
1

Abstract

In most 3D work to date, people have looked at two

situations: 1) a case in which power density is not a

problem, and the parts of a processor and/or entire

processors can be stacked atop each other, and 2) a case in

which power density is limited, and storage is stacked atop

processors. In this paper, we consider the case in which

power density is a limitation, yet we stack processors atop

processors. We also will discuss some of the physical

limitations today that render many of the good ideas

presented in other work impractical, and what would be

required in the technology to make them feasible.

In the high-performance regime, circuits are not

designed to be “power efficient;” they’re designed to be

fast. In power-efficient design, the speed and power of a

processor should be nearly proportional. In the high-

performance regime, the frequency is (ever progressingly)

sublinear in power. Thus, when the power density is

constrained - as it is in high-performance machines, there

may be opportunities to selectively exploit parallelism in

workloads by running processor-on-processor systems at

the same power, yet at much greater than half speed.

1. Introduction

In previous work [1][2][3][4], others have considered

dividing up the parts of a processor, and aggregating those

parts across multiple planes that are stacked atop each other.

The goal was to reduce the lengths of the wiring paths so as

to make a faster processor.

Other work [5][6] has examined stacking entire

processors atop each other, but dynamically allocating the

resources of those processors (registers, queues, functional

elements) to different (and possibly co-operating) threads to

optimize performance for a fixed set of parts. In those cases,

the processors were not high-powered processors.

And many have considered the (now obvious) use of 3D

in which the storage of a processor (or processor system)

can be greatly augmented by stacking that storage atop that

system [7][8][9][10]. Not only does this allow the use of

heterogeneous technologies in the same package (e.g,

DRAM with high performance logic), but it makes the

access path(s) to that storage shorter.

What we present in this paper is the idea of stacking

high-performance processors together when the power

density is constrained, but allow only one of them to run at

full speed at any time. We consider how to facilitate this

physically, and suggest different operating modes to help

different workloads in different ways. By placing processors

atop each other, we facilitate new modes of operation that

wouldn’t be feasible in 2D.

In Section 2, we describe the 2D processor that we’re

using, and the four modes of operation that we’ll use when

we stack two of them together. Of course the pair of chips

has twice as many cores, and their physical coincidence

allows some new operating modes, each of which is

constrained to use the same amount of power. In Section 3,

we will show the performance of all each of the 4 modes on

16 different workloads of 6 different types.

While we do not present the multiprocessor performance

analysis in this work, in Section 4 we show how 3D allows

a much more robust wiring infrastructure that gives the MP

system much wider interconnection bandwidth than would

be possible with the two chips wired together in 2D.

But when you stack two processors together in 3D, there

are many new physical challenges that need to be addressed.

While providing richer bandwidth, and enabling better

coupling between the caches, the power distribution and the

thermal management become more difficult. In Section 5,

we discuss the thermal issues, and show how they constrain

how thin the layers can be. And in Section 6, we describe

the physical properties of the Thru-Silicon Via (TSV),

which is not needed in 2D, and which imposes some new

constraints that will effect the wiring density and the layer

thickness as well.

In Section 7, we show how processor-on-processor chip

systems can be used to provide much earlier yield, and

therefore earlier shipment of products. And in Section 8, we

show how a processor-on-processor configuration naturally

allows 100% checking of all of the logic using an “R-Unit,”

which we will describe.

In Section 9, we explain how the wiring constraints,

(specifically the TSV pitch) may make the actual wiring of a

chip-to-chip structure much worse than ideal; and therefore,

what kinds of wiring densities are likely needed to do some

of the finer interconnections (e.g., macro-to-macro) that are

frequently discussed. We also describe a couple of new 3D

structures that could be done with a finer wiring pitch,

including a structure that would simplify the 2D wiring.

In this paper, in addition to showing the realizable

processor-on-processor structures in the first sections, we

consider the real constraints of 3D technology that need to

be addressed to actually do them. We also discuss the basic

constraints that render many of the other widely suggested

applications of 3D systems impractical today, and we

explain the technology problems that need to be solved first.

These things are doable, but not yet.

2. The System and Its Operational Modes

Figure 1. An 8 Core Processor as Connected

For this study, we used 45 nm CMOS with eDRAM for

the L3 caches. Each core has its own private L3, and all

3D Stacking of High-Performance Processors
Philip Emma, Alper Buyuktosunoglu, Michael Healy, Krishnan Kailas, Valentin Puente, Roy Yu, Allan Hartstein,

Pradip Bose, Jaime Moreno

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

978-1-4799-3097-5/14/$31.00 ©2014 IEEE978-1-4799-3097-5/14/$31.00 ©2014 IEEE

2

cores on the chip are connected in a tree-like configuration,

as shown in Figure 1. Note that as we’ve already pointed

out, in high-performance circuit design, the circuits are not

designed for power efficiency; they’re designed for speed.

To illustrate the power-speed tradeoff, Figure 2 shows a

typical power-speed curve that was generated by varying the

voltage, modeling the circuit performance subject to the

voltage, and determining the operating frequency in which

all paths in a core safely meet their timing requirements. We

generated these points by starting at our desired operating

frequency, which is 4 GHz. What’s clear is that the curve is

not linear: several design points can be chosen from it to

meet different objectives.

Figure 2. Speed vs. Power

In Figure 3, we’ve simply marked up the curve of Figure

2 to show what we are doing in this piece of work. Note that

at our chosen operating point (Frequency = 1), the Power

versus Frequency curve is beginning to curve rather sharply.

At very low voltage, the frequency is (roughly) linear

with power. But as we continue to increase the voltage, the

frequency stops increasing at this rate (fewer of the paths

make their nominal timings), so the slope of the curve starts

increasing. There is a Maximum Frequency at which the

processor could possibly run; the slope will become infinite.

Figure 3. Speed vs. Power - Annotated

At the operating point that we’ve chosen (4 GHz), the

slope is 3.56. Here, the frequency goes as (roughly) the 2.8
th

root of the power. This isn’t efficient, but it gives us a fast

processor. What happens if we cut the power in half? We

wind up at a point on the curve where power is being used

efficiently; here, the slope of the curve is only 1.14, which is

almost linear. And note that when the power is cut in half,

the speed goes down by 25% (in this case, 3 GHz).

