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Abstract 

In most 3D work to date, people have looked at two 

situations: 1) a case in which power density is not a 

problem, and the parts of a processor and/or entire 

processors can be stacked atop each other, and 2) a case in 

which power density is limited, and storage is stacked atop 

processors. In this paper, we consider the case in which 

power density is a limitation, yet we stack processors atop 

processors. We also will discuss some of the physical 

limitations today that render many of the good ideas 

presented in other work impractical, and what would be 

required in the technology to make them feasible. 

In the high-performance regime, circuits are not 

designed to be “power efficient;” they’re designed to be 

fast. In power-efficient design, the speed and power of a 

processor should be nearly proportional. In the high-

performance regime, the frequency is (ever progressingly) 

sublinear in power. Thus, when the power density is 

constrained - as it is in high-performance machines, there 

may be opportunities to selectively exploit parallelism in 

workloads by running processor-on-processor systems at 

the same power, yet at much greater than half speed. 

1. Introduction 

In previous work [1][2][3][4], others have considered 

dividing up the parts of a processor, and aggregating those 

parts across multiple planes that are stacked atop each other. 

The goal was to reduce the lengths of the wiring paths so as 

to make a faster processor. 

Other work [5][6] has examined stacking entire 

processors atop each other, but dynamically allocating the 

resources of those processors (registers, queues, functional 

elements) to different (and possibly co-operating) threads to 

optimize performance for a fixed set of parts. In those cases, 

the processors were not high-powered processors. 

And many have considered the (now obvious) use of 3D 

in which the storage of a processor (or processor system) 

can be greatly augmented by stacking that storage atop that 

system [7][8][9][10]. Not only does this allow the use of 

heterogeneous technologies in the same package (e.g, 

DRAM with high performance logic), but it makes the 

access path(s) to that storage shorter.  

What we present in this paper is the idea of stacking 

high-performance processors together when the power 

density is constrained, but allow only one of them to run at 

full speed at any time. We consider how to facilitate this 

physically, and suggest different operating modes to help 

different workloads in different ways. By placing processors 

atop each other, we facilitate new modes of operation that 

wouldn’t be feasible in 2D. 

In Section 2, we describe the 2D processor that we’re 

using, and the four modes of operation that we’ll use when 

we stack two of them together. Of course the pair of chips 

has twice as many cores, and their physical coincidence 

allows some new operating modes, each of which is 

constrained to use the same amount of power. In Section 3, 

we will show the performance of all each of the 4 modes on 

16 different workloads of 6 different types. 

While we do not present the multiprocessor performance 

analysis in this work, in Section 4 we show how 3D allows 

a much more robust wiring infrastructure that gives the MP 

system much wider interconnection bandwidth than would 

be possible with the two chips wired together in 2D. 

But when you stack two processors together in 3D, there 

are many new physical challenges that need to be addressed. 

While providing richer bandwidth, and enabling better 

coupling between the caches, the power distribution and the 

thermal management become more difficult. In Section 5, 

we discuss the thermal issues, and show how they constrain 

how thin the layers can be. And in Section 6, we describe 

the physical properties of the Thru-Silicon Via (TSV), 

which is not needed in 2D, and which imposes some new 

constraints that will effect the wiring density and the layer 

thickness as well. 

In Section 7, we show how processor-on-processor chip 

systems can be used to provide much earlier yield, and 

therefore earlier shipment of products. And in Section 8, we 

show how a processor-on-processor configuration naturally 

allows 100% checking of all of the logic using an “R-Unit,” 

which we will describe. 

In Section 9, we explain how the wiring constraints, 

(specifically the TSV pitch) may make the actual wiring of a 

chip-to-chip structure much worse than ideal; and therefore, 

what kinds of wiring densities are likely needed to do some 

of the finer interconnections (e.g., macro-to-macro) that are 

frequently discussed. We also describe a couple of new 3D 

structures that could be done with a finer wiring pitch, 

including a structure that would simplify the 2D wiring. 

In this paper, in addition to showing the realizable 

processor-on-processor structures in the first sections, we 

consider the real constraints of 3D technology that need to 

be addressed to actually do them. We also discuss the basic 

constraints that render many of the other widely suggested 

applications of 3D systems impractical today, and we 

explain the technology problems that need to be solved first. 

These things are doable, but not yet. 

2. The System and Its Operational Modes 

 
Figure 1. An 8 Core Processor as Connected 

For this study, we used 45 nm CMOS with eDRAM for 

the L3 caches. Each core has its own private L3, and all 
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cores on the chip are connected in a tree-like configuration, 

as shown in Figure 1. Note that as we’ve already pointed 

out, in high-performance circuit design, the circuits are not 

designed for power efficiency; they’re designed for speed. 

To illustrate the power-speed tradeoff, Figure 2 shows a 

typical power-speed curve that was generated by varying the 

voltage, modeling the circuit performance subject to the 

voltage, and determining the operating frequency in which 

all paths in a core safely meet their timing requirements. We 

generated these points by starting at our desired operating 

frequency, which is 4 GHz. What’s clear is that the curve is 

not linear: several design points can be chosen from it to 

meet different objectives. 

 
Figure 2. Speed vs. Power 

In Figure 3, we’ve simply marked up the curve of Figure 

2 to show what we are doing in this piece of work. Note that 

at our chosen operating point (Frequency = 1), the Power 

versus Frequency curve is beginning to curve rather sharply. 

At very low voltage, the frequency is (roughly) linear 

with power. But as we continue to increase the voltage, the 

frequency stops increasing at this rate (fewer of the paths 

make their nominal timings), so the slope of the curve starts 

increasing. There is a Maximum Frequency at which the 

processor could possibly run; the slope will become infinite. 

 
Figure 3. Speed vs. Power - Annotated 

At the operating point that we’ve chosen (4 GHz), the 

slope is 3.56. Here, the frequency goes as (roughly) the 2.8
th

 

root of the power. This isn’t efficient, but it gives us a fast 

processor. What happens if we cut the power in half? We 

wind up at a point on the curve where power is being used 

efficiently; here, the slope of the curve is only 1.14, which is 

almost linear. And note that when the power is cut in half, 

the speed goes down by 25% (in this case, 3 GHz). 

