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Abstract— 
This work explores the feasibility of specialized hardware 

implementing the Cortical Learning Algorithm (CLA) in order to fully 
exploit its inherent advantages. This algorithm, which is inspired by 
the current understanding of the mammalian neo-cortex, is the basis 
of the Hierarchical Temporal Memory (HTM).  In contrast to other 
machine learning (ML) approaches, the structure is not application 
dependent and relies on fully unsupervised continuous learning. We 
hypothesize that a hardware implementation will be able not only to 
extend the existing practical uses of these ideas to broader scenarios 
but also to exploit CLA’s hardware-friendly characteristics. 

The architecture proposed will enable the system size to be scaled 
up compared to a state-of-the-art CLA software implementation. It 
may be possible to improve performance by 4 orders of magnitude and 
energy efficiency by up to 8 orders of magnitude. 

Given the problem’s complex nature, we found that the most 
demanding issue, from a scalability standpoint, is the massive degree 
of connectivity required. We propose to use a packet-switched network 
to tackle this. The paper addresses the fundamental issues of such an 
approach, proposing solutions to achieve a scalable proposal. We will 
analyze cost and performance when using well-known architectural 
techniques and tools. The results obtained suggest that even with 
CMOS technology, under constrained cost, it might be possible to 
implement a large-scale system. We found that the proposed solutions 
enable a saving of ~90% of the original communication costs running 
either synthetic or realistic workloads. 

Keywords – Cortex, cortical columns, mini-columns, neurons, 
packet-switched network, neuroscience, computer architecture 

1 Introduction 
Mammal brains have a distinct structure compared to other 

biological systems: the presence of the neo-cortex. The salient 
feature of this construction is that it is anatomically and 
functionally remarkably homogeneous. Eighty years ago, 
Lorente de Nó [1] discovered that the neo-cortex (from now on, 
cortex) is composed of cylinder-like packs of a few thousand 
neurons forming columns. Later, V. Mountcastle [2] 
anatomically detailed the structure of these columns, which is 
approximately two millimeter high, 300-500	 µm	 wide	
structures, where in most mammals a set of six layers can be 
distinguished (Figure 1.a). The columns are connected via low-
range axons to other nearby columns (via Layer I and Layer VI) 
or other distant columns and the thalamus (via Layers V and VI). 
The columns are composed of ~30 µm	wide	structures called 
mini-columns (See Figure 1.b) [1]. Regardless of the 
functionality of each region, the cortex is quite regular, for 
example, in humans it has a surface of ~1600 square centimeters 
with few anatomical differences throughout it [2]. This fact has 
puzzled neuroscientists for decades: how such regularity can be 

the underlying structure for the complex functional organization 
of the cortex [3]. 

In neuroscience the most accepted hypothesis [1] is that the 
cortex is some sort of memory system. Its inputs are composed 
of incoming signals from the senses and the outputs are the 
actions on lower level brain structures. These are then sent to the 
motor system and expressed as behavior. The main hypothesis 
is that the cortex is continuously building a model of the world 
according to the information flow. This model is used to produce 
behavior.  

 
Figure 1 (a) Cortical Columns (b) Mini-columns 

Initially George and Hawkins [6] hypothesized how the cortex 
might implement such a memory structure in order to fulfill the 
biological requirements. A theory has been built on the 
hypothesis that the cortex is a prediction device, that works as a 
self-associative memory and is hierarchically structured as a 
Hierarchical Temporal Memory (HTM) [7][8]. The theory, 
which is primarily influenced by current neuroscientific 
knowledge, includes an algorithm, called the Cortical Learning 
Algorithm (CLA) that provides the rules for storing and 
retrieving information, i.e. learning and making predictions. The 
idea has been used in practical problems such as anomaly 
detection, sequence prediction, pattern identification, natural 
language processing, etc. Currently HTM only considers the 
supra-granular layers of a cortical column. The modeling of the 
infra-granular layers in the cortical column [9] is under study and 
once this task is done, the hierarchy’s inner workings can be 
considered. Therefore, CLA only contemplates intra-cortical 
column communication. 

Given the current state,  other deep-learning techniques (highly 
specialized, and in most cases using off-line learning),  such as 
[10],  produce better results in constricted problems. In contrast 
with these approaches, CLA has two remarkable properties: the 
core algorithm does not change from application to application, 

704 V. B. Mountcastle

Fig. 1 A three-dimensional illustration of the developmental events occurring during early stages of
corticognesis in the monkey. The drawing illustrates radial migration, the predominant mode of neuronal
movement, which in primates underlies its columnar organization. After their last division, cohorts of
migrating neurons (MN) traverse the intermediate zone (IZ) and the subplate (SP) where they may
interact with afferents arriving sequentially from the nucleus basalis (NB), the monamine nuclei of the
brainstem (MA), from the thalamic radiation (TR), and from several ipsilateral and contralateral
corticocortical bundles (CC). Newly generated neurons bypass those generated earlier, which are
situated in the deep cortical layers, and settle at the interface between the developing cortical plate (CP)
and the marginal zone (MZ). Eventually they form a radial stack of cells that share a common site of
origin but are generated at different times. Although some, presumably neurophilic, cells may detach
from the cohort and move laterally, guided by an axonal bundle, most are gliophilic, have affinity for
the glial surface, and obey the constraints imposed by transient radial glial (RG) cell scaffolding. This
cellular arrangement preserves the relationship between the proliferative mosaic of the ventricular zone
(VZ) and the corresponding map within the SP and CP, even though the cortical surface in primates
shifts considerably during the massive cerebral growth in the mid-gestational period. The numerals refer
to corresponding units in the VZ and CP. (From Rakic, 1995, with permission from Elsevier Siem
Publishers.)
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and, like in biological systems, it is continuously learning. 
Coincidentally, both properties are required to achieve Artificial 
General Intelligence (AGI), as defined by AI theorists [11]. Even 
in the emerging state, CLA has already proved its advantages 
over other state-of-the-art techniques, in anomaly detection [12], 
continuous unsupervised learning [13][14], natural language 
processing [15], etc., 

