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The design of a new adaptive virtual cut-through router for torus networks is

presented in this paper. With much lower VLSI costs than adaptive wormhole

routers, the adaptive Bubble router is even faster than deterministic wormhole routers

based on virtual channels. This has been achieved by combining a low-cost deadlock

avoidance mechanism for virtual cut-through networks, called Bubble flow control,

with an adequate design of the router’s arbiter.

A thorough methodology has been employed to quantify the impact that this

router design has at all levels, from its hardware cost to the system performance

when running parallel applications. At the VLSI level, our proposal is the adaptive

router with the shortest clock cycle and node delay when compared with other state-

of-the-art alternatives. This translates into the lowest latency and highest throughput

under standard synthetic loads. At system level, these gains reduce the execution time

of the benchmarks considered. Compared with current adaptive wormhole routers,

the execution time is reduced by up to 27%. Furthermore, this is the only router that

improves system performance when compared with simpler static designs.

Key Words: Interconnection subsystem; packet deadlock; crossbar arbitration; hardware routers;

VLSI design; performance evaluation; cc-NUMA systems; parallel application benchmarks.

1. INTRODUCTION

Parallel and distributed computing performance is generally a fraction of the sum of
the computational power provided by the processors that make up the parallel system.
This performance degradation can be attributed to two sources: i) the impossibility of
adequately balancing the computing load among processors, and ii) the overheads involved
in communication between processors and memories. An efficient mapping can be found
for a number of applications, resulting in a uniform computational load among processors.
However, the cost of communication is unavoidable and we can only do our best to minimize
it.

Scalable distributed shared-memory multiprocessors with hardware data cache coherence
(cc-NUMA) are nowadays the trend in building parallel computers because they provide the
most desirable programmability [20]. Other existing distributed shared-memory parallel

1This work is supported in part by the Spanish CICYT under contract TIC98-1162-C02-01

1



2 V. PUENTE, C. IZU, R. BEIVIDE, J.A. GREGORIO, F. VALLEJO AND J.M. PRELLEZO

computers rely on the programmer to maintain data coherency throughout the whole system
[28]. In both cases, system performance can be seriously limited due to the network delays
when accessing remote data. The communication subsystem of these machines is composed
of a number of interconnected routers arranged in a specific topology. The performance of
these direct interconnection networks is governed by that of the router and the interconnect.

With respect to network topology, Dally [11] and Agarwal [1] recommended the use
of low-degree networks belonging to the class of the k-ary n-cubes. Rings, meshes,
tori and hypercubes are representative networks of this class. Some parallel computer
manufacturers followed their advice and machines such as the Cray T3D and Cray T3E use
three-dimensional tori. In relation to experimental ASCI ultracomputers, the Option Red
employs two interconnected 2-D meshes and the Blue Mountain uses a three-dimensional
torus in the top level of the machine[19, 4].

Both T3D and T3E routers [28] use wormhole routing and a set of four and five virtual
channels per direction respectively. The former uses oblivious dimension order routing
(DOR) and avoids network deadlock by changing to the next virtual channel when crossing
a wrap-around link. The latter employs an additional virtual channel in order to provide
fully adaptive routing. The router employed by the O-2000 is the SGI Spider [15] which
uses wormhole table-based deterministic routing. Both, T3E and Spider routers, manage
messages divided into packets, the maximum size being 700 bits (10 flits) and 800 bits (5
micropackets, equivalent to the notion of flits) respectively. Moreover, both routers employ
memory queues associated to each virtual channel able to store up to 22 flits in the T3E
router and up to 5 micropackets in the case of the Spider.

In this research, we are going to propose a new packet router with the same functionality
as the above commercial routers, but using a different design philosophy. Our goal is to
produce the simplest possible hardware design in order to minimize the pin-to-pin router
latency without compromising the other performance figure of merit: the ability to handle
large volumes of data, in other words to support high packet throughput. To achieve
this goal, we will apply the following architectural strategies: i) Virtual Cut-through flow
control (VCT) [18] will be used instead of wormhole; ii) A new and very simple deadlock
avoidance mechanism, based on VCT, called Bubble flow control will be employed; and iii)
A new arbitration policy supporting multiple output requests will be used which is simpler
than current policies.

As a consequence of strategies i) and ii) the router uses a minimum number of virtual
channels, thus reducing hardware cost and complexity. In addition, strategy iii) allows for
a low cost implementation of adaptive routers. The resulting design for a k-ary n-cube
network is a particularly simple router which adequately balances base latency and network
throughput.

The results presented in this paper show that our adaptive Bubble router outperforms
state-of-the-art commercial solutions. In addition, and due to its good trade-off between
simplicity and performance, the adaptive Bubble router is a serious candidate to implement
on-chip network routers. Manufacturers are currently designing a new generation of
microprocessor supporting cc-NUMA style multiprocessing and including network router
and interface on-chip, such as the new Compaq/Alpha EV7 [2].

To demonstrate the suitability of the adaptive Bubble router, a quantitative analysis
comparing different router designs has been carried out. We adopted packet latency
and maximum sustained throughput as the basic parameters to validate the goodness of
our proposal. An accurate measurement of these merit figures can only be obtained by
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monitoring the low-level characteristics of the corresponding VLSI designs. Therefore,
we have designed our router and its corresponding counterparts using high-level VLSI
synthesis tools, which provide us with adequate estimations in terms of required silicon
area and circuit delays. These metrics are fed into a very detailed register-transfer level
simulator to observe the behavior of the network built from each router design.

Traditionally, synthetic benchmarks have been extensively used in the technical literature
to assess the performance exhibited by the interconnection subsystems. Although this
methodology can be useful in order to stress the communication capabilities, it is also very
desirable to observe the behavior of the network as a part of a whole system executing real
loads. In order to provide such a realistic scenario we will use a set of three benchmarks
from the SPLASH-2 suite [31] running on a state-of-the-art cc-NUMA multiprocessor. To
build this experimental testbed an execution-driven simulator based on Rsim [22] has been
developed. In this way, in addition to providing metrics under synthetic traffic we are also
able to show the performance of several designs under the pressure of various real parallel
applications.

The rest of this paper is organized as follows. In Section 2, both theoretical and intuitive
approaches are employed in order to demonstrate deadlock freedom in our adaptive Bubble
router; we achieve this goal by using a new flow control function based on restricted
injection. In Section 3, we present a detailed description of the design of the Bubble router,
with special emphasis on a new crossbar arbitration policy. Section 4 is devoted to the
design of alternative router organizations in order to compare them with the Bubble one. In
Section 5, a thorough analysis of the performance exhibited by each solution is presented.
The conclusions drawn from this research are discussed in Section 6.

2. BUBBLE FLOW CONTROL INK-ARYN -CUBE NETWORKS

If the routing algorithm and the flow control function are not carefully designed, the
network may suffer from packet deadlock. Furthermore, there are topologies composed of
a set of rings, such as a torus network, which are specially deadlock-prone. Consequently, a
great deal of research has been devoted to either preventing or resolving network deadlock.