This is what led us to consider 3D systems in which we

stack processor chips together, and how by doing so, we

could allow pairs of cores to run in some new synergistic

modes: modes that that would give us more of a boost than

simply “having two cores.” Because the cores would be

spatially coincident if we used identical chips, these new

modes would be unique to 3D. If attempted in 2D, they

wouldn’t offer “improvements” with certainty.

Figure 4 shows a sketch of two cores in each of two

configurations. One is the 2D configuration, with the cores

side-by-side; the other, the 3D configuration, with one of the

cores directly atop the other. One thing should be apparent

just by looking at the figure.

Figure 4. Areal Difference - Shared L3s in 2D & 3D

In the 2D configuration, if we conjoin the two L3 caches

to make it one cache that’s twice the size, its area doubles.

Therefore, its access time will be larger. Since the access

time has a significant portion that’s proportional to the

square root of its area, doubling its size in 2D increases that

part of the access time by 40%. In the 3D configuration, the

two L3s are spatially coincident. Conjoining them does not

add this part of the delay, since the 2D area doesn’t change.

In 3D, we’ve assumed that we need an additional cycle

to cross back and forth between the layers, but since the area

is unchanged, the basic access time is the same. In 3D,

about half of the L3 accesses made by either core will take 2

additional cycles, but the basic access time is the same.

Each L3 has an access time of 24 cycles when the

processor is running at 4 GHz. If we double the area of the

L3 in 2D, the average access time is 33 cycles. In 3D, half

of our L3 accesses are as fast as the original L3, and half

take an 2 additional cycles (for two crossings). On average,

the access time of the two L3s when conjoined is only 1

cycle more than when each is kept private – 25 cycles.

In two of our operating modes, we combine the pair of

L3 caches (4 Mbytes) into a single L3 (8 Mbytes). In 3D,

doing this is relatively seamless, and almost always yields

higher performance. Doing this in 2D is more difficult, and

it would hurt the performance a lot for some workloads.

In our environment, we are primarily interested in very

high-speed single thread operation. We can run in this mode

simply by turning one of the layers off, and running the

other layer at full speed – as it was originally designed. In a

second mode, we can turn both layers on, and run two

threads at 75% of their original speeds. But note that at 75%

of the speed, the number of cycles needed to access the L3

is only 75% of the cycles needed at full speed.

With both processors on, we can choose to keep the L3s

independent, or we can choose to run them as a shared

3

cache, having twice the capacity. This will reduce the back-

and-forth misses if they share data. We can also combine the

two L3s into a 2X larger L3 when running only one of the

processors. Since the second L3 takes some power, we can’t

run that processor quite at full speed.

For each processor, the L3 cache uses about 6% of the

total power. So when a single processor uses both L3s in

high-speed mode, to hold the power constant, we need to

slow the clock down by 1 - 2.8
th

 root of 1.06, which is 2%.

To summarize, our configurations are shown Figure 5.

Note that each processor chip has 8 cores; in Figure 5, we’re

showing only one core position in the pair of chips:

1) One 4 GHz core with a 4 MByte L3;

2) One 3.92 GHz core with an 8 MByte L3;

3) Two 3 GHz cores each with a 4MByte L3; and

4) Two 3 GHz cores that share an 8 MByte L3.

Figure 5. The Four Configurations Considered

3. Performance Comparisons of the 4 Modes

In this section, we evaluate the performance of each of

the 4 structures with a simulator called REX (Research

Experimental Timer). This timer is a cycle-by-cycle

simulator of microarchitectures. The user can proscribe

units, structures, interconnections, memory structures and

geometries, and timings (in cycles) of the various elements.

REX reads an instruction trace, and simulates that program

running on the proscribed system configuration.

We’ve used 16 different benchmarks from 6 kinds of

applications to evaluate the four structures described in

Section 2. With the exception of SPEC, the names of the 5

other applications are factitious, but the workloads are real

commercial workloads.

The timing parameters used are shown in Table 1. To

reduce the speed of the processor, we reduce its voltage.

This causes the L1 and L2 to scale with frequency too, so

the number of cycles needed to access them stays constant.

The L3 and main memory use different power domains,

so they do not have to have their speeds reduced when the

processor frequency changes. When measuring those speeds

in “Cycles,” they’ll appear “faster” in cycles at 3 GHz than

they are at 4 GHz. And when we double the L3 size by

conjoining the two of them, half of the references made to

the L3 take 2 more cycles (1 per crossing). This adds an

average of 1 cycle to an L3 accesses.

Table 1 shows the access times of all levels in each

configuration. We had said that the L2 speed scales with the

frequency, so it’s constant. When the processor runs 25%

slower, we can reduce the access cycles of the L3 and

Memory in proportion: 24 � 18, and 200 � 150. Similarly,

at 3.92 GHz, the memory access time is 4 cycles less. And

as we’ve already explained, when we conjoin the L3s, we

add a cycle to their access time.

Table 1. Access Times for the 4 Main Storage

Structures at Different Frequencies
In Figure 6, we show the average number of cycles per

instruction for each of the 16 workloads in each of the first

two configurations. The first bar chart shows the actual

BIPS for the base case (4 GHz with a 4 MByte L3). The

second bar chart shows the normalized performance of the

3.92 GHz Processor with the 8 MByte L3, relative to the

base case. The base case has a performance of “1.”

Note that for SPEC, CJR, and AK6, there’s very little

difference – the processor that runs at 98% full speed runs

about 2% slower. This means that having a larger L3 didn’t

help these workloads at all; the processor simply took a

small performance hit in clock speed.

But on DLM, this system runs about 5% slower. That’s

because DLM has a relatively high rate of upgrade-misses.

Not only does the processor run 2% slower to maintain the

power, but because it has a larger L3 cache it retains data

longer, which increases the upgrade-miss rate.