Currently the progress made with CLA is based on software. 
There are many implementations, NuPIC [16] is the most 
remarkable one and it is supported by Numenta using open 
source licensing (AGPLv3). Other companies, such as IBM [17], 
are working using their own implementations. Although the 
practical uses increase the complexity of these tools, the core 
algorithms are simple. This approach provides the flexibility 
necessary to explore new practical uses or new core algorithm 
variations. Nevertheless, the software limits the system size to a 
few thousand mini-columns, which might restrict the practical 
uses or advancements in hierarchy definition. To circumvent this 
problem, it seems necessary to develop feasible hardware [17]. 
While proposals such as [18][19] advocate the use of HTM-only 
implementations, others, such as [20][21] propose the use 
general purpose architectures designed to be used with many 
machine learning algorithms, HTM being one example of use 
[22][23]. Within the conventional ML realm, there are many 
specialized and limitedly flexible hardware implementations, 
[24][25][26]. 

While some might argue that it could be too early to cast a 
specialized silicon product, given the algorithm and application 
development status, perhaps we need to start addressing the 
issues we might encounter later. In contrast with other machine 
learning (ML) approaches, such as Deep Neural Networks 
(DNN), CLA might bring complicated challenges. Instead of 
precisely weighted connections and computing intensive matrix 
multiplications, CLA’s foundation is a hyper-connected, 
complex and highly dynamic topology to store and retrieve 
information. From a naïve hardware perspective, this is hard to 
achieve (a single mini-column can potentially be connected to 
thousands of different mini-columns). Although emerging 
technologies, such as 3D stacking and Non-volatile memory 
might ease these stringent requirements, a feasible 
implementation in a conventional CMOS process would be 
advantageous from the point of view of scalability [24]. 

Furthermore, CLA has a relevant advantage over DNN or 
other weight-based learning: it requires only very low precision 
(around 4 bits might suffice) to add and compare instructions. 
Unfortunately, using conventional architectures, software 
implementations cannot capitalize on this since topology 
handling requires frequent and costly data movement throughout 
the memory hierarchy, which might complicate the use of 
GPGPU programming models. A hardware implementation 
could greatly improve both the energy requirements and 
performance. It seems feasible to process many millions of 
samples per second within a constrained energy envelope. 
However, DNN, even using a significantly more costly multi 
GPU configuration, is far from achieving that performance [27]. 

This paper explores this path, presenting the architecture of a 
feasible hardware implementation. In contrast with [19], we will 

use architectural methodologies/techniques similar to those used 
in commercially available products, such as general purpose 
chip multiprocessors. Based on the biological properties of 
axons and dendrites, we define a system that uses a logical 
construct to fulfill the topological flexibility of CLA over an on-
chip network. Given the low computational requirements, by 
attaching some simple logic to the routers of this network and 
with some memory to store the connectivity status, it could be 
possible to implement CLA without requiring complex and 
power-hungry general-purpose CPUs or GPUs. 

Consequently, like in biological systems, the network is the 
point towards which the system gravitates. We will focus our 
attention on the communication substrate and procedures to 
make CLA feasible. We will describe how, using a packet-
switched network and diverse computer architecture techniques, 
we can achieve a practical implementation. Different solutions 
will be presented to guarantee system scalability. We will 
analyze, through detailed simulation and using well-known 
modeling tools, the temporal and energy requirements of the 
system. The set of proposals introduced minimizes 
communication overheads. The combination of all these 
techniques on average reduces network delay and active energy 
requirements by ~90%. Since communication seems to be the 
most demanding issue, we believe that it might be feasible to 
construct a highly scalable hardware-based accelerator.  

2 Background and Motivation 
Before getting into the proposal details, first we will provide a 

brief introduction to the main concepts used by CLA and explain 
how software limitations might make a hardware-specialized 
implementation of the algorithm attractive. Although the 
interested readers might wish to consult the details in the 
bibliography provided, we hope that they can obtain an 
understanding of the core components, which are surprisingly 
simple and elegant. 

2.1 Sparse Distributed Representation (SDR) 
Empirical evidence [4][5] suggests that the neural system 

represents information using sparse activity patterns. In this 
representation [6], in contrast to conventional binary data 
representation (also known as localist [7]), each bit has semantic 
meaning. In this way, the data representation is highly resilient 
to a noisy and faulty environment (as is the biological one). 
Therefore, changing a few bits in the representation always 
produces a value with “similar” meaning to the original. To 
convert a localist representation (which can be any 
multidimensional data representation), an encoder has to be 
used. The encoder will expand the original data by thousands of 
bits where, at a given time, only a few can be set (typically ~2%). 
Note that, besides resilience, an inherent property of SDR is the 
low power requirements. For example, with a perfect encoder, a 
2048-bit SDR value will require up to ~280 bits in a localist 
binary representation (i.e. 𝑙𝑜𝑔$ %

2048
40 *). Therefore, the SDR 

will require, on average, 3.5x fewer bit activations (140 average 
bit flips vs 40). Another salient property of SDR is the Union 
property (to store multiple data in the same representation with 
a low probability of false positive identification) [8], behaving 
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as a space-efficient probabilistic data structure that resembles 
some of the properties of Bloom filters [9]. Strikingly, the basic 
principle is simple: the number of combinations of a few 
elements in a large set is so large1 that a low number of 
coincidences enable the identification of a value with a very low 
probability of error. Perhaps biology, through evolution, has 
achieved a similar design. The foundation of CLA is that the 
cortex uses SDR-like representations to store and retrieve 
information. 