Deadlock can be prevented by ordering the acquisition of resources in such a way that
static dependencies among packets cannot form a cycle. This can be achieved by restricting
the routing such as in the Turn model [16] or by splitting the traffic into two or more virtual
channels so that cyclic dependencies are eliminated [10]. There are multiple proposals of
adaptive wormhole routers based on these approaches [21, 8]. Common drawbacks of these
proposals are the high hardware complexity of the resulting device and the unbalanced use
of the link resources.

A second approach is deadlock recovery. When a deadlock situation is detected, one or
more messages are removed so that the cycle is broken, allowing the rest of packets in the
network to finally progress towards their destination [24].

Resource dependencies are not only based on the routing function but on the current status
of the network. Duato’s theory [12] determined the necessary and sufficient conditions for
deadlock freedom. As a consequence of this theory, under certain conditions, we can add
fully-adaptive virtual channels to any deadlock-free network knowing that the resulting
network is deadlock-free as well. Current adaptive router implementations such as the
CrayT3E router [28] use virtual channels both to avoid deadlock and to provide fully
adaptive channels.
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Focusing on the particular characteristics of VCT networks,we can find simpler deadlock-
freedom mechanisms. Under VCT flow control, the basic resource is the queue attached
to the physical (or virtual) channel. This means that message dependencies are localized
between adjacent queues. We will see how to take advantage of this to provide a low cost
deadlock avoidance mechanism. In order to adequately present this new mechanism, let’s
first introduce some definitions and after that, we will concentrate on the establishment of
a new deadlock free routing for k-ary n-cube networks.

2.1. Some Formal Definitions
In this section, we include some basic definitions mainly derived from [10], [14] and

[6] to make the paper self-contained and to be able to provide a formal definition of our
proposed flow control mechanism.

Definition 2.1. An interconnection network, I , is a strongly connected directed graph
I = G(N;Q). The vertices of the graph, N , represent the set of processing nodes. The
arcs of the graph, Q, represent the set of queues associated to the communication links
interconnecting the nodes. Each queue qi 2 Q has capacity for cap(qi) packets. The
number of packets currently stored in that queue is denoted size(qi).

The set of queues Q is divided into three subsets: injection queues QI , delivery queues
QD and network queues QN . Each processor uses a queue from QI to send messages
that travel through the network employing queues from QN and when they reach their
destination they enter a queue from QD. Therefore, packets are routed from a queue in the
setQIN = QN[QI to a queue in the setQND = QN[QD. Obviously,Q = QIN[QND.

Definition 2.2. A routing function, R : QIN �N ! P(QND), where P(QND) is
the power set of QND, provides a set of alternative queues to route a packet p located at
the head of the queue qi to its destination node nd. We also denoted head(qi) = nd as
the destination node of the first packet enqueued at qi. A deterministic routing function
provides a single alternative R(qi; nd) = qj .

Definition 2.3. A routing subfunction,Rs, for a given routing functionR is a routing
function defined in the same domain as R but its range (set of alternative next queues) is
restricted to a subset QNDs � QND. A simple and convenient way to define the routing
subfunction is as follows

Rs(qi; nd) = R(qi; nd) \QNDs 8qi 2 QIN ;8nd 2 N

Definition 2.4. A flow control function, F : QIN � QND ! ftrue; falseg de-
termines the access permission for a packet p located at queue qi to enter the queue
qj 2 R(qi; nd). Thus, packet p is allowed to advance from qi to qj if F (qi; qj) = true.
The flow control functionF limits the set of alternative next queues provided by the routing
function and obviously depends on network status.
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Similarly to the routing case we can define a flow control subfunctionFs for a given flow
control function F as follows

Fs(qi; qj) = F (qi; qj) 8qi 2 QIN ;8qj 2 QNDs

Definition 2.5. A legal configuration is an assignment of a set of packets to each
queue in a set Qlc � QN such that 8qi 2 Qlc, size(qi) � cap(qi) and the packets stored
in each queue have been routed from some qj 2 QIN using the routing function R, and
verifying the flow control function F .

In short, a legal configuration represents a network state which is reachable under the
selected routing and flow control functions.

Definition 2.6. A deadlocked configuration for a given interconnection network I ,
routing functionR, and flow control functionF is a nonempty legal configuration verifying
the following conditions:

8qi 2 Qlc such that size(qi) > 0; F (qi; qj) = false 8qj 2 R(qi; head(qi))

In a deadlocked configuration, packets cannot advance because the flow control function
does not allow the use of any of the alternative queues provided by the routing function.

2.2. Routing and Flow Control Subfunctions for k-ary n-cube Deadlock-free
Networks

If we are able to find out a pair of routing and flow control subfunctions, Rs and Fs,
that provides deadlock freedom, we can apply Duato’s theory [12] for developing a fully
adaptive routing algorithm for k-ary n-cube networks: cube with dimension n and k nodes
in each dimension.

To begin with, we can initially assume that the nodes of the k-ary n-cube network are
linked by just two communication queues in opposite directions. Each processing node,
n 2 N , can be denoted as n�x, where �x = (x1; ::; xn) is the position in the n-cube and
therefore xi 2 f0; :::; k�1g represents the node coordinate in the dimension i. This means
that, given two neighbor nodes along the dimension j, n�x and n�y, where xi = yi 8i 6= j,
the bidirectional queues connecting both nodes will be denoted as qj�x�y and qj�y�x . This
notation unequivocally determines the direction of the channel, the dimension where it is
located and the nodes it connects.

Dimensional Order Routing (DOR) is our candidate for the routing subfunction, Rs.
We select this function because it is very simple and it also eliminates any resource cyclic
dependencies between packets at different dimensions. Formally, this function can be
represented as,

RDOR(qi�x�y; head(qi�x�y)) = RDOR(qi�x�y; n �d) = qj�y�z

where j, with j � i, is the first dimension in which the coordinates of nodes n�y and n �d

differ, di 6= yi and n�z is the neighbor of n�y in such dimension; in other words, the message
is routed to �z = (y1; ::yj�1; (yj � 1)mod k; yj+1; ::; yn).
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Thus, the message’s path enters at most once into each traveling dimension. Although
applying the subfunction RDOR eliminates any resource cyclic dependencies between
packets at different dimensions, deadlock can still occur within packets traveling along the
same dimension. A classical solution [10] is to split each physical link in two (or more)
virtual queues and restrict their use in some way.

Our solution does not require any more queues but a flow control subfunction, Fs,
restricting the access of packets into a new network dimension. This function is a minor
modification of the virtual cut-through flow control and it is formally defined as follows,

FBubble(qi�x�y; qj�y�z) = True if�
size(qj�y�z) � cap(qj�y�z)� 1 when i = j

size(qj�y�z) � cap(qj�y�z)� 2 when (i 6= j _ qi�x�y 2 QI)

where qj�y�z = RDOR(qi�x�y; head(qi�x�y)) and for each queue qi�x�y 2 QNDs, the condition
cap(qi�x�y) � 2 must be fulfilled.