Figure 6. Raw, and Normalized Performance for Six

Kinds of Workloads in Two Configurations
Figure 7 shows the log of the number of instructions

between successful upgrade-misses (denoted “XI” to

connote cross-Interrogation), on average, for five of the

workloads (SPEC had no XIs). CJR has a very small XI rate

4

- about 1 in 1000, CaD and AK6 have XI rates of 1 in 120-

125, so there is a minor effect. FNE as a rate of about 1 in

85, so it’s similar. But DLM as an XI rate of 1 in 15. You

can see in the previous graph that XIs have hurt DLM a lot.

Figure 7. Average Distance Between XIs

By doubling the L3 cache, we’ve hurt CJR and AK6 a

tiny bit, and DLM by only slightly more. But we’ve helped

CaD and FNE a lot. An 8 MByte L3 improves both FNE

and CaD by as much as 16%. These data show that the

double-L3 might hurt some jobs just a little if they don’t

need more than 4 MBytes, but it will help others quite a lot.

Figure 8 shows the relative performance of the two dual-

core configurations. When running a job on each side, there

are additional misses because the two jobs reference some

of the same data. This causes some of the data to be pulled

from each L1 and L2 when it is referenced by the other core.

This will result in additional misses if that data is re-

referenced. But there are only additional L3 misses when

the L3s are kept separate. If they are run as a single L3,

there is no L3-to-L3 traffic.

The first cluster of bars in Figure 8 simply repeats the

results from Figure 6, so that it’s easy to compare with the

second and third clusters. This is an 8-core processor

running at full speed (4 GHz).

The second and third clusters of bars show the relative

performance of the two coincident 8-core processors (that’s

16 cores), where each core runs at 3 GHz. At 75% speed,

each of the 3 GHz processors delivers at least 80% of the

performance of a 4 GHz processor. So we’ll get a minimum

or 60% more throughput in this mode.

Figure 8. Relative Performances of the 3 Alternate

Modes for all 16 Workloads

And a 3 GHz core with a private L3 delivers as much as

93% of the performance of a 4 GHz core having the same

L3. While we clearly expected a lower bound of 75%

performance (based on cycle-time alone), 93% is very

surprising. This workload is CaD. The 3 GHz processor

delivers surprisingly high (relative) performance because

CaD has very high miss rates, so its performance is not tied

that strongly to the speed of the processor.

The workloads that show the highest relative

performance at 3 GHz are CaD and FNE. These are the

same workloads that benefitted the most from doubling the

L3 cache. This finding is consistent.

What’s really surprising is that with a shared L3 cache,

FNE on one 3 GHz core runs just as fast as the base case (4

GHz), and CaD runs as much as 5% faster! This means that

a pair of cores at 3 GHz will deliver 210% of the throughput

of a 4 GHz core on CaD. While we did expect to see

throughputs that were 50% higher at 75% the speed, we did

not expect to see throughputs that delivered more than twice

the throughput of the base case.

While it might seem obvious that two processors running

at 3 GHz is the preferred mode of operation for throughput,

there are some applications that need raw speed on a single

thread. With the exception of the CaD workloads, the dual

core configurations do not deliver the maximum single-

thread performance. But in all cases, they do deliver more

power efficient performance, hence higher throughput at the

same power; not surprising since this processor was built for

speed, not for power efficiency.

4. Wiring Larger SMPs – 2D vs 3D

In Section 2, we showed how the cores on this chip are

connected as a tree. What we’ll show in this section is that

the MP effects can be dramatically different in 2D vs. 3D

because of the wiring density. Figure 9 shows two 8-core

processors connected in 2D to make a 16-core processor.

Figure 9. A 16-Core Processor made from Two 8-

Core Processor Chips
In 2D, the pair of 3-deep interconnection trees have

become a 4-deep interconnection tree, with the root

interconnection likely being slower that the other branches.

While many applications may be unaffected by this, it can

cause severe queueing penalties if MP applications

5

frequently share data among the 16 cores. In Figure 10 we

show the same structure in 3D.

Figure 10. A 16-Core Processor made from Two 8-Core

Chips in 3D - The Obvious Configuration
While a 3D 16-core system could be wired this way

(exactly like the 2D version), and while these chip-to-chip

wires would be even shorter, an even better structure can be

made in 3D as shown in Figure 11. It’s a much richer

structure that’s only possible because of the number of

interconnections between the layers is much greater in 3D,

and the connections are very short because they connect

coincident points. Instead of connecting the two planar trees

together at a single high-latency point, we can connect each

coincident pair of cores together at coincident points in 3D.

Figure 11. A Richer 3D System that Uses Many More

Connections than are Viable in 2D
As a graph, this structure appears complicated, albeit

very “connected.” One interpretation is that it is still a 4-

deep tree but a richly connected one if we keep the busses

on each 2D layer (in black) independent. But a simpler way

to run this structure is still as a 3-deep tree, but one in which

each leaf comprises a pair of cores.

This is shown in Figure 12. On the left is a copy of

Figure 11: a bipartite graph comprising 16 nodes, where the

maximum distance between nodes is 4. But in 3D, since

core-to-core connections are (at most) a cycle apart, we’ve

combined each pair of coincident cores into a single node,

which makes the connection graph look the same as that of

the original 8-core processor.

Figure 12. Two Different Interpretations of the

16-Core System in 3D

The only topological difference here is that each node

must have (simple) multiplexing to distinguish the two

cores. But a big advantage to this structure is that while only

one layer controls the bus, the bus wiring can be used on

both layers to make the 8-node processor bus doubly wide.

This gives us far more bandwidth than we could get in the

2D configuration, but the topology is the same.

5. Thermal Issues

We’ve shown four ways to use the processor-on-

processor structure, but we need to consider the thermal

system that they comprise to understand the constraints. On

first consideration, anyone would be wary of running two

high-performance processors directly over & under each

other in a stack. But on reflection, it’s apparent that with

each processor running at half power, the total areal power

is the same. And that power, hence its dissipation, is now

spread across TWO layers. Therefore, if the right things are

done, the thermal issues should not be that problematic.