2.2 Hierarchical Temporal Memory and Cortical 
Learning Algorithm  

Currently CLA focuses on partially replicating the 
functionality of the cortical columns. Layer I is mainly used for 
interconnecting near cortical columns. Layers II/III, usually 
denoted as inference layer, are supposedly devoted to predicting 
the state of the cortical column in the next input steps. Layer IV, 
denoted sensory layer [1], handles the input signals to the 
column coming from the thalamus. Layers V and VI, handle the 
output from the cortical column to sub-cortical brain regions 
(such as motor commands) and lower level columns in the 
hierarchy (such as feedback) respectively. Inference layer 
predictions are used to compose the column output, which is 
forwarded to higher level cortical columns in the hierarchy. The 
thalamus acts as a relay point for the inputs (via primary order 
relay nuclei) or other cortical columns in the cortex (via high 
order relay nuclei) [10]. To avoid storage redundancy, one of the 
most accepted hypotheses is that different cortical columns are 
connected hierarchically (mainly layer I/VI to layer IV of remote 
columns).  

In any case, the organization of this hierarchy (i.e. how the 
layers in different regions interact) is  not well understood in 
neuroscience ([11],[12]–[14]). Therefore, the connections to 
other regions are not actually considered by the CLA algorithm. 
Although there is an ongoing research effort to support it in 
HTM [15] (which coincidentally diverges from the classical 
view of hierarchy), we have focused our attention on a single 
cortical column. Even in the current state, the CLA algorithm is 
enough, from a practical standpoint, to produce a useful system. 
The reader should note that the purpose of the theory is not to 
mimic brain functionality (at least, currently) but just to use it as 
inspiration to implement an alternative prediction system for 
time series. 

The CLA defines the term mini-column, which is sufficient to 
handle hierarchy-less prediction (see Figure 2). A proximal2 
dendrite segment [16] could be connected to a subset of the bits 
of the input (which will be provided by a localist-to-SDR 
encoder). This restriction models the fact that the input action 
potential (i.e., spikes) will be observable from a subset of the 
mini-columns. The segment models the dendritic growth of the 
feed-forward connection of the system. It is well known that 
dendritic plasticity is responsible for the learning in the cortex 
[17]. For a given input, the intersection between the active inputs 

 
1 For example, %204840 * ≈ 10./, i.e. more than atoms in the Known Universe 

(~1076-1082) 
2 Note that although the name comes from the term used for dendrites close 

to the soma (or cell nucleus) in pyramidal neurons (they are the most numerous 

and connected synapses in the segment is determined in each 
proximal dendrite segment. The size of this intersection is called 
input overlap. When determined, an inhibition process will 
select the top ~2% of mini-columns with the largest input 
overlap. The remaining mini-columns are inhibited. The 
synapses to active inputs in the winning mini-columns are 
strengthened and synapses to inactive inputs weakened [18]. To 
handle learning, each synapse connection is tracked with a 
permanence value. If the value is above a predefined threshold, 
the synapse is considered connected. At boot time, the values are 
chosen randomly near the threshold value. In the CLA 
terminology, this is called spatial pooling. Therefore, the Spatial 
Pooler [19] is in charge of producing a stable SDR-compliant 
representation of each input value [20][21][22].  

The Spatial Pooler output (i.e the inhibition winners' mini-
columns) is forwarded to the component that should predict the 
next input according to the current state of each mini-column and 
the feed-forward input. The mini-column state is kept in Cells. 
Cells will establish relationships with other cells in other mini-
columns. Such relations are tracked by synapses, grouped in 
distal dendrite segments3 (see Figure 2). Building a sequence of 
these Cell-to-Cell segments, it is possible to predict which mini-
columns will win the inhibition in the next input-sample. 

To build this value, each cell can have three possible states: 
predicted, non-predicted and active. A cell will be active if its 
mini-column wins an inhibition while predicted. When the 
number of synapses connected to all active cells in the current 
cycle of a particular distal dendrite segment (i.e. the active cells 
overlap) is above certain threshold, the owner cell enters in the 
predictive state. A mini-column with a cell in the predictive state 
is expected to be an inhibition winner in the next iteration. 
Therefore, the set of mini-columns with at least one cell in the 
predictive state is the prediction of the cortical column.  

In the next input-sample, all cells correctly predicted will 
perform the learning in the dendritic distal segments that 
produced the prediction. The strength of the synapses of the 
segment from cells active in the previous iteration is increased 
and decreased in synapses from non-active cells [18]. For the 
cells incorrectly predicted, i.e. in predicted state but the owner 
mini-column did not win the inhibition, all the active synapses 

excitatory neuron types in mammalian cortical structures), CLA does not model 
the neurons at low level. 

3 Although the algorithm used here follows  [16], which only includes the 
basal dendrites, there is an effort to extend this by differentiating the role of the  
apical dendrites into developing a posterior temporal memory.  

 
Figure 2 Graphical Summary of CLA algorithm    
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of the segment that provided the incorrect prediction will be 
decreased by a small amount. 

