopted in several systems 
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such as the SGI Origin [16] and the Cray T3E [20].  In this work, we will also consider a router 

managing two adaptive virtual networks. The implementation of both networks is achieved by 

means of three virtual channels: one adaptive channel shared by request and reply packets and 

two separate DOR escape channels managed under a restricted injection policy (BFC) to avoid 

packet deadlock in both virtual networks. More evolved systems generating other traffic classes 

would need additional virtual networks. The router proposed in this work could be consequently 

adapted to cope with additional packet classes.  

 

3.1.- HPAR Architecture 

A preliminary version of our HPAR, in which all its temporary storage has been 

associated to the output links, can be seen in Figure 1. For simplicity, this figure only shows two 

of the four input/output transit modules. There is a single packet buffer per input channel in 

order to dissociate the inter-node flow control from the Routing Unit (RU). Each output link has 

3 multiport buffers, one per virtual channel, plus a virtual channel controller.  Adding the reply 

and request delivery queues, it would require fourteen multiport memories in total. The number 

of writing ports would depend on our �bubble switching mechanism� [18], ranging from six for 

the +X/-X deterministic output queues to eleven for the +Y/-Y adaptive output queues. Note 

that this organization not only eliminates HLB but also the need for arbitration as all incoming 

packets could be written in their output buffers at once. However, the complexity of the resulting 

structure makes this proposal unfeasible.  

It is clear that we need to compromise our output buffer structure implementation in 

order to produce an affordable router. Figure 2 shows that the population of the adaptive queues 

in a 16x16 torus under heavy random traffic is three times higher than their deterministic 

counterparts when using a conventional input-buffer adaptive bubble router [18]. This happens 

because our switching mechanism selects adaptive paths whenever possible. Thus, at low loads 

most traffic uses exclusively the adaptive paths and the need for the escape�s paths is minimal. At 

saturation approaches, more packets will resort to escape paths. However, as BFC is a restricted 

injection mechanism, it prevents packets from filling up the escape queues. It is well known that 

improving the most frequent case of router�s operation we will obtain high performance at the 

lower cost Thus, we can limit our effort to reduce HLB by using only output buffers for the 

adaptive paths. 
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Figure 1.  Bubble Adaptive Router with output buffers (preliminary HPAR version).  
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Figure 2.- Population count of escape and adaptive queues close to saturation. 

 

Taking into account this behavior, a more feasible version of HPAR is shown in Figure 3. 

This approach uses output multiport buffers only for adaptive channels and input FIFO queues 

for escape channels. The number of multiport memories required for a bi-dimensional torus is 

five: four for the adaptive channels X+, X, Y+ and Y- plus another one for the delivery channel. 

The connection between input and output modules requires a crossbar of 14x14, which is a 

manageable size to be implemented without input or output multiplexing. There exist 12 
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input/output crossbar terminals to manage transit packets and two additional input/output 

crossbar terminals to manage the injection and consumption processes from/to two separate 

request and reply queues. 

In addition, we reduce the number of write ports by allocating a single write port for each 

adaptive input channel (three, as packets use minimal paths) and another one for all other traffic 

routed towards that adaptive channel. Therefore, each adaptive input channel has its own path to 

forward packets to their selected adaptive outputs. Packets arriving at the adaptive channels that 

can continue advancing along them will reach the router output without passing through the 

crossbar. Thus, the most common packet transit case does not need arbitration. On the contrary, 

packets routed from any escape channel and new packets injected at that node moving towards 

an adaptive channel must compete to use a single shared write port. Similarly, all packets coming 

from an escape channel and requesting another escape channel must compete to acquire the 

corresponding crossbar�s output. As escape and virtual channels share the physical link, that 

crossbar�s outputs and the read port of the multiport adaptive buffer are connected to the 

corresponding virtual channel controller (VC). The delivery buffer also has four write ports 

corresponding to the four adaptive inputs, while packets arriving through escape channels reach 

directly the network interface via the escape delivery channels.  

In an adaptive router, the selection function chooses the output channel from the set of 

profitable ones provided by the routing function. A dynamic selection function, can balance 

network occupancy and therefore enhance its maximum throughput. From the different 

alternatives of dynamic selection, we have selected the MAX-CREDITS policy that gives 

preference to the less populated output channels [27]. The main problem associated to dynamic 

selection functions is the cost involved in knowing the traffic conditions. When the buffers are 

located at the input ports, it is necessary to collect occupancy figures from the neighboring 

nodes, or to use communication protocols based on credits, which require additional hardware. 