Figure 13 shows the thermal image of a single core

running at full power on the left, and the thermal images of

two spatially coincident cores running at half power, with

one atop the other, on the right. These were done with an in-

house custom tool.

Figure 13. Thermal Maps of a Core Running Full Speed,

and of Two Stacked Cores Running at Half Power
The main hot spots in the full-power core still show up

in the half-power cores, but the temperatures are lower for

both layers. We’ve found through simulation that the

temperature difference between the two layers is about 8
0
 C.

While this is hardly worrisome, it does indicate that there

will be a speed and/or leakage difference between the two

processors. But both are cooler than the single layer running

at full power. We’ll see more on this later.

Figure 14. Thermal Map of the 8-Core Chip
Figure 14 shows a full chip that contains 8 cores. In

addition to the cores, the chip has lots of infrastructure:

busses, I/O, and content that is not (on average) as power-

hungry as the cores. What’s clear from the thermal map is

6

that the power density isn’t uniform. And each core has 3

major hot spots that are apparent.

The chip is 650mm
2
, and its power is 250 Watts. The 24

hot spots comprise about 0.5% of the total area of the chip,

each spot being about 1/8 mm
2
. Together, the hot spots take

about 6% of the total chip power (15 Watts). Therefore,

each hot spot takes about 625 mW. But since each spot is

roughly 1/8 mm
2
, the power density of each of the hot spots

is about 5 W/mm
2
.

Figure 15 shows the decrease in spot temperature as a

function of the thickness of the chip for 5 W/mm
2
 (our high-

power density). We’ve shown this for four spot sizes: 200,

400, 600, and 800 3
2
. These curves are drawn relative to

0
0
C. That is, if the temperature of those spots were 0

0
C

when the system’s not running, then these would be the spot

temperatures when the system is running.

To understand what this means in practice, let’s assume

that the temperature of these spots when the system isn’t

running is room temperature (25
0
C). Now looking at the

graph, suppose that we’ve decided that the 400 3
2
 spot (the

second curve from the bottom) can run as hot as 90
0
C, but

no hotter. To see how thick the chip needs to be, we’d locate

the point on the curve corresponding to 65
0
C (that’s 90

0
-

25
0
). In this case, the curve corresponding to the 4003

2
 hot-

spot shows that we’d need the chip to be at least 853 thick.

We’ve marked this on the graph in Figure 15.

 In fact 90
0
C isn’t sufficient if the system is likely to

remain in this state for long, because we haven’t taken

leakage current and its effect on temperature into account

yet. But if the only chip that we are going to run at full

power is the top chip, an 853 “requirement” isn’t a

problem. But if we had wanted to run the bottom chip at full

power too, it would need to be much thicker than we’d like

– it would make the vias much larger than we’d want.

Figure 15. Temperature vs. Chip Thickness at Full

Power for 4 Different Spot Sizes

Now we’ll consider the same system running at half

power. The hot spots are the same size, but their power

densities are half as much: 2.5 W/mm
2
. Figure 16 shows the

thermal graph of the same hot spots running at half-power.

And again, the second curve from the bottom corresponds to

the 400 3
2
 spot. And again, let’s assume that we’d like to

operate at a maximum temperature of 90
0
C (which

corresponds to the 65
0
C point on the curve).

In Figure 16, the 65
0
C intercept on the 400 3

2
 curve is

off the graph; it’s slightly to the left of the y-axis. But

remember (from our discussion of Figure 13) that the spots

on the bottom chip run about 8
0
C hotter than they do on the

top chip when both are running at half power. So for the

bottom chip, the temperature corresponding to 90
0
C is

actually 57
0
C (that’s 65

0
 – 8

0
) on this graph. We’ve marked

it on the graph with an asterisk. Figure 16 shows that we

could make the bottom chip as thin as 253, but no thinner.

These numbers depend heavily on how the chip is

packaged; they’re not a general result.

Figure 16. Temperature vs. Chip Thickness at Half

Power for 4 Different Spot Sizes
To get a more quantitative view of thermal conduction as

a function of power density and chip thickness, we did

thermal simulations of power point-sources, for different

thicknesses, and for different amounts of power. And for the

case of 2 layers, we also varied the relative alignments of

the two hot spots.

Figure 17. Assumptions Used in Previous

Temperature vs. Thickness Graphs
In the 2-layer simulations, we did not include the 203

solder balls, but as we’ll see in the next section these won’t

make much of a difference. Keep in mind that the main

thermal path in both cases is “upwards.” Because the

direction of heat flow is upwards, the thermal conductivity

of the carrier doesn’t make much of a difference either. The

2-layer case is shown below.

Figure 18. Two-Layer Thermal Assumptions

7

In the 1-layer simulations, we used the thermal model

shown in Figure 17. The chip is face-down on an FR4

carrier, with a 503 film of thermal grease between the back

of the chip and the heat sink. The heat sink is aluminum,

and the other side of that sink is at the ambient temperature.

For the purpose of doing these calculations, the ambient

temperature can be set to any value that we’d like, because

the heat curves that are generated are simply added to the

ambient temperature. In this section, we are merely looking

at temperature differences.

For the 2-layer simulations, in addition to the 503 film

of thermal grease on the back of the top chip, we’ve set the

distance between the chips at 203, and put a layer of

underfill between the layers.

In the 2-layer simulations, the top chip was made “thick

enough” to allow adequate heat diffusion in that layer;

usually we used 2003. The hot spots are assumed to be on

the bottoms of both layers. The variables are the thickness

of the bottom layer, the sizes and power densities of the hot

spots, and the horizontal displacements of the hot spots on

the layers relative to each other.

Because we did not include the C4s, or the TSVs in the

bottom layer, these models are slightly skeptical. The real

limits may be a little better than those shown in the figures.

But as we’ll see in the next section, TSVs and C4s will not

change the thermal picture much, because their surface

contact areas are small.

Our system is a “processor on processor” system. As

first envisioned, the hot spots should be directly over-under

each other to make the interconnections between cores easy

(the connections are straight through). But we looked at how

the thermal gradients would change if we could shift the

chips a little to offset their hot spots. Figure 19 shows one

example, with a pair of hot spots shifted by 1.83.