If a mini-column is a winner of the inhibition but has no cells 
in the predictive state, all the cells in it burst. In one of them 
(called the learning cell) new synapses to a subset of the 
previously active cells will be added. This learning cell is chosen 
to be the owner of the distal segment with most synapses to the 
previously active distal cells. If the number of synapses is not 
enough (for example, the number is below the prediction 
threshold), randomly chosen new ones to other active cells will 
be added. If there are no distal segments to choose, a new distal 
segment will be created in the least loaded cell in the column. At 
boot time, there are no distal segments in the system. Non-
learning bursting cells are used to grow the already present 
synapses in the next iteration. 

In summary, with every new iteration, the 2% of mini-columns 
with the largest number of synapses in the proximal segment 
connected to the input are used to predict the 2% of mini-
columns active in the next input sample. The next input will be 
used to build, reinforce or weaken the predictions.  

Since the same mini-column/s can encode the same input in 
different sequences (or contexts), the cell prediction/activation 
is used to disambiguate the specific context. Therefore, 
multiple cells are required per mini-column. Nevertheless, 
even with a low number of cells, the number of “contexts” 
that the system can store for the same value is large. For 
example, in a system with 2048 mini-columns with 32 cells 
per mini-column, 4032 different temporal contexts can be 
represented for the same value. 

The CLA terminology used for this task is memory sequencing 
and it is done in the Temporal Memory [16]. 

2.3 Encoding and Classification 
To provide an SDR representation, in a practical scenario, an 

encoder is needed. There are a few rules that an encoder should 
obey in order to fulfill the SDR properties [8]. For a scalar 
encoder: 

• The SDR representation of similar scalars should have 
a high number of set bits in common. Overlap should 
decrease smoothly as scalars become less similar.  

• The SDR representation of dissimilar scalars should 
have very low overlap. 

• The SDR representation for a scalar must not change 
during the lifetime of the system. 

These conditions are fulfilled using a really simple approach 
(e.g. by constraining the range of values that can be represented) 
or a rather complex one (e.g. with large memory requirements 
and/or large encoding costs).  

To better understand how SDR works, next we will describe a 
simple, yet hardware-feasible encoding strategy.  Let’s assume 
we need to encode a positive integer, L, into a N-bit SDR 
representation S with w active bits.  

We use seed1=L div w and seed2=1+L div as seeds of a 
pseudo-random generator. Let {Low} be the group composed of 
the initial w unique elements generated by the first seed (where 
the operation modulo N-1 has been applied). The {High} group 
is generated by the second seed (with values not present in 

{Low}). We choose the last w-L mod w indexes of {Low}. The 
remaining L mod w bits to be set in S are chosen in order from 
{High} group. A pseudocode of this encoder is presented in 
Figure 3. 

Note that for any L, there is n such that n·w≤L<(n+1)·w. The 
idea is to generate a unique set of random numbers smaller than 
N-1 for each interval.  The SDR codification is obtained by using 
a sliding window that chooses for each L, a group of bits to set 
from its current interval and the remaining bits from the next 
one. For example, if L=nw, the SDR encoding of L is the w 
randomly generated numbers with seed L div w. If L=nw+1, w-
1 bits are chosen from the same set and 1 bit from the set 
generated in the next interval (i.e., the one generated with seed 
1+ L div w). In this way, close scalars will have a high number 
of bit-sets in common. The probability of having two close 
representations for two separate integers is negligible for a 
sufficiently large N. 
t_SDR encode(uint L) : 
        randomGen.seed( L div w) 
        t_SDR  low 
        while low.length() != w: 
           int col = randomGen.random() mod (N – 1) 
           if col is not in low: 
              low.append(col) 
  
        randomGen.seed( 1 + L div w) 
        t_SDR  high; 
        while high.length() != L mod w : 
           int col = randomGen.random() mod (N – 1) 
           if col is not in low: 
              high.append(col) 
  
        t_SDR S = merge(low  [ (L mod w) - 1 : w - 1   ] ,  
                        high [      0        : L mod w ] ) 
     return S 

Figure 3  (a) HW-Friendly SDR Encoder 
Since pseudo-random generators are deterministic, this 

approach does not require storing the conversion, only the logic 
necessary to perform the operations. Since other non-scalar time 
series can be remapped to scalars, we can consider that the 
encoding problem is not a relevant issue from the point of view 
of this study.  

In contrast with encoding, classifiers are application dependent 
components. For example, detecting anomalies in a signal is 
straightforward but predicting multiple steps in the future can be 
very memory intensive. An Anomaly Detector Classifier is just 
a component that computes the fraction of unpredicted mini-
columns (just bit masking current input SDR with the last 
prediction). Nevertheless, a Value Predictor Classifier needs a 
complex memory structure to store and lookup the current SDR 
prediction to determine the next “localist” input. Like in [24], an 
optimal way to achieve the desired flexibility is to run the 
classification problem in a general-purpose core.   

2.4 Software Limitations and Hardware 
Opportunities 

ANN renaissance in the form of Deep-Learning [23][24] has 
been motivated by the large raw computational power of state-
of-the-art heterogeneous multi-GPU/multi-CPU systems. This 
has enabled the use of a consolidated theory in increasingly 
challenging problems, jumping from simple pattern recognition 
of handwriting [25], to enabling a machine to win in a complex 
game against the best human [26]. The algorithms underlying 
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these problems are suitable for data level parallelism, where 
GPGPU models excel [27].  