This is what led us to consider 3D systems in which we 

stack processor chips together, and how by doing so, we 

could allow pairs of cores to run in some new synergistic 

modes: modes that that would give us more of a boost than 

simply “having two cores.” Because the cores would be 

spatially coincident if we used identical chips, these new 

modes would be unique to 3D. If attempted in 2D, they 

wouldn’t offer “improvements” with certainty. 

Figure 4 shows a sketch of two cores in each of two 

configurations. One is the 2D configuration, with the cores 

side-by-side; the other, the 3D configuration, with one of the 

cores directly atop the other. One thing should be apparent 

just by looking at the figure. 

 
Figure 4. Areal Difference - Shared L3s in 2D & 3D 

In the 2D configuration, if we conjoin the two L3 caches 

to make it one cache that’s twice the size, its area doubles. 

Therefore, its access time will be larger. Since the access 

time has a significant portion that’s proportional to the 

square root of its area, doubling its size in 2D increases that 

part of the access time by 40%. In the 3D configuration, the 

two L3s are spatially coincident. Conjoining them does not 

add this part of the delay, since the 2D area doesn’t change.  

In 3D, we’ve assumed that we need an additional cycle 

to cross back and forth between the layers, but since the area 

is unchanged, the basic access time is the same. In 3D, 

about half of the L3 accesses made by either core will take 2 

additional cycles, but the basic access time is the same. 

Each L3 has an access time of 24 cycles when the 

processor is running at 4 GHz. If we double the area of the 

L3 in 2D, the average access time is 33 cycles. In 3D, half 

of our L3 accesses are as fast as the original L3, and half 

take an 2 additional cycles (for two crossings). On average, 

the access time of the two L3s when conjoined is only 1 

cycle more than when each is kept private – 25 cycles. 

In two of our operating modes, we combine the pair of  

L3 caches (4 Mbytes) into a single L3 (8 Mbytes). In 3D, 

doing this is relatively seamless, and almost always yields 

higher performance. Doing this in 2D is more difficult, and 

it would hurt the performance a lot for some workloads. 

In our environment, we are primarily interested in very 

high-speed single thread operation. We can run in this mode 

simply by turning one of the layers off, and running the 

other layer at full speed – as it was originally designed. In a 

second mode, we can turn both layers on, and run two 

threads at 75% of their original speeds. But note that at 75% 

of the speed, the number of cycles needed to access the L3 

is only 75% of the cycles needed at full speed. 

With both processors on, we can choose to keep the L3s 

independent, or we can choose to run them as a shared 
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cache, having twice the capacity. This will reduce the back-

and-forth misses if they share data. We can also combine the 

two L3s into a 2X larger L3 when running only one of the 

processors. Since the second L3 takes some power, we can’t 

run that processor quite at full speed.  

For each processor, the L3 cache uses about 6% of the 

total power. So when a single processor uses both L3s in 

high-speed mode, to hold the power constant, we need to 

slow the clock down  by 1 - 2.8
th

 root of 1.06, which is 2%. 

To summarize, our configurations are shown Figure 5. 

Note that each processor chip has 8 cores; in Figure 5, we’re 

showing only one core position in the pair of chips: 

1) One 4 GHz core with a 4 MByte L3; 

2) One 3.92 GHz core with an 8 MByte L3; 

3) Two 3 GHz cores each with a 4MByte L3; and  

4) Two 3 GHz cores that share an 8 MByte L3. 

Figure 5. The Four Configurations Considered 

3. Performance Comparisons of the 4 Modes 

In this section, we evaluate the performance of each of 

the 4 structures with a simulator called REX (Research 

Experimental Timer). This timer is a cycle-by-cycle 

simulator of microarchitectures. The user can proscribe 

units, structures, interconnections, memory structures and 

geometries, and timings (in cycles) of the various elements. 

REX reads an instruction trace, and simulates that program 

running on the proscribed system configuration. 

We’ve used 16 different benchmarks from 6 kinds of 

applications to evaluate the four structures described in 

Section 2. With the exception of SPEC, the names of the 5 

other applications are factitious, but the workloads are real 

commercial workloads. 

The timing parameters used are shown in Table 1. To 

reduce the speed of the processor, we reduce its voltage. 

This causes the L1 and L2 to scale with frequency too, so 

the number of cycles needed to access them stays constant. 

The L3 and main memory use different power domains, 

so they do not have to have their speeds reduced when the 

processor frequency changes. When measuring those speeds 

in “Cycles,” they’ll appear “faster” in cycles at 3 GHz than 

they are at 4 GHz. And when we double the L3 size by 

conjoining the two of them, half of the references made to 

the L3 take 2 more cycles (1 per crossing). This adds an 

average of 1 cycle to an L3 accesses. 

Table 1 shows the access times of all levels in each 

configuration. We had said that the L2 speed scales with the 

frequency, so it’s constant. When the processor runs 25% 

slower, we can reduce the access cycles of the L3 and 

Memory in proportion: 24 � 18, and 200 � 150. Similarly, 

at 3.92 GHz, the memory access time is 4 cycles less. And 

as we’ve already explained, when we conjoin the L3s, we 

add a cycle to their access time. 

 
Table 1. Access Times for the 4 Main Storage 

Structures at Different Frequencies 
In Figure 6, we show the average number of cycles per 

instruction for each of the 16 workloads in each of the first 

two configurations. The first bar chart shows the actual 

BIPS for the base case (4 GHz with a 4 MByte L3). The 

second bar chart shows the normalized performance of the 

3.92 GHz Processor with the 8 MByte L3, relative to the 

base case. The base case has a performance of “1.”  