Figure 19: Two 2.5 W/mm

2
 Hot Spots

This shows is that by shifting the hot spots, we can

reduce their temperatures quite a bit, since the heat spreads

laterally. This should not come as a surprise. But how far

should we spread them out? And will this hurt the wiring?

Figure 20 shows the answer to the first question, which

we’ll discuss here. (The second question is likely more

germane to the actual design; we’ll address it completely in

Section 9.) In Figure 20, the temperature of the top chip is

the bottom curve (because it’s closer to the heat sink), and

the temperature of the bottom chip is the top curve. The chip

on the bottom is hotter than the chip on top.

On the y-axis, we’ve shown the temperatures of a 400

3
2
 hot spot on the top chip running at full power, and

running at half power. These are the two large points on the

y-axis. For both of these points, the bottom chip is turned

off. Note that the temperature difference between these two

points (half power vs. full power) is a little more than 30
0
C.

Interestingly, if we put coincident (x=0) half-power hot

spots on both layers (the two curves), the temperatures of

each of them are less than that of the top layer running at

full power. Also, note that at any offset, the temperatures of

the two hot spots differ by 10
0
C. And as their displacement

(x) increases, their temperatures fall dramatically, but their

difference remains constant.

Figure 20. Hot Spot Temperatures vs. Offset

And note that at an offset of 1.8mm., at 2.5 W/mm
2
, the

temperature of the top hot spot is at the same as it was with

the bottom chip turned off (the large dot on the y-axis).

Once the hot spots are 1.8mm. apart, they’re independent.

6. Properties of Thru-Silicon Vias (TSVs)

We’ve talked about the performance of 2 layers, and

their heat. Now we’ll describe the reality of how they are

interconnected. To connect two layers together, they can be

connected in a face-to-face (FTF) configuration, or in a

face-to-back (FTB) configuration. Either way, there need to

be silicon thru-vias (TSVs) in (at least) one layer. Of course

for more than two layers, the FTB configuration is needed,

whether there is a FTF structure in the stack or not.

The advantage of FTF is that the FTF interconnection

pitch is not dependent on the TSVs, and it can be finer. For

example, a FTF system can be built by soldering the two

layers together using 3C4 solder balls. And when soldering

two silicon layers together, the 3C4-pitch can be finer than

that for the TSVs. But either way, solder is needed (today)

to connect the signals on the two layers together.

The TSV pitch will be greater than the 3C4-pitch if the

layers are tens of microns thick (e.g., 50-1003, as we’ve

discussed). Given the length of a TSV (i.e., the thickness of

the layer that it permeates), there is a lower limit on its

diameter based on the aspect ratio of the hole to be filled.

In the case of copper (Cu), filling the vias is a plating

process, and the aspect ratio is limited to about 10:1. For

tungsten (W), the process is a Chemical Vapor Deposition

(CVD), and the aspect ratio can be larger (e.g., 30:1).

We’ll now discuss several aspects of the systems that

have to do with the coefficients of thermal expansion, the

conductivities (both thermal and electrical), and the tensile

8

strengths of each material that we’d use in a chip/package

structure like this one, including the thermal grease. Table 2

gives approximations of these four constants for silicon, for

the three metals that we can use, and for eutectic solder.

Table 2. Coefficients of the Relevant Materials
For illustration, consider TSVs with aspect ratios of 5:1

and 10:1. Note that 10:1 is at the upper end of what’s

possible for copper, which is plated, but not for tungsten,

which uses a CVD process. As shown in the table, copper is

3.3 times as electrically conductive as tungsten, so it would

seem better to make TSVs out of copper.

To get a better idea of the resistances, Figure 21 shows

the interconnection infrastructure as it exists today for thick

layers (e.g., >503). A bottom layer, 1003 thick, is soldered

to the substrate with 253 C4s, and soldered to the top layer

with 153 C4s. The 4 structures shown include two metals,

Cu and W, and two aspect ratios for the vias, 5:1 and 10:1.

Figure 21. Resistances in a Thick 2-Layer Structure

The most resistive TSV is 10:1 tungsten. These add 110

mW to the path. The most conductive TSV is the 5:1 copper.

These add 8 mW to the path. So while the thick copper TSV

is 14X more conductive than the thin tungsten TSV, the full

paths are 300 mW and 400 mW, respectively. Which is

better? It’s a little better to have a bigger TSV, and it’s a

little better to use copper. But the difference isn’t much.

Before continuing our discussion of electrical resistance,

let’s return to the point we made Section 5 about “C4s not

providing much thermal coupling between the layers.” Why

not? Table 2 shows that the thermal conductance of solder is

8X less than that of copper. But a much more important

factor is that the coupling surface-area of the C4s is tiny.

Let’s take the surface area of a 153 C4 to be 100 3
2
 where

it bonds to each chip. If the C4s are on 1003 centers, there

is one C4 for every 10,000 3
2
. Then the thermal

conductance of the C4 balls is only 1% of the value shown

in Table 2. That’s 0.25 PPM /
0
K, which is nearly nothing.

Now, back to our discussion of electrical resistance.

Even though the path difference between the extremely

different TSVs is small (100 mW), since the TSVs are used

to supply power, the lowest resistance will give us the least

voltage drop, and the least ringing on surges. How much?

In Section 5, we found that the hot spots were about 1/8

mm
2
 (about 3503 by 3503) with a power density of 5

W/mm
2
. The power for each hot spot is 5/8 Watts. If TSVs

are on 1003 centers, and we use all of them for power and

ground within hot spots, the situation shown in Figure 22.

Figure 22. Our 350 3333 X 350 3333 Hot Spot

Since the hot spot uses 625 mW, and covers multiple

vias, we need to know how much current a via could pass so

that we can determine the importance of its resistance. In

our case, VDD is 1 Volt. An easy way to do this calculation

is to simply look at the diamond formed by the ground vias,

and to assume that the power via in the center provides all

of the power within that diamond. The area of the diamond

is 14,140 3
2
. The area of the hot spot is 122,500 3

2
. So the

power via in the center must source 11.5% of the current to

the 625 mW hot spot. This is 72 mA. The same is true of the

ground vias.