Nevertheless, when the adaptive buffers are located at the output ports, such as in HPAR, the 

implementation of a dynamic selection function is straightforward. 
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Figure 3.- High-Performance Adaptive Router (HPAR). 

 

3.2 .- HPAR Structure and Organization 

In the HPAR architecture, each output link has an output buffer implemented by means 

of a multiport pipelined FIFO which is similar to the one presented in [12]. A basic example of 

this output buffer, using 2 write ports and 2 phits per packet, appears in Figure 4. Two modules 

in this circuit can be distinguished. One of them, framed in a dotted box in this Figure and 

denoted as Adaptive Multi-Input Block, implements the memory pipeline. The other module is 

composed of the memory banks themselves. 

The total number of cycles required to pass through this memory under low load is two 

cycles instead of the three cycles needed in [12] because it is not necessary to manage several read 

ports. This favors latency-sensitive applications. Under higher traffic load, multiple packets 

arriving at the same cycle, two in this example, may want to write into the first memory bank. 

The Adaptive Multi-Input Block pipelines the corresponding writes: the second effective write 

will be delayed one clock cycle in order to adequately fill the memory pipeline. In no case packets 

or phits are lost. In addition, the pipelined FIFO is able to read and feed the output link at its 
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maximum operation frequency. In this basic design, the minimum number of independent banks 

required for a correct memory operation is the maximum of the two following quantities: the 

maximum packet size in words or phits and the number of write ports. In our design, one packet 

is stored in a single memory line. Therefore, the number of memory banks increases with packet 

length and so does it cost.  
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Figure 4.- Pipelined FIFO Multiport Memory (Multiport Buffer). 

 

In order to limit cost, we have assembled two phits into one wider word, halving the 

number of banks. As the maximum packet length is 10 phits, which is dictated by the 

characteristics of our emulated CC-NUMA machine, each memory has 5 independent banks. It 

should be noted that by the time the routing decision is taken, there are already two phits at the 

input FIFO, so this scheme does not increase router latency.  Obviously, the header phit is 

advanced to the corresponding routing unit without waiting to receive the second phit of the 

word. To support this feature, HPAR has asymmetric FIFO memories at the input links, which 

use a read bus twice as wide as the write bus. Consequently, phit serialization will be needed at 

the multiport memory output.  A diagram of this solution can be seen in Figure 5.  
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Figure 5.- Assembling phits to decrease the Multiport FIFO memory complexity. 

 

As we have seen above, the multiport pipelined output buffers are designed for a fixed packet 

size, set by the number of banks (or a multiple of it). However, CC-NUMA machines exhibit a 

bimodal message length distribution, having both short command messages and larger data 

messages. As both the request and reply traffic share the same adaptive channels with a short-to-

long message ratio close to one, this would lead to significant memory fragmentation. This would 

not only use the buffer space inefficiently but could cause lower link utilization as well. To solve 

this problem, we add one more memory bank for short packets with its additional memory 

controller, as reflected in Figure 6. The Adaptive Multi-Input Block also provides the path to 

write into that additional bank. The outputs from the six independent banks will be multiplexed 

into the same physical link. 

Finally, we need to arbitrate the access to the physical link between the adaptive channel 

(the outputs from the multiport memories) and the two deterministic channels. This arbitration 

adds only one simple multiplexing stage to the output path. Furthermore, as the multiport 

pipelined memories already have a multiplexing stage amongst the memory banks, we can 

incorporate the two escape channels into this same multiplexer which is driven by the VC 

Control module. Although this multiplexer is on the critical path of the output stage, most 

decisions can be taken in advance; while one packet uses the output, the next outgoing packet 

can be chosen.  If the output port is free and two or more packet headers arrive simultaneously, 

the VC controller will give way to the adaptive channel. Thus, packets from escape channels will 

always have to spend a cycle checking the port availability. 
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Figure 6.- Pipelined Multiport FIFO including virtual channel controller.  