Note that for SPEC, CJR, and AK6, there’s very little 

difference – the processor that runs at 98% full speed runs 

about 2% slower. This means that having a larger L3 didn’t 

help these workloads at all; the processor simply took a 

small performance hit in clock speed. 

But on DLM, this system runs about 5% slower. That’s 

because DLM has a relatively high rate of upgrade-misses. 

Not only does the processor run 2% slower to maintain the 

power, but because it has a larger L3 cache it retains data 

longer, which increases the upgrade-miss rate. 

Figure 6. Raw, and Normalized Performance for Six 

Kinds of Workloads in Two Configurations 
Figure 7 shows the log of the number of instructions 

between successful upgrade-misses (denoted “XI” to 

connote cross-Interrogation), on average, for five of the 

workloads (SPEC had no XIs). CJR has a very small XI rate 
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- about 1 in 1000, CaD and AK6 have XI rates of 1 in 120-

125, so there is a minor effect. FNE as a rate of about 1 in 

85, so it’s similar. But DLM as an XI rate of  1 in 15. You 

can see in the previous graph that XIs have hurt DLM a lot. 

 
Figure 7. Average Distance Between XIs 

By doubling the L3 cache, we’ve hurt CJR and AK6 a 

tiny bit, and DLM by only slightly more. But we’ve helped 

CaD and FNE a lot. An 8 MByte L3 improves both FNE 

and CaD by as much as 16%. These data show that the 

double-L3 might hurt some jobs just a little if they don’t 

need more than 4 MBytes, but it will help others quite a lot. 

Figure 8 shows the relative performance of the two dual-

core configurations. When running a job on each side, there 

are additional misses because the two jobs reference some 

of the same data. This causes some of the data to be pulled 

from each L1 and L2 when it is referenced by the other core. 

This will result in additional misses if that data is re-

referenced. But there are only additional L3 misses when 

the L3s are kept separate. If they are run as a single L3, 

there is no L3-to-L3 traffic. 

The first cluster of bars in Figure 8 simply repeats the 

results from Figure 6, so that it’s easy to compare with the 

second and third clusters. This is an 8-core processor 

running at full speed (4 GHz). 

The second and third clusters of bars show the relative 

performance of the two coincident 8-core processors (that’s 

16 cores), where each core runs at 3 GHz. At 75% speed, 

each of the 3 GHz processors delivers at least 80% of the 

performance of a 4 GHz processor. So we’ll get a minimum 

or 60% more throughput in this mode. 

Figure 8. Relative Performances of the 3 Alternate 

Modes for all 16 Workloads 

And a 3 GHz core with a private L3 delivers as much as 

93% of the performance of a 4 GHz core having the same 

L3. While we clearly expected a lower bound of 75% 

performance (based on cycle-time alone), 93% is very 

surprising. This workload is CaD. The 3 GHz processor 

delivers surprisingly high (relative) performance because 

CaD has very high miss rates, so its performance is not tied 

that strongly to the speed of the processor. 

The workloads that show the highest relative 

performance at 3 GHz are CaD and FNE. These are the 

same workloads that benefitted the most from doubling the 

L3 cache. This finding is consistent. 

What’s really surprising is that with a shared L3 cache, 

FNE on one 3 GHz core runs just as fast as the base case (4 

GHz), and CaD runs as much as 5% faster! This means that 

a pair of cores at 3 GHz will deliver 210% of the throughput 

of a 4 GHz core on CaD. While we did expect to see 

throughputs that were 50% higher at 75% the speed, we did 

not expect to see throughputs that delivered more than twice 

the throughput of the base case. 

While it might seem obvious that two processors running 

at 3 GHz is the preferred mode of operation for throughput, 

there are some applications that need raw speed on a single 

thread. With the exception of the CaD workloads, the dual 

core configurations do not deliver the maximum single-

thread performance. But in all cases, they do deliver more 

power efficient performance, hence higher throughput at the 

same power; not surprising since this processor was built for 

speed, not for power efficiency.  

4. Wiring Larger SMPs – 2D vs 3D 

In Section 2, we showed how the cores on this chip are 

connected as a tree. What we’ll show in this section is that 

the MP effects can be dramatically different in 2D vs. 3D 

because of the wiring density. Figure 9 shows two 8-core 

processors connected in 2D to make a 16-core processor. 

 
Figure 9. A 16-Core Processor made from Two 8-

Core Processor Chips 
In 2D, the pair of 3-deep interconnection trees have 

become a 4-deep interconnection tree, with the root 

interconnection likely being slower that the other branches. 

While many applications may be unaffected by this, it can 

cause severe queueing penalties if MP applications 
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frequently share data among the 16 cores. In Figure 10 we 

show the same structure in 3D. 

Figure 10. A 16-Core Processor made from Two 8-Core 

Chips in 3D - The Obvious Configuration 
While a 3D 16-core system could be wired this way 

(exactly like the 2D version), and while these chip-to-chip 

wires would be even shorter,  an even better structure can be 

made in 3D as shown in Figure 11. It’s a much richer 

structure that’s only possible because of the number of 

interconnections between the layers is much greater in 3D, 

and the connections are very short because they connect 

coincident points. Instead of connecting the two planar trees 

together at a single high-latency point, we can connect each 

coincident pair of cores together at coincident points in 3D. 

Figure 11. A Richer 3D System that Uses Many More 

Connections than are Viable in 2D 
As a graph, this structure appears complicated, albeit 

very “connected.” One interpretation is that it is still a 4-

deep tree but a richly connected one if we keep the busses 

on each 2D layer (in black) independent. But a simpler way 

to run this structure is still as a 3-deep tree, but one in which 

each leaf comprises a pair of cores. 

This is shown in Figure 12. On the left is a copy of 

Figure 11: a bipartite graph comprising 16 nodes, where the 

maximum distance between nodes is 4. But in 3D, since 

core-to-core connections are (at most) a cycle apart, we’ve 

combined each pair of coincident cores into a single node, 

which makes the connection graph look the same as that of 

the original 8-core processor. 