If we use the highest resistance TSV path, which in this

example is 400 mW, 72 mA will cause a loss of 29 mV.

That’s a 3% loss - which means a 3% increase in current.

With the 300 mW vias, the loss is 21.6 mV. So, as before,

the difference is not that significant.

A final comment on copper and tungsten: Table 2 shows

that the CTE of silicon is 2.6, the CTE of tungsten is 4.6,

and the CTE of copper is 17. Therefore, there is a slight

mismatch between silicon and tungsten, and a huge

mismatch between silicon and copper. So it would seem that

tungsten would be a better choice of metals if we were

expecting thermal stress. But silicon is about 30% harder

than copper and 5X softer than tungsten. If the copper tries

to expand slightly, it can’t. It’s too soft. But if the tungsten

expands much at all, it will crack the silicon. Which is

“best” depends on how hot the system will actually get.

9

7. Using 3D to get High Early Yield

In the proceeding sections, we’ve discussed the nominal

operation of the system, and the realities of making that

system. Unrelated to these issues, there are two other

advantages of processor-on-processor systems. The first is

early yield, which we’ll discuss here, and the second is

reliability, which we’ll talk about in the next section. For the

sake of the early yield discussion, we are using a very

simple model in which we just consider cores, and we treat

their working condition(s) as binary: working or not.

Figure 23. Configuring 2 Layers to Get Early Yield

Figure 23 shows the first concept (early yield) for an 8-

core chip. When chips are first made with a new technology,

their yields are too poor to be able to ship products right

away. That means that systems can’t be sold until the

technology matures. In our Early Yield model, we put two

of the chips together so that there are two cores in each x-y

position, and then look at the probability that there is at least

one working core in each location. If there is, we can turn

that one on, and the other one off. From the outside, the pair

of chips appears to be a single chip with a working core in

every location.

Figure 24 shows the yield of an 8-core chip as a function

of time (Quarters of a Year), in several configurations using

4 different values of the initial yield of a single core, Y.

We’ve modeled the yield of a core as an exponential

function of time that happens with process maturity. If Q

represents Quarters (three months), the Yield is:

Y(t) = 1 – e
- ����Q

The upper left plot takes the initial yield of a core to be

Y = 0.5. The other plots show different values of Y. The

middle curve in each graph is the yield of an 8-core

processor chip by itself. For example, if the initial yield is

Y(1) = 0.5 (the upper left plot in Figure 24), then the chip

yield for 8 cores is 0.5
8
 = 0.0039. The chip could not be

shipped with this yield. But from the point at Q=1, we get:

���� = - ln (1 – 0.5
8
) = 0.0039

This allows us to construct the rest of the curve. In this

case, you can see that the chip yield (the middle curve)

doesn’t get to 50% until the 4
th

 Quarter (1 year), and it

doesn’t get to 90% until the end of the 6
th

 Quarter.

 But if we put any two chips together, then the

probability that there’s a working core in each of the 8

positions is plotted as the top curve in each graph. The

curves show that even with Y=0.5, the yield of a working 8-

core processor is nearly 80% at the beginning of the 2
nd

Quarter. Note that the yield of a single chip processor is

only 10% at this time. This method would allow systems to

be shipped a few Quarters earlier than standard yield allows.

Figure 24: Yield Curves of an 8-Core Processor

Given an Initial Core Yield of Y (Top Curve = 2 Layers

with a working core in all 8 positions; Middle Curve = 1

Layer with all 8 cores working; Bottom Curve = 2

Layers with all 16 cores working)
The bottom curve in each graph is the yield of two-chip

systems in which all 16-cores work. Even with an initial

core yield of 50%, the yield of a 16-core system becomes

50% in the 4
th

 Quarter. These curves show that we could

start shipping 8-core processors at the beginning of the 2
nd

Quarter, we could start shipping 16-core processor “chips”

about half a year later. How’s that for Moore’s Law?

The remaining graphs show the same system with initial

core yields of Y = 0.6, 0.7, and 0.8. If we got initial core

yields of 75-80%, an 8-core chip would hit acceptable yields

by the second quarter, and at 80% yields, there would be

very good yields on 16-core systems by the 3
rd

 Quarter. The

problem is that we can’t know the yield before the first

chips are actually produced.

You might ask whether a chip-on-chip configuration is a

“necessary” yield play. After all, an alternative that’s

probably cheaper is to put N+1 cores on a chip (if they fit),

and to start shipping products when N of them work. In

Figure 25, we show the yield of N-out-of-(N+1) core chips

as a function of N for various initial yield points. Obviously,

adding more spare cores will improve this, but we don’t

have much spare area on a chip, so we’ve used “1.”

What’s clear from this plot is that yield drops off very

quickly as N grows. While the 8-core chips have decent

yield, the 16-core yields are terrible except at Y = 0.9. And

according to our yield model, this will happen over time;

but it does not give us an acceptable initial yield. The N-

out-of-(N+1) method and the 2-layer method that we’ve

described are not competing yield enhancers; they’re

complementary. We can use both for even better results.

10

Figure 25. Yields of Several N-out-of-(N+1) Cores
We have shown that the yield is very good for 8-out-of-9

core processor chips. We have also shown that in the 2-layer

system, an 8-core processor will start yielding fairly soon,

and it will become a 16-core processor sometime later. Both

schemes suffer much more than linearly as N grows larger.

For a different approach, Figure 26 shows the yield for a

12-core processor system using two layers. There are four

curves to depict the chip yield for initial core yields of Y =

0.75, 0.8, 0.85, and 0.9. In addition to having chosen values

of Y that are much higher than what we used before, you

should notice that the yield growth for a 12-core processor

is much slower than it was for the 8-core processor. In this

figure, we’ve not drawn the full curves for the two-layer

systems; we’ve only shown the beginning and ending

points.