 

3.3 HPAR Implementation and Hardware Costs  

In order to estimate the hardware costs, our router has been described at register-transfer 

level in VHDL. Starting from this representation, a logic description of each router�s component 

has been obtained using the synthesis tools from the EDA Synopsys 1999.10 suite [25]. The 

design has been implemented in 0.25 µm technology using 5 metal layers from the UMC 

foundry. Employing these tools at the logic implementation level, we have extracted the router�s 

costs, both in delay time and silicon area. It must be highlighted that we are interested in the 

study of the HPAR behavior at the architectural level and in the comparison of its features with 

those of other router designs. Going down towards the physical level would unnecessarily 

increase the complexity of this analysis with a very limited effect on the conclusions that can be 

extracted from the logic implementation level.  

As we only want to compare different router alternatives, we will assume no channel 

pipelining. In this way, the most important contribution to packet latency corresponds to the 

router pass time. This constitutes the worst-case scenario for complex router designs, such as 

HPAR, because the impact of the router delays dominates over the link delays. In our case, the 

maximum wire frequency will determine the lowest cycle time for any router design. If any 

module of the router was not able to reach this frequency, it would be necessary to split it, 
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increasing the number of stages of the corresponding pipeline. The greater complexity of the 

router, the more pipeline stages and therefore, the higher the latency. 

We will assume a channel width of 32 bits, and a frequency of operation of 333 MHz 

providing a maximum bandwidth of 1.3 GB/sec per direction. This number adequately fits 

among the practical values exhibited by current multiprocessors. Typical values range from 14 

bits per link at 375 MHz in the Cray T3E, to 20 bits per link at 200 MHz in the SGI Origin. In 

fact, the aggregate bandwidth of HPAR will be 14.6 GB/sec, being close to the value claimed for 

systems like the Alpha 21364 [3] which also has 32-bit channels and router bandwidth between 

10 and 15 GB/sec.   

The first step to carry out the synthesis process of HPAR is to describe in VHDL each 

component at the register-transfer level. The router pipeline has been established by separating 

each module in different stages with clearly different functionalities. These stages are: 

synchronization, temporary storage, request and arbitration. Therefore, the router will initially 

have a latency of 5 cycles. Results from the first synthesis step will determine if the critical path 

of each module fulfills the frequency limit imposed by the system. The resulting pipeline 

structure that achieves these temporal requirements is shown in Figure 7. As we can see, the 

pipeline for the most common case, adaptive to adaptive channel switching employs five cycles. 

The deterministic to deterministic channel switching and the adaptive to deterministic switching 

also employ five cycles. Finally, the deterministic to adaptive transit, not represented in the 

Figure, consumes six cycles. 
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Figure 7.- Pipeline structure of HPAR: (a) Adaptive to adaptive switching.            (b) 

Deterministic to deterministic and adaptive to deterministic switching. 
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Modules facilitated by the Synopsys DesignWare components library have been employed 

to synthesize all the router elements (FIFOs, static memories and controllers). In this way, we 

could choose among an abundant list of fast implementations based on the requirements of each 

module. The hardware costs of the temporary storage depend both on its size and the given 

packet length. Given a maximum packet length of 40 bytes, the memory sizes that achieve a 

suitable performance are those shown in Table 1. The total buffer size of our proposal is about 2 

KB, which is perfectly acceptable for 0.25 µm technology. Larger buffer sizes do not significantly 

improve router performance but it may even increase the router pass time. Moreover, the cycle 

time of a FIFO module is a function of its depth. In our router, as mentioned above, asymmetric 

FIFOs with double width and half depth were used to reduce the number of banks of the output 

multiport memories.  

 

 
Buffer Sizes 

phits (bytes) 

Fifo Injection Reply 40(160) x 1 

Fifo Injection Request 8(32)x 1 

Fifo Deterministic Reply 40(160) x 4 

Fifo Deterministic Request 8(32)x 4 

Adaptive Input Buffer 10(40)x 4 

Adaptive Multiport Memory  40 (160)x 4 

Consumption Multiport Memory 40 (160)x 1 

Total  480 (1920) 

Table 1.- Buffer sizes for HPAR expressed in phits (bytes).  