 
Figure 12. Two Different Interpretations of the 

16-Core System in 3D 

The only topological difference here is that each node 

must have (simple) multiplexing to distinguish the two 

cores. But a big advantage to this structure is that while only 

one layer controls the bus, the bus wiring can be used on 

both layers to make the 8-node processor bus doubly wide. 

This gives us far more bandwidth than we could get in the 

2D configuration, but the topology is the same. 

5. Thermal Issues 

We’ve shown four ways to use the processor-on-

processor structure, but we need to consider the thermal 

system that they comprise to understand the constraints. On 

first consideration, anyone would be wary of running two 

high-performance processors directly over & under each 

other in a stack. But on reflection, it’s apparent that with 

each processor running at half power, the total areal power 

is the same. And that power, hence its dissipation, is now 

spread across TWO layers. Therefore, if the right things are 

done, the thermal issues should not be that problematic. 

Figure 13 shows the thermal image of a single core 

running at full power on the left, and the thermal images of 

two spatially coincident cores running at half power, with 

one atop the other, on the right. These were done with an in-

house custom tool. 

Figure 13. Thermal Maps of a Core Running Full Speed, 

and of Two Stacked Cores Running at Half Power 
The main hot spots in the full-power core still show up 

in the half-power cores, but the temperatures are lower for 

both layers. We’ve found through simulation that the 

temperature difference between the two layers is about 8
0
 C. 

While this is hardly worrisome, it does indicate that there 

will be a speed and/or leakage difference between the two 

processors. But both are cooler than the single layer running 

at full power. We’ll see more on this later. 

Figure 14. Thermal Map of the 8-Core Chip 
Figure 14 shows a full chip that contains 8 cores. In 

addition to the cores, the chip has lots of infrastructure: 

busses, I/O, and content that is not (on average) as power-

hungry as the cores. What’s clear from the thermal map is 
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that the power density isn’t uniform. And each core has 3 

major hot spots that are apparent. 

The chip is 650mm
2
, and its power is 250 Watts. The 24 

hot spots comprise about 0.5% of the total area of the chip, 

each spot being about 1/8 mm
2
. Together, the hot spots take 

about 6% of the total chip power (15 Watts). Therefore, 

each hot spot takes about 625 mW. But since each spot is 

roughly 1/8 mm
2
, the power density of each of the hot spots 

is about 5 W/mm
2
. 

Figure 15 shows the decrease in spot temperature as a 

function of the thickness of the chip for 5 W/mm
2
 (our high-

power density). We’ve shown this for four spot sizes: 200, 

400, 600, and 800 3
2
. These curves are drawn relative to 

0
0
C. That is, if the temperature of those spots were 0

0
C 

when the system’s not running, then these would be the spot 

temperatures when the system is running. 

To understand what this means in practice, let’s assume 

that the temperature of these spots when the system isn’t 

running is room temperature (25
0
C). Now looking at the 

graph, suppose that we’ve decided that the 400 3
2
 spot (the 

second curve from the bottom) can run as hot as 90
0
C, but 

no hotter. To see how thick the chip needs to be, we’d locate 

the point on the curve corresponding to 65
0
C (that’s 90

0
-

25
0
). In this case, the curve corresponding to the 4003

2
 hot-

spot shows that we’d need the chip to be at least 853 thick. 

We’ve marked this on the graph in Figure 15.  

 In fact 90
0
C isn’t sufficient if the system is likely to 

remain in this state for long, because we haven’t taken 

leakage current and its effect on temperature into account 

yet. But if the only chip that we are going to run at full 

power is the top chip, an 853 “requirement” isn’t a 

problem. But if we had wanted to run the bottom chip at full 

power too, it would need to be much thicker than we’d like 

– it would make the vias much larger than we’d want.   

 
Figure 15. Temperature vs. Chip Thickness at Full  

Power for 4 Different Spot Sizes 

Now we’ll consider the same system running at half 

power. The hot spots are the same size, but their power 

densities are half as much: 2.5 W/mm
2
. Figure 16 shows the 

thermal graph of the same hot spots running at half-power. 

And again, the second curve from the bottom corresponds to 

the 400 3
2
 spot. And again, let’s assume that we’d like to 

operate at a maximum temperature of 90
0
C (which 

corresponds to the 65
0
C point on the curve). 

In Figure 16, the 65
0
C intercept on the 400 3

2
 curve is 

off the graph; it’s slightly to the left of the y-axis. But 

remember (from our discussion of Figure 13) that the spots 

on the bottom chip run about 8
0
C hotter than they do on the 

top chip when both are running at half power. So for the 

bottom chip, the temperature corresponding to 90
0
C is 

actually 57
0
C (that’s 65

0
 – 8

0
) on this graph.  We’ve marked 

it on the graph with an asterisk. Figure 16 shows that we 

could make the bottom chip as thin as 253, but no thinner. 

These numbers depend heavily on how the chip is 

packaged; they’re not a general result. 

 
Figure 16. Temperature vs. Chip Thickness at Half 

Power for 4 Different Spot Sizes 
To get a more quantitative view of thermal conduction as 

a function of power density and chip thickness, we did 

thermal simulations of power point-sources, for different 

thicknesses, and for different amounts of power. And for the 

case of 2 layers, we also varied the relative alignments of 

the two hot spots. 

 
Figure 17. Assumptions Used in Previous 

Temperature vs. Thickness Graphs 
In the 2-layer simulations, we did not include the 203 

solder balls, but as we’ll see in the next section these won’t 

make much of a difference. Keep in mind that the main 

thermal path in both cases is “upwards.” Because the 

direction of heat flow is upwards, the thermal conductivity 

of the carrier doesn’t make much of a difference either. The 

2-layer case is shown below. 

 
Figure 18. Two-Layer Thermal Assumptions 
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In the 1-layer simulations, we used the thermal model 

shown in Figure 17. The chip is face-down on an FR4 

carrier, with a 503 film of thermal grease between the back 

of the chip and the heat sink. The heat sink is aluminum, 

and the other side of that sink is at the ambient temperature. 