Figure 26. Chip Yield by Quarter for a 12-Core Chip,

Based on Initial Single-Core Yields

The solid curves in the figure are the standard yield

curves. The graph shows that if the initial core yield is 75%,

we can’t even yield 25% of the 12-core processors until the

10
th

 Quarter. But while the initial single-chip yields are only

about 2% (the lowest curve), nearly half of the chip pairs

would be fully working 12-core processors immediately (see

the lowest dot at 1
st
 Quarter). In other words, with a full

chip of only 2%, we could ship nearly half of the chip pairs

as fully working 12-core processors in the 1
st
 Quarter.

Therefore, in addition to the performance modes that we

discussed, a processor-on-processor system can be used to

yield products much earlier than we do today. And once the

basic core yields are high enough, we can get pairs of chips

with all cores working with pretty good combined yields.

8. Using 3D for Super Reliable Computing

After yielding the full system, i.e., once all of the cores

on both layers are working, in addition to performance, the

core-on-core configuration can be used to do super-reliable

computing, with 100% checking of all circuits. This is done

using an R-Unit, which was a mechanism designed for

IBM’s first zSeries CMOS mainframes.

What the R-Unit does is: 1) it holds all architected state

for a core (mostly register values) in a small set of ECC-

protected buffers; and 2) it compares the results of two

cores, each of which has its own copy of that state, that are

running the same program at the same time. At the

completion of each instruction (which happens on the same

cycle on both cores), the R-Unit performs a comparison.

Figure 27: The R-Unit for 100% Checking

If the results are the same, then the R-Unit generates

ECC for those results, and it stores the new value of the

state that was changed in its own private copy of the state. If

the results are not the same, then the R-Unit stops both

cores, and it restores all of the architected state in both cores

using its hardened copy of the state. Then the R-Unit restarts

the two cores at the point in the program at which the last

instruction successfully completed.

Figure 27 shows the basic structure of the R-Unit. While

the R-Unit stands on its own in 2D, we can think of the R-

Unit as if each core has its own half of the R-Unit. Both

cores send their results to both halves of the R-Unit. Both

halves generate ECC, and both halves compare both results.

If both halves agree that both results are the same, then the

new results are checkpointed. The R-Unit is quite small, and

can provide 100% checking. While it cannot determine what

caused an error, it will catch any error and transparently

restore the states of both cores simultaneously.

In 2D, the outputs of the two cores can be physically far

apart, so the checking and checkpointing processes are

delayed by several cycles. Therefore, the cross-compares are

more complicated in 2D because they are not

“instantaneous.” In addition, the wiring for all of the cross-

compares and ECC generation would take lots of area in 2D.

 In 3D, the outputs of the two cores are spatially

coincident, so all of the comparisons can be done

immediately, and they are not as complicated to wire.

11

9. Interconnection Density

This section is here to discuss the final piece of reality:

interconnection density. To gauge the possible granularity

of logic macros in layer-to-layer interconnections, you’ll

need to know how many signals you can put in a given area

of the chip to see what’s feasible, and whether the wiring of

those connections will cause timing problems. In high-

powered systems, about half of the connections are needed

for power & ground, so the number of signals that can be

run is only half of the total.

All of the numbers that we will use in this section are

hypothetical numbers. They lack direct references, but they

are round numbers that are known to be close to what we

can do today. The point of this section is not to declare exact

numbers, but rather to convey the problems associated with

these kinds of numbers in our technology today.

For example, if connections can be put on a 1003 pitch,

then there are only 100 per mm
2
, only 50 of which can be

used for signals. But at a 103 interconnection pitch, 10,000

fit – good for about 5,000 signals in the same mm
2
.

The thickness of the thin layer might also limit the

number of vias that can be placed. The aspect ratio needed

for a TSV might force you to make much larger vias than

you’d like. For example, if the thin layer is 1003, and you

can only metalize holes with an aspect ratio of 5, then the

diameter of each via has to be 100/5 = 203. With a keep-

out circumference around it, the area used by the via must

be large, e.g., 253 X 253. For these numbers, you could

only put 400 X 400 vias per mm
2
 if you used 100% of the

area. Instead, if the vias were on 1003 centers, using 1/16

of the chip area, then there could only be 10X10 of them per

mm
2
, and they’d take 1/16 of the chip’s area.

The via-pitch can be devastating if the number of signals

that you need to connect is large. For example, let’s assume

that a single macro is 2.5mm. by 2.5mm. If the via pitch is

1003, then there are 625 vias within the macro, about 300

of which are for signals. Figure 28 shows the vias in this

area. Signals can use half of them.

Figure 28. Thru-Via Spacing Can Cause Problems

If we need to connect 280 signals between layers with

300 signal vias, some could have unexpectedly long routes.

In Figure 28, we show a connection between points A and

B, which are on different layers. While A and B are very

close in their x,y coordinates, the wiring between them is

nearly a centimeter long if they have to use a via that’s far

away (the routing is shown in the figure).

In Section 6 (see Figure 19), we had wondered whether

moving one of the layers over by a millimeter would cause

wiring problems. The answer seems to be that at the current

interconnection pitches, there are much worse wiring

problems. So skewing the layers by another millimeter or

two doesn’t add to these problems in any significant way.

3D technology integration has improved significantly in

the past ten years. The main focus of recent work has been

reducing the size and pitch of the TSVs. The literature has

examples of TSVs diameters <13. From the perspective of

manufacturing, a big limitation of these techniques is the

requirement for wafer-to-wafer bonding, which compounds

the yield limitations, since not all die will be good.

 Additionally, little attention has been paid to the die-to-

die interconnect (micro-bumps). As a result, even when

fine-pitch TSVs are available, the micro-bump pitch can be

the limiting factor. Several previous works have examined

requirements for die-to-die interconnection pitch given

various stacking granularities. For example: processor-on-

memory, core-on-cache, core-on-core, or various types of

core folding. In general, our analysis has produced results in

line with these previously-published estimates.