Continuing with the synthesis process, a logic-level implementation for each module of 

the router was obtained. The main characteristics, in terms of time and silicon area, for this 

implementation are shown in Table 2.  
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Critical 

Path (NS) 

Area 

(MM2) 

Synchro. U. 1.08 0.011(x4) 

Fifo Adaptive 2.91 0.132(x4) 

Fifo Determ. Rep. 2.98 0.412 (x5) 

Fifo Determ. Req. 2.84 0.106(x5) 

CrossBar 2.93 0.446 (x1) 

Routing U. Adap. 2.75 0.039 (x4) 

Routing U. Determ. 2.60 0.0336 (x10) 

Multiport Memory 2.97 1.031(x5) 

TOTAL 3 9.27 

Table 2.- Main synthesis results for HPAR.  

 

4.  Alternative Router Designs and Comparative Hardware Costs. 

In order to assess the cost/performance ratio exhibited by HPAR we must compare these 

figures not only with our baseline router but also with the other alternative design to reduce 

HLB. This section describes these two additional routers, and their estimated hardware costs.  

 

4.1.- Bubble Adaptive Router. 

The base router employed in this paper is an evolution of our original bubble adaptive 

router. This router can be seen as the one achieving the highest performance among the range of 

adaptive routers having FIFO queues located at the input ports [18]. By comparing HPAR with 

this router we can see the gains due to reducing HLB.  

The Bubble Adaptive router, or BADA for short, has three virtual channels per link, as 

show in Figure 8. In the same way as with HPAR, BADA has a shared input FIFO to adaptively 

manage �request� and �reply� CC-NUMA traffic and two separate escape queues managed under 

DOR to assure deadlock-free communications. Synchronization units (Synchro), Routing units 

(RUs) and the corresponding crossbar unit complete the router structure. For the sake of clarity, 

the Figure only shows two of the four input modules. Besides, only the circuit data-path is 

shown.   

 



 - 16- 

 

…
 

+X out 

-Y out 

   
Cr

os
sb

ar
 1

4x
5 

-Y in 

Deter.
RU 

REQUEST 

Deter.
RU 

REPLY 

Inj Request 

Synchro 

Inj Reply 
Synchro 

Cons 

+Y out 

+X  out 

Synchro 

 Adap. 
RU 

Deter.
RU 

REQUEST 

Deter.
RU 

REPLY 

Synchro 

 Adap. 
RU 

Deter.
RU 

REQUEST 

Deter.
RU 

REPLY 

+X in 

 

Figure 8.- Structure of a Bubble Adaptive Router (BADA) 

 

4.2.- Bubble Adaptive Router with Multiple Virtual Lanes 

The second alternative is a variation of the BADA router, called BADAVL (BADA with 

Virtual Lanes), in which the adaptive paths have been split into four virtual lanes1. The use of 

virtual lanes located at the input ports to avoid HLB is a standard practice in the industry [8]. 

When a packet blocks at any given virtual channel, it does not prevent packets at the other virtual 

lanes from advancing. Each virtual lane has room to store one packet, and any packet traveling 

through an adaptive path can use any of the four lanes, so the buffer space will be efficiently 

used. This design alternative will show the effects of using standard HLB avoidance strategies 

when combined with adaptive routing.  

When using BADA and HPAR, the adaptive channels share �reply� and �request� traffic 

and this introduces buffer fragmentation. This effect would be magnified when using BADAVL. 

If the adaptive channels were shared between reply and request virtual networks, the storage 

utilization of each lane would fall because its individual buffer can be exhausted with only one 

short message. Thus, to avoid this negative effect, two independent virtual networks have been 

implemented: one for request and another for reply traffic. Figure 9 describes the basic building 

blocks of this router.  Note that the addition of virtual lanes does not require extra signaling in 

the communication protocol between neighboring routers.  

                                                 
1 Note that the term �lanes� is used to describe a set of virtual channels which are indistinctly used by the selection 

function, in contrast with the more generic term �virtual channels� in which the routing function may select one 

channel or another depending on different network conditions. 
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Obviously, as we add virtual lanes the number of inputs to the crossbar increases. 

Consequently, the crossbar control logic has more complexity. The approach taken here is to 

multiplex these different lanes at the crossbar input [20], keeping the cycle time and silicon area 

within manageable limits.  A Routing Unit (RU) per input link selects the output ports for each 

incoming packet and arbitrates amongst them to reach the crossbar. Since the flow control 

employed is VCT, packet-level multiplexing will be used. It should be noticed that this design 

provides a simple buffer structure at the cost of increasing the complexity of the switching fabric.  
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Figure 9.-  Structure of the BADAVL router  with independent request and reply virtual 

networks to avoid fragmentation. 