In contrast, CLA’s inherent nature makes it difficult to exploit 
such a paradigm. The synapses, although they require much 
simpler computations, can change dynamically. This difficult 
data level parallelism extraction will make GPGPU quite 
inefficient. Currently the support for this computing model in 
NuPIC is not even initiated. Perhaps, as happened with DNN in 
the past, CLA might not be able to take full advantage of the 
current and forthcoming hardware advancement, which might 
constrain the potential of the idea. 

A CLA custom hardware accelerator will not only overcome 
these limitations by breaking the performance/energy barriers 
imposed by general purpose CPUs but will also take advantage 
of CLA’s simple computations and low storage requirements. 
An insight into this advantage is that the core of most Machine 
Learning approaches is floating-point (matrix) multiplication 
and CLA only requires low precision integer 
addition/comparison. For example, according to [28], 32b FP 
multiplications will require 100 times more energy than to add 
two 8b integers. Similarly, being able to use only on-chip 
memory will reduce the memory access energy by two orders of 
magnitude. 

Today ASIC-based DNN, such as [29][30][31][32], is 
appealing if the data and precision required fits the resources and 
the algorithm is well defined. In CLA this might be quite 
different because of its distinctive properties (i.e., there is no 
problem-specific customization, low memory requirements, low 
precision computing). Then, a hardware implementation of CLA 
may be more general purpose than a DNN one. 

A CLA based ASIC might be useful in future applications. For 
example, it might be feasible to use thousands of streams of data 
concurrently and, using unsupervised learning, to detect 
anomalies. It is not easy to forecast the potential openings, but if 
we are able to perform fast CLA Natural Language Processing 
(NLP), such as [15], it could be possible to tackle challenging 
problems. 

Finally, to really explore the full potential of the hierarchical 
organization and propose and validate theories about the 
underlying and unknown working mechanisms of the cortex, a 
hardware implementation would be useful. Under these 
circumstances, it is interesting to explore the feasibility of a 
silicon-based implementation, as this paper does. Next, we will 

introduce the architectural details of a potential implementation 
that we have called CLAASIC. 

3 About the Feasability of CLAASIC 
CLA’s basic assumption is that synaptic plasticity is the key 

element used by the cortex to learn (through dendritic growth 
[34] as a consequence of the back propagation of post-synaptic 
action potential [17]). The relation between mini-columns is 
used to store and retrieve information. Such relation is defined 
dynamically depending on the connections established via on-
line learning. Therefore, the storage capacity is proportional to 
the product of the number of mini-columns by the maximum 
number of connections per mini-column. The connectivity of the 
neurons can potentially be very high (the dendritic spines can 
provide up to tens of thousands of potential synapses). 
Nevertheless, most of these synapses are not active (i.e., the pre-
synaptic axon is too distant from the dendrite) or multiple active 
synapses correspond to the same pair of neurons (hypothetically 
as a redundancy mechanism). Instead of electrically replicating 
the morphology of biological systems, which perhaps is 
unattainable, we will embed this functionality in a packet-
switched network. We will focus our interest on how to organize 
and optimize the communication substrate to emulate axon 
spikes and correctly apply the prediction and learning algorithms 
of CLA. Instead of using synapses to establish a connection 
between two mini-columns, we will use memory structures 
attached to each router, modeling dendritic segments and the 
required logic performing the spatial pooling and providing 
temporal memory. Figure 4 (a) presents a high-level description 
of the proposed architecture. The encoder and the classifier will 
play the role of I/O interface with the general-purpose processor.  
We will implement the actual CLA mechanics in a component 
called the Columnar Core (CC). In this example, we will use a 
sixteen-core system connected by a packet-switched mesh 
network. Figure 4 (b) shows a high-level representation of a CC. 
In this case, we will assume that each CC is homogeneous. Next, 
we will briefly discuss the requirements of each component to 
later focus our attention on the most relevant one: the 
communication substrate. 

3.1 Communication Requirements 
The interconnection network must handle all the traffic 

generated by the CLA algorithm. The traffic has four classes: (1) 
input traffic incoming through the Encoder, (2) inhibition traffic, 

 
Figure 4  (a) The Columnar Cortex, (b) High-level description of a Columnar Core (CC) 
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(3) lateral activity due to cell activations and (4) mini-column 
activation and predictions sent to the classifier. This activity will 
be done at logical level using packets instead of physical wires. 
For example, each output bit of the Encoder will be connected 
to a statically defined set of columns (denoted receptive field). 
Then, for a given input, each active bit in the SDR representation 
will be transformed into a multicast packet, addressed to the 
potentially connected mini-columns. The Encoder will need a 
table with the relation between columns and inputs. Therefore, a 
multicast packet will emulate each axon spike. Similarly, when 
a mini-column enters in the predictive state, a unicast packet will 
be sent to the classifier.  

Internally the router will receive messages from the spatial 
pooling logic (input overlap used in inhibition) and the temporal 
memory logic (cell activation). Those messages should be sent 
to the potential receptors. To maximize system performance, all 
mini-columns can be potential receptors. For example, for global 
inhibition, any mini-column should be aware of the input overlap 
of the rest of the mini-columns. The overlap is computed as the 
count of connected synapses in the proximal segment of the 
mini-column for a given input. With this information, the 
pooling logic can determine whether the current mini-column is 
among the 2% with highest overlap and can feed-forward the 
temporal memory logic. Similarly, to construct distal segments, 
the algorithm assumes that each mini-column is aware of all the 
cells in the active state. Consequently, any outgoing message 
from the spatial pooler or temporal memory will be broadcast to 
all the Columnar Cores in the system. 