For the purpose of doing these calculations, the ambient 

temperature can be set to any value that we’d like, because 

the heat curves that are generated are simply added to the 

ambient temperature. In this section, we are merely looking 

at temperature differences. 

For the 2-layer simulations, in addition to the 503 film 

of thermal grease on the back of the top chip, we’ve set the 

distance between the chips at 203, and put a layer of 

underfill between the layers. 

In the 2-layer simulations, the top chip was made “thick 

enough” to allow adequate heat diffusion in that layer; 

usually we used 2003. The hot spots are assumed to be on 

the bottoms of both layers. The variables are the thickness 

of the bottom layer, the sizes and power densities of the hot 

spots, and the horizontal displacements of the hot spots on 

the layers relative to each other. 

Because we did not include the C4s, or the TSVs in the 

bottom layer, these models are slightly skeptical. The real 

limits may be a little better than those shown in the figures. 

But as we’ll see in the next section, TSVs and C4s will not 

change the thermal picture much, because their surface 

contact areas are small. 

Our system is a “processor on processor” system. As 

first envisioned, the hot spots should be directly over-under 

each other to make the interconnections between cores easy 

(the connections are straight through). But we looked at how 

the thermal gradients would change if we could shift the 

chips a little to offset their hot spots. Figure 19 shows one 

example, with a pair of hot spots shifted by 1.83. 

 
Figure 19: Two 2.5 W/mm

2
 Hot Spots 

This shows is that by shifting the hot spots, we can 

reduce their temperatures quite a bit, since the heat spreads 

laterally. This should not come as a surprise. But how far 

should we spread them out? And will this hurt the wiring?  

Figure 20 shows the answer to the first question, which 

we’ll discuss here. (The second question is likely more 

germane to the actual design; we’ll address it completely in 

Section 9.) In Figure 20, the temperature of the top chip is 

the bottom curve (because it’s closer to the heat sink), and 

the temperature of the bottom chip is the top curve. The chip 

on the bottom is hotter than the chip on top. 

On the y-axis, we’ve shown the temperatures of a 400 

3
2
 hot spot on the top chip running at full power, and 

running at half power. These are the two large points on the 

y-axis. For both of these points, the bottom chip is turned 

off. Note that the temperature difference between these two 

points (half power vs. full power) is a little more than 30
0
C. 

Interestingly, if we put coincident (x=0) half-power hot 

spots on both layers (the two curves), the temperatures of 

each of them are less than that of the top layer running at 

full power. Also, note that at any offset, the temperatures of 

the two hot spots differ by 10
0
C. And as their displacement 

(x) increases, their temperatures fall dramatically, but their 

difference remains constant. 

 
Figure 20. Hot Spot Temperatures vs. Offset 

And note that at an offset of 1.8mm.,  at 2.5 W/mm
2
, the 

temperature of the top hot spot is at the same as it was with 

the bottom chip turned off (the large dot on the y-axis). 

Once the hot spots  are 1.8mm. apart, they’re independent. 

6. Properties of Thru-Silicon Vias (TSVs) 

We’ve talked about the performance of 2 layers, and 

their heat. Now we’ll describe the reality of how they are 

interconnected. To connect two layers together, they can be 

connected in a face-to-face (FTF) configuration, or in a 

face-to-back (FTB) configuration. Either way, there need to 

be silicon thru-vias (TSVs) in (at least) one layer. Of course 

for more than two layers, the FTB configuration is needed, 

whether there is a FTF structure in the stack or not. 

The advantage of FTF is that the FTF interconnection 

pitch is not dependent on the TSVs, and it can be finer. For 

example, a FTF system can be built by soldering the two 

layers together using 3C4 solder balls. And when soldering 

two silicon layers together, the 3C4-pitch can be finer than 

that for the TSVs. But either way, solder is needed (today) 

to connect the signals on the two layers together. 

The TSV pitch will be greater than the 3C4-pitch if the 

layers are tens of microns thick (e.g., 50-1003, as we’ve 

discussed). Given the length of a TSV (i.e., the thickness of 

the layer that it permeates), there is a lower limit on its 

diameter based on the aspect ratio of the hole to be filled.  

In the case of copper (Cu), filling the vias is a plating 

process, and the aspect ratio is limited to about 10:1. For 

tungsten (W), the process is a Chemical Vapor Deposition 

(CVD), and the aspect ratio can be larger (e.g., 30:1). 

We’ll now discuss several aspects of the systems that 

have to do with the coefficients of thermal expansion, the 

conductivities (both thermal and electrical), and the tensile 
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strengths of each material that we’d use in a chip/package 

structure like this one, including the thermal grease. Table 2 

gives approximations of these four constants for silicon, for 

the three metals that we can use, and for eutectic solder. 

Table 2. Coefficients of the Relevant Materials 
For illustration, consider TSVs with aspect ratios of 5:1 

and 10:1. Note that 10:1 is at the upper end of what’s 

possible for copper, which is plated, but not for tungsten, 

which uses a CVD process. As shown in the table, copper is 

3.3 times as electrically conductive as tungsten, so it would 

seem better to make TSVs out of copper. 

To get a better idea of the resistances, Figure 21 shows 

the interconnection infrastructure as it exists today for thick 

layers (e.g., >503). A bottom layer, 1003 thick, is soldered 

to the substrate with  253 C4s, and soldered to the top layer 

with 153 C4s. The 4 structures shown include two metals, 

Cu and W, and two aspect ratios for the vias, 5:1 and 10:1. 

Figure 21. Resistances in a Thick 2-Layer Structure 

The most resistive TSV is 10:1 tungsten. These add 110 

mW to the path. The most conductive TSV is the 5:1 copper. 

These add 8 mW to the path.  So while the thick copper TSV 

is 14X more conductive than the thin tungsten TSV, the full 

paths are 300 mW and 400 mW, respectively. Which is 

better? It’s a little better to have a bigger TSV, and it’s a 

little better to use copper. But the difference isn’t much. 