 

4.3.-  BADA Routers Implementation and VLSI Costs  

To carry out a fair comparison of our proposal with respect to its two counterparts, a 

specific implementation of both routers has been developed following the same methodology 

employed for HPAR. For a fair comparison, we have fixed the same router cycle for all the 

alternatives under study. The pipeline structures for both BADA routers are shown in Figures 10 

and 11.  
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Figure 11.- Pipeline structure of BADAVL router. 

It must be noted that the Multiplexed Routing Unit of the BADAVL router includes a 

pipeline stage more than the simpler BADA router. BADAVL needs an extra round-robin based 

arbitration stage to decide which channel sends its request to the crossbar. The implementation, 

in a single clock cycle, of the round-robin scheme together with the corresponding arbitration 

process is not possible under the technology used. 

Again, in order to make the comparison fair, all the routers will have the same storage 

capacity. A summary of the buffer sizes and their distributions in the alternative router designs is 

shown in Table 3.  

 

Routers Buffer Capacity 

phits (bytes) BADA BADAVL 

Fifo Injection Reply 40(160)x1 40(160)x1 

Fifo Injection Request 32(128)x1 32(128)x1 

Fifo Deterministic Reply 40(160)x4 40(160)x4 

Fifo Deterministic Request 32(128)x4 24(96)x4 

Fifo  Adaptive Channel  40(160)x4 4*10(160)x4 

Fifo  Adaptive Channel Req -- 4*2(32)x4 

Total  520 (2080) 520 (2080) 

Table 3.- Buffer sizes for each router in phits (bytes).  
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Finally, the measures obtained from the VLSI synthesis process of both routers can be 

seen in Table 4. Further details related to these alternative router implementations can be found 

in [18]. 

BADA BADAVL  

Critical 

Path (NS) 

Area 

(MM2) 

Critical 

Path (NS) 

Area 

(MM2) 

Synchro 1.08 0.011(x 4) 1.08 0.011(x 4) 

Fifo Adapt 2.96 0.381 (x 4) 2.82 0.500 (x 4) 

Fifo Adapt Req -- -- 2.75 0.085 (x 4) 

Fifo Determ Rep 2.96 0.381 (x 5) 2.96 0.381 (x 5) 

Fifo Determ Req 2.84 0.332 (x 5) 2.84 0.228 (x 5) 

CrossBar 2.96 0.248 (x 1) 2.95 0.169 (x 1) 

RU Adap 2.60 0.0336 (x 4) 2.90 0.0351 (x 10)

RU Determ 2.60 0.0336 (x 10) -- -- 

TOTAL 3 5.85 3 9.70 

Table 4.- Main synthesis results for BADA and BADAVL routers.  

The main drawback for the routers with HLB avoidance mechanisms is the increase in 

their base latency. Both, BADAVL and HPAR require, at least, five stages to pass through them. 

It must be highlighted that, in some switching cases, HPAR employs more cycles than BADAVL.  

This Section ends comparing the hardware costs of the three routers considered in this 

research. Obviously, the BADA router with FIFO input queues is the cheapest one in terms of 

the required silicon area. In absolute terms, the increase in area for the routers with HLB 

avoidance mechanisms is above 50%. Nevertheless, our proposal requires 5% less area than the 

BADAVL router. To put this numbers in context, the Alpha 21264A occupies 225 mm2 

implementing 15.2 million transistors with 0.25µm technology [13]. This design rule is the same 

as the one we used in our design process. Thus, the HPAR would represent only around 4% of 

the processor occupied silicon area, compared to 2.6% for the simplest BADA router. Whether 

we integrate the router in the processor chip or not, the additional cost is quite low; more so 

when considering the performance gains it entails, as we will see next. 

 

5. Performance Analysis. 

This Section presents a detailed performance analysis of the three routers described above in 

order to establish the potential advantages of HPAR when it is used in a CC-NUMA 
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multiprocessor. This analysis takes into consideration the hardware costs associated to each 

router established in the previous Sections.  

Firstly, we will compare the performance exhibited by three alternative interconnection 

networks using the different routers under a range of synthetic workloads. Secondly, we will 

compare the three networks in the context of a state-of-the-art CC-NUMA multiprocessor 

running real workloads.  