At first sight, the communication requirements seem 
demanding. There is a large amount of multicast/broadcast 
traffic that will require broad network bandwidth and large 
energy consumption. Additionally, any of the computations 
performed in the computing layer must be done accessing only 
local information. Since we cannot rely on any centralized 
component to scale the system to thousands of CCs, it is not 
evident how to achieve such synchronized behavior under 
realistic constraints.   

3.2 Computing Requirements 
There are two stages in the CLA algorithm that must be applied 

sequentially: 
Spatial Pooler. The logic in charge will evaluate the input 

activity. The computing logic will evaluate the input overlap 
with its proximal segment (i.e. the number of synapses 
connected to an active input) and broadcast its value (assuming 
global inhibition) to the rest of columns in the system.  

Inhibition logic might be quite straightforward (assuming 
global inhibition). Therefore, in each mini-column, we only need 
a counter to record the remote mini-columns with the largest 
overlap. If at a certain point this counter is greater than 2% (i.e. 
40 for a 2048 mini-column system), the mini-column will self-
inhibit for the current iteration, ignoring the remaining traffic. 
To break ties, additionally to the input overlap, each mini-
column will include its ID in the inhibition packet. This k-
winners-take-all inhibition is assisted by the network 
mechanisms (fundamentally, in-network replication and 
synchronized drain) to not only accelerate the task but also to 
convey and compare the incoming inhibition message overlap, 

counter increment (if overlap is greater than local), and 
comparison if the counter is above the desired sparsity. 

The synapses in the proximal segment table of the active inputs 
will be adapted if the mini-column wins the inhibition. 
Therefore, the spatial logic will require a comparator, a 4-bit 
adder and a counter. The maximum overlap required is 
~Log2Input bits. For a 2048 input encoder, 12 bits will suffice.   

Note that although mini-column boosting might be required to 
achieve a balanced mini-column activation pattern [34], 
according to [20], it is not cost effective to do so in resource-
constrained environments like an ASIC.  

Temporal Memory. The module should handle feed-forward 
and cell activity. If we assume that the axon of the cells is global 
(i.e. we can form relationships between cells in any mini-
column), a broadcast will be generated when a cell is active. The 
corresponding packets will include the origin cell. At 
destination, these will be kept in a list of current activations. 
Once the current iteration completes, the computing logic will 
determine for each mini-column whether the activation was 
correctly predicted. In this case, the corresponding distal 
segment of the cell in the predictive state will be updated 
accordingly (i.e. performing dendrite adaptation according to 
[18]). If the mini-column insn’t correctly predicted, the logic 
should grow new synapses in the distal segment with higher 
overlap with the previously active cells (or create a new one if 
there aren’t any). From a naive perspective, this can be difficult 
since it requires an extensive search through all the dendritic 
segments of the mini-column. 

The temporal memory should determine for the current 
activations which dendritic segments in the mini-column are 
active. The (temporal) cells with an active dendritic segment will 
generate a broadcast/multicast in the network. Finally, the mini-
columns that are not predicted correctly will produce a burst, 
which from the network perspective is equivalent to an 
activation. 

3.3 Memory Requirements 
The precision required by the algorithm is low. In a practical 

problem such as [35], there is no appreciable performance loss 
(<1%) when tracking the synapse permanence from full 64b FP 
precision to 4-bit integers. The reason for this is that there is low 
sensitivity to learning rates. In this application Temporal 
Memory uses steps of 0.1 (with permanence between 0 and 1). 
The spatial pooler uses smaller values (0.08 for learning and 
0.003 for forgetting), which can be modeled with 8-16 levels 
stochastically controlled. This is biologically plausible, since in-
cortex dendrite growing/shrinking is a stochastic process [33]. 

The proximal segments will store the permanence of the 
synapses with each potentially connected input bit. Note that 
each bit of the SDR representation produced by the encoder is 
potentially connected (i.e. a synapse might be formed) to the 
chosen subset of mini-columns at boot time. In general, we can 
assume that each bit can be connected to any mini-column in the 
system. Therefore, the proximal segment must have one entry 
for each potential input. In practice, each mini-column will be 
connected (i.e. a synapse will be formed) to a subset of encoder 
inputs. Thus, we might structure the proximal segment as a 
conventional cache indexed by the input index. In practice, 
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having capacity for 64-128 entries in a 2K mini-column system 
seems to be enough.  The permanence value must be stored 
there. Reduced precision weights in DNN have a much more 
adverse effects on system performance [31][32]. For example, if 
we assume a 2K mini-column system with 1K inputs, the 
aggregation of all cortex proximal segments will require 
(including tags) between 0.25MB and 0.5MB. However, issues 
such as conflicts must be considered. The random nature of the 
SDR encoding implies low address locality. 

In a naïve approach, each distal segment will require as many 
synapses as mini-columns in the system and each cell might have 
an unbounded number of segments. In practice, for a 2K mini-
column system, having 128 segments with 40 synapses per cell 
provides similar results to an unbounded system [16].  
Therefore, excluding tags, ~80KB will be required for 4-bit 
precision per mini-column, i.e. 160MB for the whole system. 
This amount seems feasible to achieve in on-chip SRAM 
memory storage such as is used here. Although orthogonal to 
this work, note that this is a raw amount that can be greatly 
reduced using the appropiate techniques. Exploiting CLA’s 
noteworthy fault resilience (>50% rate of faulty cells can be 
tolerated [16]), it could be possible to reduce the final storage 
requirements significantly.  