Before continuing our discussion of electrical resistance, 

let’s return to the point we made Section 5 about “C4s not 

providing much thermal coupling between the layers.” Why 

not? Table 2 shows that the thermal conductance of solder is 

8X less than that of copper. But a much more important  

factor is that the coupling surface-area of the C4s is tiny. 

Let’s take the surface area of a 153 C4 to be 100 3
2
 where 

it bonds to each chip. If the C4s are on 1003 centers, there 

is one C4 for every 10,000 3
2
. Then the thermal 

conductance of the C4 balls is only 1% of the value shown 

in Table 2. That’s 0.25 PPM / 
0
K, which is nearly nothing. 

Now, back to our discussion of electrical resistance. 

Even though the path difference between the extremely 

different TSVs is small (100 mW), since the TSVs are used 

to supply power, the lowest resistance will give us the least 

voltage drop, and the least ringing on surges. How much? 

In Section 5, we found that the hot spots were about 1/8 

mm
2
 (about 3503 by 3503) with a power density of 5 

W/mm
2
. The power for each hot spot is 5/8 Watts. If TSVs 

are on 1003 centers, and we use all of them for power and 

ground within hot spots, the situation shown in Figure 22. 

 
Figure 22. Our 350 3333 X 350 3333 Hot Spot 

Since the hot spot uses 625 mW, and covers multiple 

vias, we need to know how much current a via could pass so 

that we can determine the importance of its resistance. In 

our case, VDD is 1 Volt. An easy way to do this calculation 

is to simply look at the diamond formed by the ground vias, 

and to assume that the power via in the center provides all 

of the power within that diamond. The area of the diamond 

is 14,140 3
2
. The area of the hot spot is 122,500 3

2
. So the 

power via in the center must source 11.5% of the current to 

the 625 mW hot spot. This is 72 mA. The same is true of the 

ground vias. 

If we use the highest resistance TSV path, which in this 

example is 400 mW, 72 mA will cause a loss of 29 mV. 

That’s a 3% loss - which means a 3% increase in current. 

With the 300 mW vias, the loss is 21.6 mV. So, as before, 

the difference is not that significant. 

A final comment on copper and tungsten: Table 2 shows 

that the CTE of silicon is 2.6, the CTE of tungsten is 4.6, 

and the CTE of copper is 17. Therefore, there is a slight 

mismatch between silicon and tungsten, and a huge 

mismatch between silicon and copper. So it would seem that 

tungsten would be a better choice of metals if we were 

expecting thermal stress. But silicon is about 30% harder 

than copper and 5X softer than tungsten. If the copper tries 

to expand slightly, it can’t. It’s too soft. But if the tungsten 

expands much at all, it will crack the silicon. Which is 

“best” depends on how hot the system will actually get. 
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7. Using 3D to get High Early Yield 

In the proceeding sections, we’ve discussed the nominal 

operation of the system, and the realities of making that 

system. Unrelated to these issues, there are two other 

advantages of processor-on-processor systems. The first is 

early yield, which we’ll discuss here, and the second is 

reliability, which we’ll talk about in the next section. For the 

sake of the early yield discussion, we are using a very 

simple model in which we just consider cores, and we treat 

their working condition(s) as binary: working or not.   

 
Figure 23. Configuring 2 Layers to Get Early Yield 

Figure 23 shows the first concept (early yield) for an 8-

core chip. When chips are first made with a new technology, 

their yields are too poor to be able to ship products right 

away. That means that systems can’t be sold until the 

technology matures. In our Early Yield model, we put two 

of the chips together so that there are two cores in each x-y 

position, and then look at the probability that there is at least 

one working core in each location. If there is, we can turn 

that one on, and the other one off. From the outside, the pair 

of chips appears to be a single chip with a working core in 

every location.  

Figure 24 shows the yield of an 8-core chip as a function 

of time (Quarters of a Year), in several configurations using 

4 different values of the initial yield of a single core, Y. 

We’ve modeled the yield of a core as an exponential 

function of time that happens with process maturity. If Q 

represents Quarters (three months), the Yield is: 

Y(t) = 1 – e 
- ����Q 

The upper left plot takes the initial yield of a core to be 

Y = 0.5. The other plots show different values of Y. The 

middle curve in each graph is the yield of an 8-core 

processor chip by itself. For example, if the initial yield is 

Y(1) = 0.5 (the upper left plot in Figure 24), then the chip 

yield for 8 cores is 0.5
8
 = 0.0039. The chip could not be 

shipped with this yield. But from the point at Q=1, we get: 

���� = - ln (1 – 0.5
8
) = 0.0039 

This allows us to construct the rest of the curve. In this 

case, you can see that the chip yield (the middle curve) 

doesn’t get to 50% until the 4
th

 Quarter (1 year), and it 

doesn’t get to 90% until the end of the 6
th

 Quarter. 

 But if we put any two chips together, then the 

probability that there’s a working core in each of the 8 

positions is plotted as the top curve in each graph. The 

curves show that even with Y=0.5, the yield of a working 8-

core processor is nearly 80% at the beginning of the 2
nd

 

Quarter. Note that the yield of a single chip processor is 

only 10% at this time. This method would allow systems to 

be shipped a few Quarters earlier than standard yield allows. 

 
Figure 24: Yield Curves of an 8-Core Processor 

Given an Initial Core Yield of Y (Top Curve = 2 Layers 

with a working core in all 8 positions; Middle Curve = 1 

Layer with all 8 cores working; Bottom Curve = 2 

Layers with all 16 cores working) 
The bottom curve in each graph is the yield of two-chip 

systems in which all 16-cores work. Even with an initial 

core yield of 50%, the yield of a 16-core system becomes 

50% in the 4
th

 Quarter. These curves show that we could 

start shipping 8-core processors at the beginning of the 2
nd

 

Quarter, we could start shipping 16-core processor “chips” 

about half a year later. How’s that for Moore’s Law?  