Packets moving along a dimensional ring advance as per cut-through flow control.
However, the injection of new packets as well as packets changing dimension are only
allowed if there is room for not just one but two packets.

Using the pair of subfunctions (RDOR; FBubble) in a k-ary n-cube network is a sufficient
condition to prevent deadlock. In fact, if we suppose that under these conditions a deadlock
arises in dimension j, necessarily some packet was incorporated to this dimension without
verifying the function FBubble; note that according to the definition of this function, it is
not possible to reach a legal configuration in which cap(qi) = size(qi) 8qi 2 Qr where
Qr � (qj�x0�x1 ; qj�x1�x2 ; :::; qj�xk�1�x0).

In other words, applyingRDOR andFBubble it is impossible to reach a legal configuration
in which all queues of a dimension and direction are completely full.

It is important to note that the second free packet space that prevents deadlock in a
dimension j does not have to be in the queue qj�y�z requested by the packet entering that
dimension but it could be in any of the other queues at that unidirectional ring, Qr. This
allows us to generalize the subfunction FBubble as follows,

FBubble(qi�x�y; qj�y�z) = True if8<
:

size(qj�y�z) � cap(qj�y�z)� 1 when i = j

(size(qj�y�z) � cap(qj�y�z)� 1) ^

(
P

8qi2Qr
size(qj) �

P
8qi2Qr

cap(qj)� 2) when (i 6= j _ qi�x�y 2 QI)

This subfunction captures all the safe scenarios but the complexity of examining all
queues from a unidirectional ring is considerable. Instead, we could look for the second
free buffer at the local queue qj �w�y which belongs to the same unidirectional ring as qj�y�z.
This strategy is particularly useful for routers with input buffering as it allows the evaluation
of FBubble based only on local information.

Intuitively, we can understand how Bubble flow control works by looking at the unidirec-
tional ring shown in Figure 1. Packets (shaded queue units) are allowed to move (shaded
arrows) from one queue to another inside the ring as per virtual cut-through switching.
However, packet injection is only allowed at a given router if there are at least two empty
packet buffers in the dimension (and direction) requested by the packet. By doing so, we
guarantee that there is always at least an empty packet buffer in the ring. That free buffer
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acts as a bubble, guaranteeing that at least one packet is able to progress. Besides, changing
dimension is also treated as an injection into the next dimensional ring.

In short, Bubble flow control avoids deadlock inside rings by preventing packets from
using the potentially last free buffer of a dimensional ring. Thus, combined with DOR
routing it prevents deadlock without requiring any virtual channels.

Bubble
Control

Bubble
Control

Bubble
Control

Bubble
Control

Bubble
Control

InjectionFrom k-1
dimension

Injection Injection From k-1
dimension

From k-1
dimension

From k-1
dimension InjectionInjection From k-1

dimension

FIG. 1. Deadlock avoidance in a unidirectional ring by using Bubble flow control (FBubble).

2.3. Fully-Adaptive Routing Based on RDOR and FBubble
The previous section has shown how to build a deadlock-free k-ary n-cube network

applying the pair RDOR and FBubble, on the set of queues QNDs. Now, we can add new
queues (virtual channels) between nodes where packets can move using any minimal path
(no misrouting). If packets are blocked in these queues, they will use QNDs as escape
queues. We know, according to [14], the resulting network is deadlock-free as well.

Using the previous notation, the flow control function F , which includes FBubble, will
be applied over all queues as follows,

F (qi�x�y; qj�y�z) = True if :�
size(qj�y�z) � cap(qj�y�z)� 1 if ((qj�y�z; qi�x�y 2 QNDs ^ i = j) _ qj�y�z =2 QNDs)

size(qj�y�z) � cap(qj�y�z)� 2 if (qj�y�z 2 QNDs ^ (i 6= j _ qi�x�y =2 QNDs))

This means that Bubble is the type of flow control applied when accessing escape queues
and virtual cut-through when accessing adaptive ones. That is, hops from deterministic
queues to adaptive ones will take place freely, while hops from adaptive queues into escape
ones are treated as injections into the escape rings.

The routing functionR associated with queues qi 2 QND provides a set of possible next
queues following a path of minimum distance, including the escape queue from the routing
subfunction RDOR. For 2-D networks R provides up to three queues that are chosen in a
fixed order according to this selection function:

1. The adaptive queue of the neighbor along the incoming dimension, if the correspond-
ing offset is not zero. That is, the number of hops a packet must travel from the current
node to its destination node, along the incoming dimension, is not zero.

2. The adaptive queue of the neighbor along the other dimension, if the corresponding
offset of that dimension is not zero.

3. The escape queue of the neighbor along the first dimension, if the offset of this
dimension is not zero or the escape queue of the neighbor along the second dimension if
the offset of the first dimension is zero.
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Thus, priority is given to the adaptive queues over the escape ones. Obviously, the
functionF must return true for a packet to progress to the next queue. This selection policy
provides a high routing flexibility, allowing packets to follow any minimal path available
in the network.

The adaptive routing algorithm resulting from applying R and F is deadlock-free. As
we previously indicated, adding queues to a deadlock-free routing algorithm cannot induce
deadlock, regardless of how packets are routed in the additional queues. The only constraint
is that the routing algorithm should not consider the queue currently storing the packet when
computing the set of routing options. This constraint is met by our routing algorithm because
a packet can be routed on both escape or adaptive queues at any router, regardless of the
queue storing it. Taking into account that DOR with Bubble flow control is deadlock-free,
it follows that the whole routing algorithm is also deadlock-free.

2.3.1. Starvation

Controlling the injection flow and the changes of dimension using the Bubble algorithm
is an efficient technique for avoiding deadlock. However, under certain conditions, this
technique may introduce another anomaly: starvation. This problem arises when there is
different priority for accessing some of resources. In the escape queues, packets advancing
along a dimension have more priority than those that are trying to enter it.

A B D

p

Injection
Consumption

FIG. 2. Example of starvation in deterministic Bubble flow control (which is resolved by our adaptive
proposal).

For example, in Figure 2, packets going from router A to router D have a higher priority
than packets trying to be injected at router B. Thus, if traffic between A and D is not
stopped, a packet p can be indefinitely waiting to enter B. However, starvation cannot
occur for the adaptive Bubble algorithm because the access to the adaptive queues is not
prioritized. This means that packets in transit have the same priority to acquire the adaptive
queue as incoming packets. In the previous example, the packet to be injected at B will
succeed entering the next node’s adaptive queue. Even if that queue is temporarily full, a
packet unit will eventually become free because the network is deadlock-free.

3. DESIGN ISSUES FOR THE ADAPTIVE BUBBLE ROUTER: ARBITRATION
SCHEMES

This section discusses the design of the Adaptive Bubble Router, a router for k-ary
n-cube networks based on the adaptive routing and flow control functions described in the
previous section.