3.4 About the Temporal Cost of the Computing Phase 
A key insight is that the learning (the most complex part of the 

algorithm) is outside the critical path. Since prediction only 
requires comparisons and counter increments, it is reasonable to 
assume that the time required to perform the prediction will be 
memory bounded. Since the memory required per mini-column 
is quite small, with the proper SRAM configuration, it could be 
possible to use a pipeline with a sustained throughput of one 
packet served per cycle. 

The learning algorithm, especially distal segment formation, is 
more complex. Nevertheless, assuming a uniform distribution of 
mini-column activation, learning on one mini-column will be 
done with sparse frequency, i.e. only ~2% of the iterations. 
Therefore, in the best case, the time budget for the learning is 50 
times larger than the prediction. Since (See section 4.3) 
computation can be fully overlapped with the communication 
phase, the time available for prediction is equal to the time 
available to perform the communication. Since learning in CLA 
resembles [18], forgetting is only performed on inhibition 
winner mini-columns. This is different from conventional STDP 
learning rules, which require the decrease of all non-winning 
synapses connected to the input [36]. 

Although the logic in charge of this is not analyzed in this 
work, it is reasonable to consider it is not relevant from the 
hardware perspective (both in time and area). In contrast with 
other works such as [37][38], fully optimization for CLA will 
not necessary require complex operation support. In §6.4, we 
will discuss how a non-uniform mini-column activation pattern 
might affect this using a realistic workload. 

4 Communication in the Columnar Cortex 
We have identified three major problems in the CC: 

communication and synchronization, temporal memory logic 
complexity and distal segment organization. From a scalability 

standpoint, the most relevant seems to be the former, since the 
necessary scalability appears to be a key element in the cortex. 
Next, we will discuss the key issues for the communication 
substrate and how we propose to deal with them.   

4.1 Network Characteristics  
Since all the spikes will be modeled as multicast packets, to 

optimize performance, the router requires multicast support (i.e, 
in-network replication). This feature can be included with 
minimal impact using a router similar to [39]. In-network 
replication will also reduce energy requirements, since the 
copying of the packet is performed through the path to 
destination. Finally, it will achieve a low base latency, since 
there is no injection serialization. 

 The packet size required is quite small. Inhibition traffic will 
require overlap and tie-breaker ID (Log2NumColumns 
+Log2NumEncoderActiveInputs). Lateral activity will require 
the source mini-column and cell ID 
(Log2NumColumns+Log2NumTemporalCells). Input activity 
will require source ID (Log2NumInputs). For a 2048 
column/input system, with 32 cells per mini-column, the size 
required will be 22, 16 and 11 bits respectively. Although, these 
sizes are much smaller than in a conventional CMP (where in 
most cases, the packets are around tens of bytes), the cortex 
organization or further enhancement (such as Section 4.5) might 
require adjusting the bandwidth availability (i.e., link width).  

Since the individual latency of a packet is not critical, a low-
degree network with narrow links might satisfy the 
requirements. High-degree networks would require increasing 
the complexity of the routers and the wiring cost.  Therefore, 2-
D Torus or Mesh [40] will meet these requirements. Although 
not explored here, like in biological systems, CLA gracefully 
tolerates faulty/noisy input or internal system degradation 
[16][41]. Therefore, it will also tolerate a faulty network. With a 
fault tolerant network such as [42], it could be possible to scale 
up the system size without yield issues even using wafer-to-
wafer-on-wafer 3D integration under aggressive technological 
nodes, as [38] suggests.  

4.2 Distributed Synchronization 
Looking at the algorithm, there are four main phases: 

computing overlap of the proximal dendrite with the current 
encoded input, determining the winning mini-columns in the 
system, determining the lateral activity in each cell in the mini-
column and producing the prediction. Overlapped with these 
phases, the adaptation (i.e. learning) of the synaptic segments is 
performed. 

The main difficulty of performing such tasks in a fully 
distributed way is to know when each one should be performed. 
For example, input overlap should not be run until all the input 
activity is received (i.e., each mini-column has received all input 
packets). There will be no acknowledgment message of axon 
spike reception. Therefore, each CC should be aware when to 
run the corresponding part of the algorithm. Similarly, inhibition 
cannot be activated until each mini-column is aware whether it 
is one of the most active ones. Finally, prediction cannot be done 
until all active cells are known. The simplest, yet most efficient, 
way to circumvent this problem is to drain the network content 
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before progressing to the next phase. If the network is empty, 
there is a guarantee that all the influencing packets will already 
have arrived at their destination.  

Figure 5 details all the stages required for the CLA algorithm. 
Besides encoding and classifying, there are nine stages, three of 
them perform computation in the spatial and temporal logic (S3, 
S6 and S9), three correspond to the axon spikes (S1, S4 and S7) 
and another three are required to drain the network (S2, S5 and 
S8). 