The remaining graphs show the same system with initial 

core yields of Y = 0.6, 0.7, and 0.8. If we got initial core 

yields of 75-80%, an 8-core chip would hit acceptable yields 

by the second quarter, and at 80% yields, there would be 

very good yields on 16-core systems by the 3
rd

 Quarter. The 

problem is that we can’t know the yield before the first 

chips are actually produced. 

You might ask whether a chip-on-chip configuration is a 

“necessary” yield play. After all, an alternative that’s 

probably cheaper is to put N+1 cores on a chip (if they fit), 

and to start shipping products when N of them work. In 

Figure 25, we show the yield of N-out-of-(N+1) core chips 

as a function of N for various initial yield points. Obviously, 

adding more spare cores will improve this, but we don’t 

have much spare area on a chip, so we’ve used “1.” 

What’s clear from this plot is that yield drops off very 

quickly as N grows. While the 8-core chips have decent 

yield, the 16-core yields are terrible except at Y = 0.9. And 

according to our yield model, this will happen over time; 

but it does not give us an acceptable initial yield. The N-

out-of-(N+1) method and the 2-layer method that we’ve 

described are not competing yield enhancers; they’re 

complementary. We can use both for even better results. 
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Figure 25. Yields of Several  N-out-of-(N+1) Cores 
We have shown that the yield is very good for 8-out-of-9 

core processor chips. We have also shown that in the 2-layer 

system, an 8-core processor will start yielding fairly soon, 

and it will become a 16-core processor sometime later. Both 

schemes suffer much more than linearly as N grows larger. 

For a different approach, Figure 26 shows the yield for a 

12-core processor system using two layers. There are four 

curves to depict the chip yield for initial core yields of Y = 

0.75, 0.8, 0.85, and 0.9. In addition to having chosen values 

of Y that are much higher than what we used before, you 

should notice that the yield growth for a 12-core processor 

is much slower than it was for the 8-core processor. In this 

figure, we’ve not drawn the full curves for the two-layer 

systems; we’ve only shown the beginning and ending 

points. 

 
Figure 26. Chip Yield by Quarter for a 12-Core Chip, 

Based on Initial Single-Core Yields 

The solid curves in the figure are the standard yield 

curves. The graph shows that if the initial core yield is 75%, 

we can’t even yield 25% of the 12-core processors until the 

10
th

 Quarter. But while the initial single-chip yields are only 

about 2% (the lowest curve), nearly half of the chip pairs 

would be fully working 12-core processors immediately (see 

the lowest dot at 1
st
 Quarter). In other words, with a full 

chip of only 2%, we could ship nearly half of the chip pairs 

as fully working 12-core processors in the 1
st
 Quarter. 

Therefore, in addition to the performance modes that we 

discussed, a processor-on-processor system can be used to 

yield products much earlier than we do today. And once the 

basic core yields are high enough, we can get pairs of chips 

with all cores working with pretty good combined yields. 

8. Using 3D for Super Reliable Computing 

After yielding the full system, i.e., once all of the cores 

on both layers are working, in addition to performance, the 

core-on-core configuration can be used to do super-reliable 

computing, with 100% checking of all circuits. This is done 

using an R-Unit, which was a mechanism designed for 

IBM’s first zSeries CMOS mainframes. 

What the R-Unit does is: 1) it holds all architected state 

for a core (mostly register values) in a small set of ECC-

protected buffers; and 2) it compares the results of two 

cores, each of which has its own copy of that state, that are 

running the same program at the same time. At the 

completion of each instruction (which happens on the same 

cycle on both cores), the R-Unit performs a comparison. 

 
Figure 27: The R-Unit for 100% Checking 

If the results are the same, then the R-Unit generates 

ECC for those results, and it stores the new value of the 

state that was changed in its own private copy of the state. If 

the results are not the same, then the R-Unit stops both 

cores, and it restores all of the architected state in both cores 

using its hardened copy of the state. Then the R-Unit restarts 

the two cores at the point in the program at which the last 

instruction successfully completed.  

Figure 27 shows the basic structure of the R-Unit. While 

the R-Unit stands on its own in 2D, we can think of the R-

Unit as if each core has its own half of the R-Unit. Both 

cores send their results to both halves of the R-Unit. Both 

halves generate ECC, and both halves compare both results. 

If both halves agree that both results are the same, then the 

new results are checkpointed. The R-Unit is quite small, and 

can provide 100% checking. While it cannot determine what 

caused an error, it will catch any error and transparently 

restore the states of both cores simultaneously. 

In 2D, the outputs of the two cores can be physically far 

apart, so the checking and checkpointing processes are 

delayed by several cycles. Therefore, the cross-compares are 

more complicated in 2D because they are not 

“instantaneous.” In addition, the wiring for all of the cross-

compares and ECC generation would take lots of area in 2D. 

 In 3D, the outputs of the two cores are spatially 

coincident, so all of the comparisons can be done 

immediately, and they are not as complicated to wire. 
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9. Interconnection Density 

This section is here to discuss the final piece of reality: 

interconnection density. To gauge the possible granularity 

of logic macros in layer-to-layer interconnections, you’ll 

need to know how many signals you can put in a given area 

of the chip to see what’s feasible, and whether the wiring of 

those connections will cause timing problems. In high-

powered systems, about half of the connections are needed 

for power & ground, so the number of signals that can be 

run is only half of the total. 

All of the numbers that we will use in this section are  

hypothetical numbers. They lack direct references, but they 

are round numbers that are known to be close to what we 

can do today. The point of this section is not to declare exact 

numbers, but rather to convey the problems associated with 

these kinds of numbers in our technology today. 

For example, if connections can be put on a 1003 pitch, 

then there are only 100 per mm
2
, only 50 of which can be 

used for signals. But at a 103 interconnection pitch, 10,000 

fit – good for about 5,000 signals in the same mm
2
. 