The complexity of adaptive routers compared with oblivious ones comes mainly from
two sources. The first one is the extra resources necessary to prevent/recover from dead-
lock. Bubble flow control reduces the minimum number of virtual channels for deadlock
prevention to only two. The second one is the arbiter, whose role is to match the input
requests with the available output ports.



THE ADAPTIVE BUBBLE ROUTER 9

The arbitration among incoming packets is a simple task in a DOR router as each input
requests only one of the outputs and, therefore, each output port assignment is independent
of the rest. Complexity rises with adaptivity because each incoming packet can request
more than one output port. Independent arbitration for each output port may lead to multiple
output resources being assigned to the same packet. Furthermore, adaptive routers add one
or more virtual channels in order to avoid deadlock. This, in the best case, duplicates the
number of possible requests.

There are various arbitration schemes that deal with this complexity. Among others, we
started analyzing the following alternatives:

1. A centralized arbiter that accepts multiple input requests from each incoming message,
matching them to all available output ports. Obviously, this approach allows for the
maximum number of packets to be routed from input to output in the same cycle.

2. A distributed arbiter, called Output Arbiter Crossbar (OAC). We have limited its
complexity by forcing each incoming packet to request a single output port per cycle from
its set of possible outputs. Hence, our approach has a complexity similar to a DOR’s arbiter.

3. An arbiter, called Sequential Input Crossbar (SIC), accepting multiple output requests
but servicing only one input channel per cycle. A similar option was used in the Cray T3E
router [28].

Although the first alternative provides the best result from the functional point of view,
it has a high VLSI cost in terms of delay that has a significant impact on the router clock
cycle and delay. In fact, in [26] we explored a design based on Tamir’s Wave Front arbiter
[30], which increased the clock cycle by 50% and 37% with respect to the second and third
schemes. Hence, we discarded that scheme and focused on the remaining two.

As the arbiter is a central building block, its implementation will influence the design of
other router components such as the routing units and/or the output controllers. We will
first present the detailed implementation of the Bubble router based on the OAC arbiter,
and then the other arbitration alternatives.

3.1. Bubble Router with OAC Scheme
The main blocks of the proposed Bubble router for a k-ary 2-cube are shown in Figure 3.

Extensions for a higher dimension network are straightforward. Internal router components
are clocked synchronously but communications with neighboring routers are asynchronous
in order to avoid clock skew problems. There is an escape queue and an adaptive queue
for each physical link. They behave as described in the previous section. Both of them
are implemented as FIFO queues with an additional synchronization module to support the
asynchronous communication between routers. Thus, we have 9 input queues: four escape
and four adaptive queues respectively and one injection queue.

Input queues and output ports are connected through a crossbar. As Bubble flow control
is an extension of VCT we can multiplex the physical link among its escape and adap-
tive virtual channels on a packet-by-packet basis. Therefore, it is not necessary to send
acknowledgment signals for data transmitted each cycle, and so, communication is less
sensitive to wire delays. This also means that the arbiter itself can resolve the contention
between the virtual channels to use a common output port. Consequently, we eliminate the
need for virtual channel controllers to connect the crossbar to the output links and we also
reduce the number of crossbar outputs from 9 to 5. This diminishes the latency of packets
crossing the router.
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FIG. 3. OAC Router organization.

The approach of the OAC scheme is an extension to the arbitration strategy used in static
routers in which each input requests a single output. Thus, the arbitration for each output
is an independent module that applies a round robin policy to prevent starvation of any of
the requesting inputs. In our adaptive router there are up to 3 profitable outputs so we must
issue their requests in a sequential manner, that is, one request per cycle. In other words,
we transfer part of the complexity from the arbiter back to the routing unit (RU) attached to
its input queue. In each cycle, the RU will request one of the possible outputs, in the order
given by the selection function described in Section 2.3, until one of them is granted. It is
very unlikely that a packet could be indefinitely requesting access to its output port due to
the timing between multiple input requests. A simple policy that deals with this problem
after a fixed number of cycles, consists of setting the request to the same output channel
until it is granted. As this is a rare event, we set its threshold to a large number so that it
has no impact on network performance.

FIG. 4. Partial Router Structure for Output Arbiter Crossbar (OAC).

The set of requests from the 9 RUs is processed by the OAC arbiter, based on the
available local output ports and the status of the neighbor’s queues. In short, it grants as
many requests as possible, arbitrating among inputs contending for the same output. Thus,
arbitration and switching logic is distributed for each output port as shown in Figure 4.
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Thus, the (4n + 1)x(2n + 1) crossbar can be subdivided into (2n + 1) multiplexers of
(4n+ 1) inputs.

As a packet advances towards its destination, its header phit must be updated by decre-
menting the offset in the selected dimension. As the RU is requesting a single output, it
can issue the correct header phit in the same cycle as it makes the request.

3.2. Bubble Router with SIC Scheme
The Sequential Input Crossbar simplifies arbitration by servicing only one input queue

per cycle. Thus, incoming messages request all profitable outputs simultaneously and they
are sequentially serviced in a round-robin fashion. This means that at most, one input-
to-output connection is established per cycle. A similar option was used in the Cray T3E
router [28].

When we replace the OAC with the SIC scheme the resulting router, shown in Figure 5,
differs not only in the crossbar and arbiter elements but also in the routing units that generate
the output requests.

Arbiter

HD

HD

HD

HD

HD

FIG. 5. SIC Router organization.

The Header Decoder (HD) is a very simple routing unit that decodes the header phit and
generates all its output request signals. It also generates header updates for each possible
output dimension. After the arbiter grants access to one output, the corresponding header
phit is propagated through the crossbar.

Figure 6 shows the internal structure of the SIC arbiter and its relation to the other router
components. Each SIC arbitration cycle involves the following task sequence:

1. Find the next input to be serviced. This is implemented with a token structure that
moves in round-robin fashion to the next busy input.

2. Check the availability of the requested outputs.

3. Select one of those available outputs in the order given by our selection function.

4. Establish the crossbar connection and propagate the updated header.

This approach eliminates the contention among multiple inputs but the remaining tasks
involved in the arbitration process cannot be carried out in parallel. In short, it is not
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FIG. 6. (a) Partial Router Structure for Sequential Input Crossbar (SIC) (b) Arbiter Detail.

possible to implement this functionality in a single cycle without penalizing the router’s
clock cycle. Thus, we can anticipate the need to split this sequence into two cycles, one for
arbitration and a second one for crossbar connection.

3.2.1. Time and Area of the Alternative Bubble Router Designs

In order to evaluate the cost of the Bubble router employing either of the two arbitration
schemes we have described both routers using VHDL at RTL level. Feeding these de-
scriptions into a high level synthesis tool (Synopsys v1997.08) we have obtained their logic
level implementation. These designs have been mapped into 0.7 �m (two metal layers)
technology from the ATMEL/ES2 foundry.