 

5.1 Performance Analysis under Synthetic Traffic 

The simulation environment employed in this study is based on SICOSYS (SImulator of 

COmmunication SYStems)[19]. This simulator allows us to take into consideration most of the 

VLSI implementation details with high precision, but with much lower computational 

requirements than hardware-level simulators. The maximum error observed with respect to a 

standard hardware simulator is around 2%, providing in all cases pessimistic estimations [19]. 

Although we begin our analysis using synthetic loads, in order to adequately model the 

traffic of a CC-NUMA machine, we have considered a bimodal distribution of packet lengths 

with a fixed length of 2 phits for short messages and 10 phits for the long ones. The real ratio of 

short/long messages depends on the network and application characteristics. To simplify this 

preliminary study, we don�t take into account coherency messages; hence, for each request (short 

message) the machine answers with a reply (long message). Therefore, the probability of 

generation of the two classes of messages is set to 0.5. With respect to the destination pattern, we 

have considered random as well as three widely used permutations: transposed matrix, bit-

reversal and perfect-shuffle. It is well known that this type of traffic only approximately models 

the complex behavior of the applications. Nevertheless, the network response can be manageably 

observed with network loads ranging from zero to its saturation point. This provides an insight 

of network performance in the two extreme cases: latency sensitive applications that generate low 

loads, and throughput-limited applications that put high traffic pressure on the interconnection 

networks. 
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Figure 12.- (a) Base Latencies (0.05% applied load with respect to the network bisection), 

(b) Maximum throughput.  

As we previously mentioned, the topology is set to a 64 2D-torus network. Figure 12 

shows base latencies and maximum throughputs for the different routers and Figure 13 shows 

the network behavior as a function of the load under random traffic. The base latency differences 

are small and reflect the values of pass-through delays for each router. On the contrary, 

substantial differences can be observed in their maximum throughputs. Of the two proposals to 

reduce HLB, HPAR clearly outperforms BADAVL, in spite of having less area requirements. 

Besides, the throughput achieved by HPAR managing random traffic is near twice the value 

exhibited by the conventional BADA router. This peak performance is very close to the ideal 

value, in which each network node can consume one phit per cycle. In the same situation, the 

BADAVL router exhibits only a slight throughput increasing 
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Figure 13.- Latency and throughput evolution for an 8x8 torus under random traffic. 

Although adding virtual lanes reduces HLB and increases peak throughput (see BADAVL 

versus BADA), network performance degrades above its saturation point. The multiplexing stage 

before the crossbar forces the deterministic channel to compete with the other four adaptive 

channels to access the crossbar and long waits result from it. After the load reaches its peak, 
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more and more packets will resort to their escape routes, which will only increase network 

congestion even more. This deficiency could be alleviated using a more complex arbitration 

policy than round-robin or implementing a not-multiplexed crossbar, both solutions having 

much higher cost. 

To complete this evaluation, we have also considered the impact of varying the ratio of 

short to long messages. As the differences in base latency are negligible, we will only compare the 

values of the maximum achievable throughput for each network under the previous traffic 

patterns, which are shown in Figure 14. It can be seen that HPAR performance does not degrade 

too much even for large short/long ratios, which is a proof of its good response under high 

fragmentation scenarios. The use of multiport memories and the added improvements to favor 

the most frequent switching case are responsible of this behavior. For low-to-medium short/long 

message ratios, BADAVL exhibits also a constant behavior but when the amount of short 

messages increases, its performance quickly falls down. In some cases, this performance 

degradation is close to 15%. The improvements in performance in the medium ratio values are 

due to a better buffer utilization. In this case the use of each virtual lane is more balanced.  
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Figure 14.- Maximum achievable throughput with different ratios for short/long 

messages and different traffic patterns. 
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Finally, it can be seen that the performance exhibited by the BADA router is lower in all 

these experiments. In some scenarios, the effect of varying short/long messages ratios show 

degradations up to a 20%.   This is a consequence of the increase of contention in the router. 

When the average packet length decreases, the arbitration processes inside the router are more 

frequent and consequently the congestion increases. HPAR is less sensitive to this effect as 

packets using adaptive paths require no arbitration. In a CC-NUMA multiprocessor, some 

applications exhibit high short/long ratios; thus, it is crucial to adequately support short message 

traffic.  