The thickness of the thin layer might also limit the 

number of vias that can be placed. The aspect ratio needed 

for a TSV might force you to make much larger vias than 

you’d like. For example, if the thin layer is 1003, and you 

can only metalize holes with an aspect ratio of 5, then the 

diameter of each via has to be 100/5 = 203. With a keep-

out circumference around it, the area used by the via must 

be large, e.g., 253  X 253. For these numbers, you could 

only put 400 X 400 vias per mm
2
 if you used 100% of the 

area. Instead, if the vias were on 1003 centers, using 1/16 

of the chip area, then there could only be 10X10 of them per 

mm
2
, and they’d take 1/16 of the chip’s area. 

The via-pitch can be devastating if the number of signals 

that you need to connect is large. For example, let’s assume 

that a single macro is 2.5mm. by 2.5mm. If the via pitch is 

1003, then there are 625 vias within the macro, about 300 

of which are for signals. Figure 28 shows the vias in this 

area. Signals can use half of them. 

 
Figure 28. Thru-Via Spacing  Can Cause Problems 

If we need to connect 280 signals between layers with 

300 signal vias, some could have unexpectedly long routes. 

In Figure 28, we show a connection between points A and 

B, which are on different layers. While A and B are very 

close in their x,y coordinates, the wiring between them is 

nearly a centimeter long if they have to use a via that’s far 

away (the routing is shown in the figure). 

In Section 6 (see Figure 19), we had wondered whether 

moving one of the layers over by a millimeter would cause 

wiring problems. The answer seems to be that at the current 

interconnection pitches, there are much worse wiring 

problems. So skewing the layers by another millimeter or 

two doesn’t add to these problems in any significant way. 

3D technology integration has improved significantly in 

the past ten years. The main focus of recent work has been 

reducing the size and pitch of the TSVs. The literature has 

examples of TSVs diameters <13. From the perspective of 

manufacturing, a big limitation of these techniques is the 

requirement for wafer-to-wafer bonding, which compounds 

the yield limitations, since not all die will be good. 

 Additionally, little attention has been paid to the die-to-

die interconnect (micro-bumps). As a result, even when 

fine-pitch TSVs are available, the micro-bump pitch can be 

the limiting factor. Several previous works have examined 

requirements for die-to-die interconnection pitch given 

various stacking granularities. For example: processor-on-

memory, core-on-cache, core-on-core, or various types of 

core folding. In general, our analysis has produced results in 

line with these previously-published estimates. 

3D Integration Type Pitch Needed 

Core-on-Memory 200-400 um 

Core-on-Cache 30-50 um 

Core-on-Core 40-70 um 

Functional Unit on F.U.  10-20 um 

Functional Unit Folding 2-10 um 

Table 3. Interconnection Pitch Needed for Various 

Levels of Integration  

We produced our estimates by examining the number of 

connections between sets of functional blocks in a real 

processor, including core-to-core connections, core-to-cache 

connections, connections between functional blocks, and 

connections within functional blocks. Table 3 is a summary 

of those estimates for the required interconnection pitch to 

enable each degree of 3D integration. 

But from the previous section, we cautioned against 

extremely thin layers when using high-powered circuits, 

because the lateral thermal conduction becomes nonexistent. 

To talk about a 23 via pitch (with a 13 via) is not realistic 

if the via has to go through a 503 layer. 

On the other hand, the dataflow of a computer contains 

mostly multiplexors, decoders, and various gating to move 

data around, select it, shift it, gate it, etc. Lots of this logic is 

“1-hot” logic, meaning that one gate of many gets turned on, 

and the others stay off. While the logic for these parts is 

very simple, the wiring is not. For example, take the 

multiplexor in Figure 29. The “Select” inputs choose one of 

4 gates; the input to that gate passes through to the output.  

Since only one of the four gates can actually become 

live, we could stack these gates up in four layers as shown, 

without violating point-power-density limits. While the 

logic area that’s saved is not significant, stacking the gates 

up makes the wiring trivial. The savings is not merely areal; 

that’s not why we’d do this. We’d do this because it greatly 
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simplifies the planar wiring. This could possibly reduce the 

number of metal layers needed to make a processor. 

 
Figure 29. Thin-Layer Stacking of Certain Logic 

And finally, as stated in Table 3, we do see a new 

opportunity if the via (and/or 3C4) pitch becomes small 

enough to accommodate wiring between functional units on 

different layers (e.g., 10-203). This opportunity would be a 

practical extension to our processor-on-processor study, and 

is shown in Figure 30. 

 
Figure 30. Augmenting the Microarchitecture of a 

Core by Using Parts of Another Core 
Given the ability to do finer wiring between layers, new 

modes of operation could be made from the core-on-core 

structure by using functional parts of the inactive core to 

augment the microarchitecture of the active core. This 

enables us to dynamically instantiate two or more 

microarchitectures (e.g., a heterogeneous system of cores) 

from the same set of parts. An obvious example is to double 

the number of floating-point units to make a core that has 

better performance on superscalar applications. This would 

not be reasonable to do in 2D. 

10. Conclusion 

We have shown that there are several completely new 

advantages that can be had by putting a pair of processors 

directly over/under each other in 3D. Today, this pair of 

processors can be run in four different performance modes, 

offering considerably more throughput than a single fast 

processor. Several of these modes aren’t practical in 2D.  

And with the processor-on-processor configuration, we 

showed that in addition to performance, there is a high-

reliability mode that allows a pair of cores to check 100% of 

the processing done. It also offers a straightforward way to 

ship products early when the actual chip yields are very 

poor. This allows for an acceleration of product cycles. 

We’ve said a lot about the layer-to-layer interconnection 

density, and showed that if it’s not sufficiently fine, layer-

to-layer signals can become very long. It’s also important to 

note that if there is a need for lateral heat conduction, the 

layers cannot be made too thin, so the TSVs cannot be 

arbitrarily small. 

While 3D offers some completely new modes of 

operation for a processor, the current technology doesn’t yet 

allow enough wires between layers for cores to share their 

logic. But, putting one processor over another processor 

proves enormously useful in the high performance arena. 
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