Physical data links were set 17 bits wide (1 phit), 16 bits for data and 1 bit indicating
the packet tail. Packets are 20 phits long, including the header phit which represents the
destination address as a tuple of n offsets, i.e., the x and y 8-bit offsets for a 2-D torus. We
have selected a queue capacity of 4 packets (80 phits); this is a reasonable size for current
VLSI technologies without constraining the router clock cycle. Furthermore, longer queues
will increase area demands without significantly improving network throughput.

For these features and under typical working conditions with standard cells from Es2
Synopsys design kit V5.2 we have obtained the time and area costs for each router. Although
these values are estimated by Synopsys in a conservative way [29], they provide us with
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values very close to the physical domain. Figures 7.(a) and 7.(b) show the component
delays and the resulting pipelines for OAC and SIC respectively.
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FIG. 7. (a) Adaptive Bubble router pipeline with OAC arbitration, (b) Adaptive Bubble router pipeline with
SIC arbitration.

Obviously, the component with highest delay determines the maximum clock frequency
of the device. As mentioned before, the SIC implementation has an additional stage, and
in both cases the arbitration stage is the one dictating the clock cycle. The FIFO and
routing stages consume one cycle each. Finally, because of its asynchronous behavior, the
synchronization module spends a variable amount of time (1 cycle on average).

Once we had identified the critical component, we optimized the other components
focusing on area minimization. In this way we reduce the router’s area and balance the
time spent in each pipeline stage. Table 1 summarizes the cost of both routers. There is a
trade-off between the two arbiter schemes, OAC being the fast one and SIC using the less
area. SIC needs less area because it has only one round-robin in comparison with the 5 of
OAC (one per port). On the other hand, in OAC the round-robin completes the arbitration
while SIC must complete other tasks as mentioned before. Thus, the different delays.

TABLE 1

Time and Area for each router implementation under typical conditions.

Router Critical Router Router Area Arbiter and Crossbar
Path (ns) delay (ns) (mm2) Area (mm2)

BAda-OAC1 5.65 22.60 25.95 8.98
BAda-SIC2 6.19 30.90 23.34 4.57

1 Adaptive Bubble router with OAC scheme.
2 Adaptive Bubble router with SIC scheme.
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FIG. 8. (a) Pipeline structure for VCAda-OAC router, (b) Pipeline structure for VCAda-SIC router.

4. DESIGN OF ALTERNATIVE ROUTER ORGANIZATIONS

Once the new router proposals have been defined, the next step is to assess their per-
formance for specific networks. However, it is not enough to obtain absolute performance
figures for both routers. We also need to compare them with other existing proposals using
the same design style and methodology.

To achieve this goal, four additional routers have been designed for the same topology.

4.1. Virtual Channel Based Adaptive Wormhole Routers
We have selected two alternative routers based on Duato’s routing algorithm [13]. This

scheme requires a minimum of three virtual channels per link. Two channels use the
Dally&Seitz algorithm [10] and provide the escape way for the third fully-adaptive channel.

These two adaptive routers represent standard solutions because they use wormhole
flow control and virtual channels to avoid deadlock. The first one, VCAda-SIC uses SIC
arbitration, thus being very close in design philosophy to the Cray T3E router. As we have
already seen the benefits of OAC arbitration in terms of speed, our second router, VCAda-
OAC uses this scheme. In this way, we can isolate the impact that the two arbitration and
deadlock avoidance mechanisms have on network performance.

Note that now we have three virtual channels, so for a 2D torus there are 13 crossbar
inputs. Moreover, traditional wormhole flow control implies that channel multiplexing is
performed in a flit by flit basis so this task cannot be coupled with the output arbitration as
we did in the Bubble routers. Consequently, the crossbar size is 13� 13 and there is one
virtual channel controller per output that determines in each cycle which VC has access to
the physical link.

As in the router for the Cray T3E, the maximum message length is limited. By doing
so, the restriction on the use of adaptive channels can be eliminated, and therefore, the
presence in the same queue of flits belonging to different messages is allowed. Although
other alternatives for flow control have been tested, this is the one that offers the best results.

The pipeline structure for both routers is similar to those shown for Bubble routers except
that they require an additional stage for the VC controller. These pipelined structures are
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shown in Figures 8.(a) and 8.(b). Component delays were calculated under the same
conditions as those in Section 3.2.1.

Although the Cray T3E uses similar arbitration to that of the VCAda-SIC, it uses a
multiplexed crossbar. This approach reduces silicon area with respect to our full crossbar
implementation. Notwithstanding, flit-level multiplexing imposed by traditional wormhole
flow control would considerably increase the arbiter complexity. Although multiplexing at
a larger granularity could increase overall performance, this solution would further increase
arbiter complexity.

As the routing unit attached to the input queue multiplexes flits from the different
VCs, those flits will follow different crossbar paths. Thus, multiplexing must be done in
coordination with the crossbar module that must rearrange its internal connections to send
the current flits to their selected outputs. In other words, the 5�5 crossbar must emulate
in each multiplexing round the connections of a 13�5 non-multiplexed crossbar. A partial
solution to cope with this complexity is to increase the flit size from the traditional 1 phit
to a small multiple. In fact, as the Cray T3E has channel pipelining, its flit size is not 1 but
5 phits.

4.2. DOR Routers: the Baseline Case
In order to measure the cost of adaptivity, two routers using dimensional order routing

(DOR) have been designed.
The first router, based on [9], uses wormhole switching and two virtual channels to avoid

deadlock. We have not used more advanced algorithms for handling virtual channels, like
the one proposed in [13], because it increases the router complexity and diminishes the
main advantage of deterministic routers: low latency. This router is denoted by VCDOR.

The second one, denoted by BDOR, is a VCT router that applies the Bubble mechanism;
thus, it requires a single queue/virtual channel per link. Although this router is a good
baseline for adaptive Bubble routers, we cannot ignore the risk of starvation as discussed
in Section 2.3.1.

Figure 9 shows the pipeline and delays for VCDOR and BDOR obtained when using
the conditions and methodology as per previous router implementations. Both routers are
simpler than their adaptive counterparts as they have a lower number of VCs and a simple
arbiter.

4.3. A Comparison of VLSI Router Cost
This section summarizes the VLSI cost of the six routers under study. To fairly compare

among designs, all routers have the same buffer capacity per physical link. As the adaptive
Bubble router has two virtual channels, each with a 80-phit queue, we have set the BDOR
input queue to be 160-phit long. The VC-based adaptive routers have three virtual channels
so we have employed 40-phit queues for the escape channels and an 80-phit queue for the
adaptive one.

The results for silicon area and time delays for each of these six designs, obtained from
the hardware synthesis tools, are shown in Table 2. Note that the building blocks differ
in each implementation as was described in each original proposal but we apply the same
VLSI design style.

In all the designs the arbiter sets the cycle time, except for BDOR in which the FIFO
queues are the critical component. As can be seen in this table, the cycle time for BAda-OAC
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TABLE 2

Characteristics of router designs.