 

5.2 Performance Analysis under Real Workloads. 

In order to test the networks under a more realistic scenario, an execution-driven 

simulation process has been carried out. The integration of our network simulator, SICOSYS, 

into the RSIM simulation environment [17], provides a powerful tool to emulate a complete 

state-of-the-art CC-NUMA machine.  

We have initially set the simulation configuration parameters among the different levels of 

the memory hierarchy as in [4]. In that paper, 1 GHz processors implemented in 0.18 µm 

technology were used, establishing in consequence all the different memory access times. 

However, our routers have been implemented using 0.25 µm technology, so we scale the 

processor frequency down to 666 MHz. This is, in fact, the value reached by processors 

developed with the same channel length, as the Alpha 21264A [13]. The access latencies to the 

different levels of the memory hierarchy have been modified proportionally. In short, we could 

model our multiprocessor system under any given technology by adequately tuning the 

configuration parameters of both RSIM and SICOSYS simulators.  

Due to the limitations imposed by the complexity of the execution-driven simulated 

system, 16KB L1 cache and 64KB L2 cache have been used. The benchmarks employed have 

been tuned according to these cache sizes. In both cases, the cache line size is 32 bytes. The basic 

command messages traveling through the network have been fixed at 8 bytes. Therefore, as 

mentioned before, the command-message and the data-message are respectively 2 and 10 phits 

long. 

To carry out a realistic evaluation, we fed our simulation platform with three applications 

selected from the SPLASH-2 suite: Radix, FFT and LU. These three applications were selected 

because they have significant communication demands, and each one represent a different case 

of network load. Radix puts a high pressure in terms of volume of information to be handled by 

the network while exhibiting a practically uniform communication pattern in many phases of its 
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execution. FFT, however, applies a medium pressure on the network but the communication 

pattern has low spatial locality. Finally, LU applies lower pressure on the network but it gives rise 

to hot spots in localized zones of the system. These three examples will allow us to explore the 

effectiveness of each router under different conditions.  

The problem size for FFT is 64K double complexes. This is the default problem size 

established in [29]. Due to the high demand for computational resources the problem size for LU 

has been reduced from its default size of 512x512 to 256x256. The problem size for Radix has 

also been reduced from one million integer keys to a half-million using a radix of a half-million. 

For the emulated system size, these changes do not affect the accuracy of the results. The 

capacity for the different levels of the memory hierarchy was chosen in such a way that the 

results obtained are significant for the selected problem sizes and for the dimensions of the 

global system.  Other SPLASH-2 applications were not considered because they do not add any 

valuable information. In some cases, they exhibit similar characteristics and, in others, the 

interconnection network has no significant impact on its performance. 

Figures 15, 16 and 17 show the system behavior when running the three applications over 

three networks using BADA, BADAVL and HPA routers. Each figure includes the normalized 

execution time (and a close-up of it) and the network behavior in latency and throughput as it 

evolves during the program execution. The average latency of the remote accesses is measured in 

processor cycles and the throughput is expressed in phits per network cycle. In this way, we can 

see the network performance impact on the remote access latency and the network utilization 

level throughout the application execution. Note that the theoretical limit for the network load is 

64 phits/network cycle (one phit per node per cycle). Only the most interesting cases are shown. 
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(d) 

Figure 15.- (a) Normalized execution time for FFT with 64 processors (8x8 Torus) 

managing 64K double complexes. (b) Zoom.  (c) Average latency evolution.  

(d) Average throughput evolution. 

Remember that the CC-NUMA test-bed is identical for each experiment except for the packet 

routers, all of them implementing adaptive routing and having the same clock cycle. As Figure 

15(d) shows, the network load fluctuates from phases of heavy load to others of very low load.  

At low loads, all routers behave similarly because the differences on latency are minimal. The 

main differences are due to the ability of HPAR, and in some degree of BADAVL, to sustain 

higher peak throughput. This is why HPAR completes the heavy load phases ahead of its 

contenders. This is also true when running Radix, as shown in figure 16(d), in which the 

application loads ranges from high to medium loads. In this case, latency values differ from one 

network to other as shown in Figure 16(c). HPAR exhibits lower latency at high and medium 

loads, but BADA has lower values at low loads.  
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Figure 16.- (a) Normalized execution time for Radix with 64 processors (8x8 Torus) for 

512K integer keys and 512K Radix. (b) Zoom.  (c) Average latency evolution.   (d) Average 

throughput evolution 
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Figure 17.-  (a) Normalized execution time for LU with 64 processors (8x8 Torus) for a 

256x256 Matrix  (b) Zoom.  