3D Integration Type Pitch Needed

Core-on-Memory 200-400 um

Core-on-Cache 30-50 um

Core-on-Core 40-70 um

Functional Unit on F.U. 10-20 um

Functional Unit Folding 2-10 um

Table 3. Interconnection Pitch Needed for Various

Levels of Integration

We produced our estimates by examining the number of

connections between sets of functional blocks in a real

processor, including core-to-core connections, core-to-cache

connections, connections between functional blocks, and

connections within functional blocks. Table 3 is a summary

of those estimates for the required interconnection pitch to

enable each degree of 3D integration.

But from the previous section, we cautioned against

extremely thin layers when using high-powered circuits,

because the lateral thermal conduction becomes nonexistent.

To talk about a 23 via pitch (with a 13 via) is not realistic

if the via has to go through a 503 layer.

On the other hand, the dataflow of a computer contains

mostly multiplexors, decoders, and various gating to move

data around, select it, shift it, gate it, etc. Lots of this logic is

“1-hot” logic, meaning that one gate of many gets turned on,

and the others stay off. While the logic for these parts is

very simple, the wiring is not. For example, take the

multiplexor in Figure 29. The “Select” inputs choose one of

4 gates; the input to that gate passes through to the output.

Since only one of the four gates can actually become

live, we could stack these gates up in four layers as shown,

without violating point-power-density limits. While the

logic area that’s saved is not significant, stacking the gates

up makes the wiring trivial. The savings is not merely areal;

that’s not why we’d do this. We’d do this because it greatly

12

simplifies the planar wiring. This could possibly reduce the

number of metal layers needed to make a processor.

Figure 29. Thin-Layer Stacking of Certain Logic

And finally, as stated in Table 3, we do see a new

opportunity if the via (and/or 3C4) pitch becomes small

enough to accommodate wiring between functional units on

different layers (e.g., 10-203). This opportunity would be a

practical extension to our processor-on-processor study, and

is shown in Figure 30.

Figure 30. Augmenting the Microarchitecture of a

Core by Using Parts of Another Core
Given the ability to do finer wiring between layers, new

modes of operation could be made from the core-on-core

structure by using functional parts of the inactive core to

augment the microarchitecture of the active core. This

enables us to dynamically instantiate two or more

microarchitectures (e.g., a heterogeneous system of cores)

from the same set of parts. An obvious example is to double

the number of floating-point units to make a core that has

better performance on superscalar applications. This would

not be reasonable to do in 2D.

10. Conclusion

We have shown that there are several completely new

advantages that can be had by putting a pair of processors

directly over/under each other in 3D. Today, this pair of

processors can be run in four different performance modes,

offering considerably more throughput than a single fast

processor. Several of these modes aren’t practical in 2D.

And with the processor-on-processor configuration, we

showed that in addition to performance, there is a high-

reliability mode that allows a pair of cores to check 100% of

the processing done. It also offers a straightforward way to

ship products early when the actual chip yields are very

poor. This allows for an acceleration of product cycles.

We’ve said a lot about the layer-to-layer interconnection

density, and showed that if it’s not sufficiently fine, layer-

to-layer signals can become very long. It’s also important to

note that if there is a need for lateral heat conduction, the

layers cannot be made too thin, so the TSVs cannot be

arbitrarily small.

While 3D offers some completely new modes of

operation for a processor, the current technology doesn’t yet

allow enough wires between layers for cores to share their

logic. But, putting one processor over another processor

proves enormously useful in the high performance arena.

11. References

[1] Y. Xie, G. H. Loh, B. Black, and K. Bernstein,

“Design space exploration for 3D architectures,”

ACM Journal on Emerging Technologies in

Computing Systems, vol. 2, no. 2, pp. 65–103, Apr.

2006.

[2] G. H. Loh, Y. Xie, and B. Black, “Processor Design

in 3D Die Stacking Technologies,” IEEE Micro,

vol. 27, no. 3, pp. 31–48, May 2007.

[3] Y. Xie, “Processor Architecture Design Using 3D

Integration Technology,” 23rd International

Conference on VLSI Design, no. 3, pp. 446–451,

Jan. 2010.

[4] B. Black, M. Annavaram, N. Brekelbaum, J.

DeVale, L. Jiang, G. Loh, D. McCaule, P. Morrow,

D. Nelson, D. Pantuso, P. Reed, J. Rupley, S.

Shankar, J. Shen, and C. Webb, “Die Stacking (3D)

Microarchitecture,” in 39th AnnualIEEE/ACM

International Symposium on Microarchitecture

(MICRO’06), 2006, pp. 469–479.

[5] H. Homayoun, V. Kontorinis, A. Shayan, T.-W.

Lin, and D. M. Tullsen, “Dynamically

heterogeneous cores through 3D resource pooling,”

in IEEE International Symposium on High-

Performance Comp Architecture, 2012, pp. 1–12.

[6] T. Zhang, A. Cevrero, G. Beanato, P.

Athanasopoulos, A. K. Coskun, and Y. Leblebici,

“3D-MMC: A Modular 3D Multi-Core Architecture

with Efficient Resource Pooling,” in Design,

Automation & Test in Europe Conference &

Exhibition (DATE), 2013, pp. 1241–1246.

[7] M. Wordeman, J. Silberman, G. Maier, and M.

Scheuermann, “A 3D system prototype of an

eDRAM cache stacked over processor-like logic

using through-silicon vias,” in IEEE International

Solid-State Circuits Conference, 2012, pp. 186–187.

[8] B. Zhao, Y. Du, Y. Zhang, and J. Yang, “Variation-

Tolerant Non-Uniform 3D Cache Management in

Die Stacked Multicore Processor,” 42nd Annual

IEEE/ACM International Symposium on

Microarchitecture, 2009, pp. 222–231.

[9] A. K. Mishra, X. Dong, G. Sun, Y. Xie, N.

Vijaykrishnan, and C. R. Das, “Architecting on-chip

interconnects for stacked 3D STT-RAM caches in

CMPs,” 38th Annual International Symposium on

Computer Architecture, 2011, pp. 69–80.

[10] G. Loh and M. D. Hill, “Supporting Very Large

DRAM Caches with Compound-Access Scheduling

and MissMap,” IEEE Micro, vol. 32, no. 3, pp. 70–

78, May 2012.