Router Clock Crossbar Queue Cycle time Area Hop Time
Cycles Size Sizes (ns:) (mm

2) (ns:)

BAda-OAC 4 9� 5 80 + 80 5.65 25.95 22.60
BAda-SIC 5 9� 5 80 + 80 6.19 23.34 30.90
VCAda-OAC. 5 13� 13 80 + 40 + 40 6.28 50.65 31.40
VCAda-SIC. 6 13� 13 80 + 40 + 40 7.50 44.59 45.00
BDOR 4 5� 5 160 5.25 11.01 21.00
VCDOR 5 9� 9 80 + 80 5.57 19.08 27.85

is similar to that of the deterministic wormhole router. This is not surprising as both have
a similar arbitration philosophy and use the same number of virtual channels. BAda-OAC
clock cycle is slightly higher because it also multiplexes incoming packets, however this is
compensated for by the fact that VCDOR requires a fifth stage to multiplex packets at the
flit level. Besides, this reduces silicon area for the adaptive Bubble router which uses only
56% of the required area for the adaptive wormhole counterpart.

The hop time is a figure of merit because together with the average distance, it provides
the network base latency. Thus, BDOR will exhibit the lowest latency, followed by BAda-
OAC. Note that their hop times are smaller than with VCDOR. Thus, we have achieved our
goal of implementing an adaptive VCT router as fast as current static ones.

Finally, it is clear that methods based on Bubble flow control are, at least, a realistic
alternative to the classical wormhole solutions based on virtual channels.

5. NETWORK ANALYSIS

Besides comparing the routers from the VLSI point of view, we must compare their
behavior in terms of the network performance they provide. Obviously, network perfor-
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mance depends greatly on the VLSI implementation as it determines the internal contention
among incoming packets and the speed at which they are forwarded. Thus, any evaluation
of network performance shouldn’t ignore the VLSI costs.

We could analyze the network using a VHDL simulator, like Leapfrog (from Cadence)
[3], with the VHDL descriptions already developed at the synthesis phase. On the one
hand, this method obtains very precise results and allows for the monitoring of any router
element. On the other hand, it requires large computational resources, both in simulation
time and memory capacity. For instance, the average time for simulating 20,000 clock
cycles of an 8�8 torus on an UltraSparc2 with 128 Mbytes is about 2.5 hours.

With the aim of reducing the design cycle, an object oriented simulator has been devel-
oped in C++. This simulator, called SICOSYS (SImulator for COmmunication SYStems)
[25], captures the low-level characteristics of each router, including the pipeline stages and
the component delays obtained by using VLSI tools. This approach delivers accurate results
which are very close to those obtained through VHDL simulation (showing discrepancies
of less than 4% and with a significant reduction of simulation times). SICOSYS has a mes-
sage generator that can produce synthetic loads. Besides, it provides a network interface
for the simulation of real application loads as will be described later. The following two
sections will present the simulation results obtained in both scenarios.

5.1. Network Performance Under Synthetic Loads
This section presents simulations from an 8-ary 2-cube obtained by SICOSYS for each

router under the component delays presented in the previous sections. In all the experiments,
the traffic generation rate is uniform and randomly distributed over time.We considered two
different message destination patterns: random and specific permutations.

In the first case, all the nodes have the same probability of becoming the destination for
a given message. Two message length distributions were considered for this pattern: fixed
length traffic (40 bytes or 20 phits) and bimodal traffic: a mix of short and long messages
(20 phits and 200 phits). Note that in VCT routers the long messages are fragmented into
10 small packets.

In the second case, each node exchanges messages with another particular node. We
selected three permutation traffic patterns: matrix transpose, bit reversal, and perfect-
shuffle. All three cases are frequently used in numerical applications, such as in ADI
methods to solve differential equation systems and in FFT algorithms, among others.

5.1.1. Network Latency at Zero Load

There are many parallel applications that are latency sensitive, so it is important that the
network exhibits low latency at low loads. Base latency is a good parameter to estimate
this latency, as network contention at such loads is minimal.

Table 3 shows the base latency for all the router designs and traffic patterns considered.
The corresponding values have been obtained when the load applied to the network was
around 0.05% of the bisection bandwidth.

As base latency depends on the router complexity, it is logical to see that the adaptive
routers exhibit higher values that their static counterparts. However, BAda-OAC presents
lower base latency than VCDOR, and it is only 8% slower that BDOR.

5.1.2. Network Latency and Throughput at Variable Load
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TABLE 3

Base latency (ns) for 40-byte messages in an 8� 8 torus network.

Router Random Bimodal M. Transpose P.Shuffle Bit Reversal

BAda-OAC 229.5 350.0 238.3 230.4 239.0
BAda-SIC 282.7 418.9 295.3 284.6 296.2
VCAda-OAC 281.7 419.0 293.7 286.3 296.6
VCAda-SIC 374.4 541.5 391.9 376.8 392.9
BDOR 212.9 330.5 221.4 212.0 225.2
VCDOR 248.7 373.9 260.2 247.3 264.8

Network throughput and latency are the two metrics used to measure the performance of
an interconnection network.

Maximum network throughput gives an idea of the network behavior under heavy loads.
Its value, expressed in functional terms (phits accepted per network cycle) and technological
terms (phits accepted per nanosecond),can be seen in Table 4 for the different traffic patterns
and routers considered.

TABLE 4

Maximum achievable throughput in an 8� 8 torus network.

Traffic Random Bimodal M. Transpose P.Shuffle Bit Reversal

Router Phits/cycle Phits/ns Phits/cycle Phits/ns Phits/cycle Phits/ns Phits/cycle Phits/ns Phits/cycle Phits/ns

BAda-OAC 43.6 7.71 36.8 6.51 30.6 5.40 28.7 5.08 34.1 6.03
BAda-SIC 41.2 6.66 33.0 5.34 27.7 4.47 26.5 4.28 33.3 5.38
VCAda-OAC 38.0 6.05 34.5 5.49 26.2 4.18 28.8 4.59 32.3 5.15
VCAda-SIC 39.4 5.24 34.7 4.63 27.3 3.64 29.1 3.87 32.7 4.36
BDOR 38.7 7.38 29.8 5.67 14.0 2.66 19.0 3.61 12.5 2.35
VCDOR 36.7 6.59 28.1 5.05 14.7 2.64 20.6 3.70 12.4 2.35

First we will focus on the functional performance measured in phits/cycle. This is the
value commonly used in the literature.

If we compare adaptive versus deterministic routing, we can see that all adaptive routers
slightly improved their static counterparts under random traffic. As this traffic is already
well balanced the gain can only be attributed to the fact that the adaptive routers have an
additional virtual channel which reduces the impact of FIFO blocking.

Bimodal traffic has multiple packets (ten packets for a 200 phit message) heading to the
same destination node. Thus, there is more temporal contention and adaptive routers can
speed up message delivery by sending the packets in parallel over multiple paths. Thus,
the gains between the adaptive and the static routers widens. Obviously, adaptive routers
outperform the static ones for any of the three permutations.