There is a clear correlation between the peak throughput reached under RADIX (70% for 

HPAR, 64% for BADAVL and 60% for BADA of the theoretical maximum) and the behavior 

observed under synthetic random traffic. The peak throughput observed in FFT (around 40%) 

shows a similarity with the values observed under synthetic permutations. The differences 

amongst the three network�s peak throughput when running real applications are not as 

considerable as under synthetic loads. Note that CC-NUMA traffic is reactive in the sense that as 
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network congestion slows down the pending replies, it also reduces the number of incoming 

requests. So, maximum load levels oscillate around the network peak value. 

In short, the incorporation of HLB avoidance mechanisms improves network 

throughput. In the highest load phases, the network can manage heavier traffic. Hence, the 

duration of these phases are smaller and therefore, their execution�s times shorter (see Figure 

16(d) for example). In fact, the throughput enhancements of both routers with HLB reduction 

compensate their slight increases in base latency, as can be clearly seen in the Radix benchmark.  

HPAR reduces the execution time in respect to BADA by up to 10%. Besides, it always 

outperforms the BADAVL router in spite of using 5% less silicon area. Note that both routers 

share the same clock frequency and even, in some cases, HPAR employs more stages to pass a 

packet through it. It must also be noted that the whole CC-NUMA system is a complex 

architecture and its performance not only depends on the interconnection subsystem. Further 

tuning of other subsystems would increase the significance of the network performance in the 

total execution time.   

The previous scenario represents a single kind of system workload, i.e. numerical programs. 

Nevertheless, there is a larger range of applications for this class of popular CC-NUMA 

multiprocessors. An important set of these applications, such as OLTPs and DSSs, can put more 

pressure on the interconnection network than the numerical ones due to their scarce data locality 

[4].  

 

6. Conclusions 

In this paper, the design and evaluation of a high-performance adaptive router (HPAR) 

suitable for next generations of multiprocessor systems have been carried out. The router has 

been optimized for k-ary 2-cube interconnection networks specifically designed for CC-NUMA 

machines. As this low-dimensional router has low area requirements, it could be easily integrated 

within the processor chip.  

This new architecture is the result of gathering several functional and technological 

optimizations together to obtain a competitive adaptive router design. The use of Bubble Flow 

Control as a deadlock avoidance mechanism provides fully adaptive routing using just one 

channel for each virtual network plus an adaptive shared channel. By selectively using output 

buffers to manage the most frequent switching cases and by implementing them as pipelined 

multiport memories, we have obtained an efficient architecture that highly reduces the effect of 

head-of-line blocking. The presence of output buffering has allowed us to use an optimized 
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channel selection function that improves the load balance at almost no cost. Moreover, the most 

common accesses to these output buffers do not need arbitration. 

Our HPAR has been evaluated and compared with other alternatives starting at their 

hardware costs. The module�s delays obtained from a VLSI synthesis process have been 

incorporated into a detailed network simulator able to deal with standard synthetic traffic 

patterns. The experiments for an 8x8 torus showed that the use of adaptive output buffering 

results in throughput gains ranging from 20% to 50% when compared to the simplest input 

buffer implementation. This improvement comes only with a minor increment in base latency. 

Our router also outperforms the alternative solution for avoiding HLB, based on splitting the 

input buffer into multiple virtual lanes, both in throughput (ranging from 14% to 40%) and in 

base latency. Besides, an execution-driven simulator able to faithfully emulate CC-NUMA 

multiprocessors has been employed to compare the impact of using different routers when 

running parallel applications. This test-bed has allowed us to show how our proposal can reduce 

the execution time of several applications belonging to the SPLASH-2 suite. In this scenario, our 

router outperforms its most direct rival based on a higher number of virtual channels. These 

gains have been achieved even with lower area requirements. 

From a technological point of view, HPAR occupies an area of approximately 10 mm2 using 

a 0.25 µm design rules. If it were integrated within a state-of-the-art microprocessor using the 

same technology, it would increase the chip area by not more than 5%. All in all, HPAR is an 

excellent candidate for integration into the processor chips that will configure the next 

generations of CC-NUMA multiprocessors. 
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