In relation to the arbitration scheme for adaptive routers, OAC or SIC have a minor
impact on the functional performance of either router. In the Bubble-based routers, packet
multiplexing is carried out during arbitration; thus, contention to access the multiple virtual
channels of an output port is reflected in a higher number of requesting messages. In
such cases, OAC improves on SIC by approximately 10% because it is able to grant, when
possible, more than one output port per cycle. In the VC-based router, flit multiplexing
means that virtual channel contention is resolved by the VC controller, reducing the pressure
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FIG. 10. Latency and Throughput for a 64-node 2-D Torus under Random Traffic.
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FIG. 11. Latency and Throughput for a 64-node 2-D Torus under Matrix Transpose Traffic.
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FIG. 12. Latency and Throughput for a 64-node 2-D Torus under Bit Reversal Traffic.

on arbitration. Besides, SIC provides for faster adaptivity as each message can request any
of the potential outputs in the same cycle, while in OAC every adaptive turn takes at least
an extra cycle. This improves performance by only 3%.

In relation to the deadlock mechanism, BAda-OAC and BDOR outperform their VC-
based counterparts not only in latency but also in throughput, in spite of having one less
virtual lane. In particular, the throughput gain for the BAda-OAC under random traffic
is of 15% when compared with VCAda-OAC. We should note that Bubble is limiting
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the injection of packets at high loads and this is a mechanism which improves network
throughput for both wormhole [23] and cut-through networks [17]. In this case, limiting
injection proves to be more effective than the additional static virtual channel of VC-
based routers. The exception is for SIC-based routers in which the differences in channel
multiplexing distort the result.

However, when we incorporate the VLSI cost, by expressing the network throughput in
phits consumed per nanosecond, we observe a different scenario. Figures 10 to 12 show
the network latency versus applied load for three of those patterns. It should be noted that
these latency values include injection buffer delays. Injection delays must be taken into
account in order to produce reliable results because they depend not only on the traffic load
but also on the traffic pattern.

The first conclusion from these results is that any router proposal cannot be fairly
evaluated without considering its hardware implementation. Many adaptive routers which
manage to exploit the network resources from a functional point of view cannot compete
with implemented static networks as their complexity forfeits any of the gains observed at
the upper level. This trade-off between the potential functional gains and the complexity
they entail is evident in the VC-based adaptive routers: although they appear to improve
VCDOR for random and bimodal traffic, their throughput is 15 to 30% worse in phits/ns.
Consequently, adaptive router implementation should focus on minimizing both its router
clock cycle and node delay, as the two figures together with the functional properties of the
routing strategy will determine network performance.

In relation to the arbiter alternatives, the functional difference between SIC and OAC
is minimal as discussed before, but their technological difference is considerable. Conse-
quently, adaptive routers using OAC outperform their SIC counterparts. Similarly, both
VCAda-SIC and BAda-SIC lose ground with respect to their static counterparts due to their
technological cost.

The other source of complexity for adaptive routers is their deadlock avoidance mecha-
nism. By looking at Table 4 and Figures 10 to 12 we can see that as Bubble has a nearly
null cost, all Bubble-based routers outperform their VC-based counterparts for any traffic
pattern. Therefore, BAda-OAC which combines the two low-cost mechanisms is not only
the best adaptive router, but it also outperforms both static routers for any traffic pattern.

In short, the BAda-OAC provides the highest throughput with only a minimal increment
of latency compared to its static counterpart (which is not starvation free).

5.2. System Performance Under Real Loads
Finally, we have evaluated the real impact that each router design has on the execution

time of parallel applications.
Rsim, a DSM multiprocessor simulator [22], emulates a cc-NUMA architecture with

state-of-the-art ILP processors. Although Rsim provides a large range of parameters to
specify the processor and memory hierarchy characteristics, the network configuration
choices are more limited, as it only emulates a wormhole static mesh. Thus, by replacing
its network simulator (Netsim) with our RTL network simulator SICOSYS, we can obtain a
realistic evaluation of network performance under real loads. Figure 13 shows the role that
SICOSYS plays in this simulation environment, and the main configuration parameters of
the emulated system.

We use each router alternative to implement a pair of networks: one for request traffic
and the other for reply traffic. This approach resolves application deadlock due to the



THE ADAPTIVE BUBBLE ROUTER 21

Shared

Memory

Application

Execution Driven

Simulator

RSIM

Com.

Sys.

Network

Simulator

SICOSYS

Network

Simulator

NETSIM

Simulator Engine

YACSIM

Network

Parameters

System

Parameters

Speed 650 MHz
Fetch/decode/retire rate 4
ROB Size 64

Processor

Memory Queue Size 32
Size Direct, 16 Kb
Block Size 32 bytes

L1

MSHRs 8
Size 4-way, 64 Kb, pipelined
Block Size 32 bytes

L2

MSHRs 8
Bus / Memory 128 bits/ 4-way Interleaved

FIG. 13. Scheme of the execution-driven simulator and summary of selected configuration.

reactive nature of traffic and the limited capacity of the network interface’s consumption
queue.

As previously mentioned, we set the channel width to 2 bytes. Assuming a cache line
of 32 bytes and cache management commands of 8 bytes, this results in data packets of 20
phits and request and invalidation packets of 4 phits.

TABLE 5

Relative speed of a 650 MHz processor node versus network speed.

BAda-OAC BAda-SIC VCAda-OAC VCAda-SIC BDOR CDOR

Clock Frequency (MHz.) 177 162 159 133 191 180
Relative Speed 3.67 4.02 4.08 4.87 3.41 3.62

We have selected a 650 MHz processor, a figure that matches the speed of current
microprocessors. Considering this processor speed and the clock cycle obtained for each
router alternative, we have derived the relative processor speed as shown in Table 5.
Although these values depend greatly on the technology used (0.7 �m), they are quite
realistic. In fact, despite this technology being past its prime, our results were optimistic
as they only consider typical working conditions. For example, the Cray T3E 1200/900
system [28] has a relative processor speed approximately 6 times faster than its network.

Finally, we fed the simulator with three applications selected from the SPLASH-2 [31]
suites: FFT, Radix and LU, which had already been ported into Rsim by researchers at Rice
University. These three applications were selected because they have low data locality, so
they are very demanding.

The problem size for Radix is 1 million integer keys with a radix of 1 million. The problem
size for FFT is 64 K doubles complex. Both are the default problem size established in [31].
Due to time and resource demands we reduce the problem size for LU from its default of
(512�512) to (256�256). For the emulated system size, this change does not affect the
LU’s scalability.

5.2.1. Network Impact on Execution time.

Figures 14 to 16 show the results of execution time normalized to the slowest system.
We only measured the execution time of the central phase of computation as both the
initialization and finalization phases are normally very short when compared to the parallel
computation phase and the impact of the network is negligible.
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As expected, the differences in router design have a significant impact on execution time,
with up to 25% time reduction in the best cases. Furthermore, these results corroborate
the conclusions we extract from the analysis of synthetic loads, the faster routers being the
ones with shorter execution times.

If we compare adaptive versus static routers, BAda-OAC is the only adaptive router that
is competitive in relation to both VCDOR and BDOR for any of the three applications. In
fact, BAda-OAC is as good or even better than its static counterpart. Thus, although DSM
systems are very sensitive to network latency, BAda-OAC compensates its slightly higher
base latency with its flexibility under non-uniform traffic. If we leave BDOR aside, due to a
potential starvation, we could claim that BAda-OAC achieves considerable gains, 5 to 10%
in relation to static routers (VCDOR). If we consider an ideal network, in which a remote
memory access has the same cost as a local memory access, the reduction in execution
time in relation to that of VCDOR has a ceiling of 30-40% depending on the application.
Hence, 10% is a significant achievement.
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In we compare the arbitration schemes, we see again that the technological cost of
SIC has a negative effect in global system performance that in this case is reflected in
an increment in execution time of 10 to 15% in relation to their OAC counterparts. If
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FIG. 16. (a) LU Normalized execution time for 64 processors in an 8� 8 torus, (b) Zoom.

we compare the deadlock mechanisms, adaptive Bubble-based routers outperform their
VC-based counterparts with a reduction in execution time of around 10%.

We can see the combined effect of our two proposals: OAC arbitration scheme and
Bubble flow control in Figure 17. Both mechanisms are critical in reducing the cost of
adaptivity. From the technological point of view, OAC and Bubble reduce the clock cycle
by 16% and 8% respectively. These gains are reflected in the applications although the
percentages vary depending on the particular application’s needs.
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FIG. 17. Isolating the impact that deadlock avoidance and arbitration schemes have on the performance of
adaptive networks under real loads.

5.2.2. Evolution of Network Performance During the Application’s Execution

To gain a deeper understanding of the impact that the network design has on the system
performance we have extracted average load and latency values at small time intervals.
These results show the load variation of the reply network during execution time. We
focused only on the reply network because it supports much higher loads than the request
one; besides, this is enough to gain an insight into the network impact on the system’s
performance.

Obviously, networks have different speeds so we express their load both in relation to their
own clock cycle (network cycle) and in relation to the processor cycle which is constant
for all networks. The former value isolates the functional performance (phits/cycle) as
measured in the previous section. The latter value incorporates the technological cost, and
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FIG. 18. Network Load Evolution (Radix case).

it is proportional to the phits delivered per nanosecond. Moreover, we split the results in
separate graphs in order to facilitate the comparison both between the two alternatives of
arbitration and between the two deadlock avoidance mechanisms.

Figures 18.(a) to 19.(d) show the evolution of applied load versus time for Radix and
FFT respectively.We have omitted the LU case because it exhibits a maximum load of 10
phits per network cycle and it has quick load oscillations; thus, it is extremely difficult
to interpret its results. Although the average network load is low, as the LU computation
progresses the processor nodes that calculate the successive values of the diagonal become
the destination hot-spots; thus, adaptivity is able to reduce its execution time as shown
before.

We should note that in all figures the time scale is reflecting the network response in
terms of message latency; as DSM traffic is reactive, the faster the messages arrives the
sooner more data will be accessed/requested and therefore the sooner the application will
complete execution.

Looking at Figure 18.(a) we can easily identify the two communication phases of Radix
which correspond to the high load segments. The network becomes heavily loaded, above
40 phits per network cycle. To put this load in perspective, the 8� 8 torus has a theoretical
consumption limit of 64 phits per cycle. Note that the maximum network load matches the
maximum throughput measured for random synthetic loads. In fact, the traffic pattern in
the key exchange phase is that of the original key array distribution which is done randomly.
It is clear that maximum throughput is critical in these phases and networks with higher
values, like BAda-OAC, complete these phases in a shorter period of time. Lower load
peaks are due to local communication so, in this phase, network latency is more important.

The throughput differences observed in Figure 18.(a) are more noticeable in figure 18.(b)
because of BAda-OAC’s faster network cycle which translates into more phits per processor
cycle. This technological gain not only increases network throughput but it also reduces
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FIG. 19. Network Load Evolution (FFT case).

network latency. We can see this effect in that BAda-OAC is further ahead of BAda-SIC
when it starts the second communication phase than it was when it completed the first one.

We can observe in figures 18.(c) and 18.(d) the different network behavior of one static
network, BDOR, versus the best VC-based and Bubble-based adaptive alternatives. Again,
we can see that the throughput achieved by each network matches the maximum throughput
observed under random synthetic loads, with BAda-OAC being the best and VCAda-OAC
being the worst. When we consider their relative speeds, BDOR gets closer to BAda-OAC
in network throughput while VCAda-OAC lags far behind. We should note that BAda-OAC
has the highest throughput so it finishes the first communication phase slightly ahead of
BDOR. However, as BDOR has lower latency at low loads, it manages to catch up with
BAda-OAC by the start of the second communication phase. On the contrary, VCAda-OAC
with the largest latency is even further behind.

Figures 19.(a) to 19.(d) show the network load versus time for the FFT application. In
this case, there are three communication phases, each one performing a complete exchange.
So, although the network load is lower (20 to 30 phits per network cycle) compared to the
Radix case, the communication pattern is less uniform. We can again see the combined
effect of latency and throughput in the total execution time and we could draw similar
conclusions to those for Radix.

6. CONCLUSIONS

Although adaptive routers are a good choice on paper, their implementation costs lead
to limited network performance. The added routing freedom increases deadlock risk and
requires a more sophisticated channel arbitration.

This work has tackled this problem by proposing two simple but effective mechanisms:
Bubble flow control which provides deadlock prevention for virtual cut-through networks,
and OAC, an arbitration scheme that exploits the simplicity of single input requests. By
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combining these two mechanisms, we have designed a new fully-adaptive router for k-ary
n-cube networks with the minimum possible number of virtual channels, two per physical
link. This router has been compared with adaptive routers that use previous solutions either
for the deadlock prevention mechanism or the arbitration scheme and with static routers in
order to estimate the viability of the proposal.

Traditionally, routers have been evaluated by applying synthetic loads to RTL network
simulators. Although this methodology highlights the functional gains of a router architec-
ture, it does not take into account the VLSI costs or the behavior of the networks as part of
a whole system. Thus, our comparison started by evaluating the VLSI cost of each router
alternative and incorporating these costs into the network simulator. In this way, simula-
tions provided us with network performance both from the functional and technological
points of view. Finally, all these factors were taken into account to estimate the impact of
each router on cc-NUMA system performance.

The evaluation at these three levels shows the goodness of our proposal. The router
exhibits a low clock cycle and the shortest node delay. This, together with adaptivity
translates into the best network performance under any synthetic traffic pattern. Similarly,
low network latency and high network throughput reduce the execution time of parallel
applications while all other adaptive routers exhibited higher execution times than those of
static routers.

The key to success is achieving a router implementation that minimizes both router clock
cycle and node delay, as these two figures together with the functional properties of the
routing strategy will determine network performance. Our adaptive Bubble router achieves
this goal and therefore it can be considered as one of the best candidates for multiprocessor
network designs.
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