The problem of synchronization is then reduced to providing a 
scalable network drain mechanism. To guarantee the scalability 
of such a mechanism, we need a cost-efficient way to do so 
within the network itself.  A simple approach is to use  
dimensional order routing (DOR) [40] and inject a special 
broadcast packet, denoted broom packet, into the extreme 
Columnar Cores from the smallest and largest ID (in the example 
in Figure 4, these should be CC0 and CC15 ). These packets will 
be allowed to progress to the next routers only if the local router 
has no more packets in the injection queue and the transit buffers 
at the ports where the router has received the copies of the packet 
are empty. The packet is replicated through the remaining ports. 
For example, when CC5 receives the CC0 broom packet from 
CC4 and CC1, we know that there are no normal spike packets 
that might affect the columns handled by CC5. When the transit 

 
4 This could be a system-status dependent number of clock cycles depending 

on the computing logic and the network characteristics. 

queues from W and N are empty, the router replicates the CC0 
broom packet through the S and E ports. This operation will be 
applied in the whole cortex until the columnar core CC15 
receives the broom packet from CC0. At this point, CC15 is aware 
that there are no packets in the network. Then, it can progress to 
the next stage in the algorithm. Similarly, when an intermediate 
CC receives all the broom packets from CC0 and CC15, it knows 
that there are no pending packets in the network for it. It should 
be remarked that this mechanism operates in a fully distributed 
way and will scale according to the network’s available 
bandwidth. 

We hypothesize that in biological systems, this drain is not 
required because the input rate of change is slow enough to 
guarantee that the spatial and temporal memory are handled 
satisfactorily. When the input rate is too high, the system will be 
unable to learn or predict. As a naïve example, an excessively 
fast image rate of change will be perceived by the visual cortex 
as noise. Although a similar solution can be applied in our case, 
we think that encoder and data are not evolutionarily tuned like 
in biological systems and perhaps will require an excessively 
long worst-case delay to work correctly in corner cases. 

4.3  Pipelined Algorithm: Communication and 
Computation Overlap 

The nine stages in the algorithm will require a substantial 
amount of time and energy. Specifically, the network seems to 
play a fundamental role, since it is foreseeable that the time 
required to propagate the axon spikes will be large. 
Nevertheless, if we look at Figure 5, we can identify stages like 
in a general-purpose processor.  

Therefore, we can use the same optimization techniques used 
there. We can pipeline the algorithm reducing the stages per 
input sample to three. Figure 6.(a) shows how that organization 
will be beneficial once the pipeline is loaded. The idea is to start 
computing the overlap of the next input in the sequence as soon 
as we know the current overlap. Then at t34, two operations are 
being performed simultaneously in the network. If we move 
forward in time, we can see how we can overlap three different 
input operations in a single stage. At t6 the information 
interchange corresponding to the activation of cells for the first 
value, the inhibition for the second value and the input SDR of 
the third value are being processed by the network. At t8 we are 
simultaneously performing the prediction for the first iteration, 
the lateral activity computation for the second one and the 
overlay computation for the last one. Even more importantly, we 

 
Figure 5 Stages in CLA Algorithm 

 
 

Figure 6 (a) CLA pipelined algorithm, (b) Overlapping communication 
and computation 
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will need only one network drain per input iteration. Once the 
pipeline is loaded, we need only three iteration s in the input 
sequence to produce a prediction. 

This approach creates the opportunity for further 
improvements. We do not need to finish the computation phases 
before starting to send the outcome of each one (i.e. we can fully 
overlap the computation and communication phases). As soon 
as spatial and temporal logic starts to generate axon spikes, they 
can be injected into the network, as Figure 6(b) shows. 
Therefore, the number of clock cycles required to process a 
value in the input sequence will be determined by the slowest 
portion: communication or computation. The number of cycles 
required by the slowest one and the clock cycle will determine 
the time required to process one sample in the input sequence. 
Finally, network drain should be synchronized across iterations: 
broom packets are forwarded in the CC router both if there are 
no packets in the injection queue and transit buffers and if all the 
local columns have finalized the current iteration (in the spatial 
and temporal logic). Therefore, network drain operates as a 
synchronization barrier. 

4.4 Traffic Aggregation: Coalescing Injectors 
To minimize communication cost, combining multiple mini-

columns in a single CC is an effective solution. To use links 
between routers with a very short distance can unnecessarily 
increase the average latency in the network. To reduce this delay, 
the size of the CC (i.e. number of columns) should be tuned to 
match the propagation delay with the network clock cycle. This 
is well known for a Non-Uniform Cache architecture [43]. With 
this approach, it could be possible to aggregate action potentials 
coming from multiple mini-columns in the same CC in a single 
packet. Although this might increase the number of flits of the 
packet, it will reduce the network load.   

Finally, the pipelined algorithm creates the opportunity for 
additional traffic aggregation. We can combine actions coming 
from different stages in the algorithm in a single packet. For 
example, inhibition can be combined with the lateral activations 
of the previous iteration. To do so, we assume the existence of 
coalescent injection queues (similar to the structure used to 
support non-blocking caches in general-purpose processors). 
Before queuing new packets in the injection buffer of the router, 
the packets waiting to be injected are checked. If there is a match 
in the destination mask, the previous packet is modified 
appending the information about the new one and then 
discarding it.  

4.5 Scaling Traffic: Scale-out Zones 
Biological systems would lead us to believe that the best 

approach to increase system storage is to increase the number of 
mini-columns and not the number of cells (and distal segments) 
per mini-column. From a practical perspective, if we increase the 
number of mini-columns, we might reduce the number of distal 
dendritic segments required per cell. Although from a software 
perspective this does not seem interesting, from the hardware 

 
5 Due to requiring the computation of the average distance between all 

connected synapses and their respective mini-columns in the input and the SP to 
update the inhibition radius, performance drops by more than 20x. 

standpoint, it is relevant because it might reduce the 
interconnection cost and perhaps the complexity of the CC. 
Therefore, in a hypothetical silicon implementation it would be 
desirable to increase the number of columns as much as the 
technology allows, i.e. depending on the yield and/or power 
envelope. Unfortunately, the communication system, as 
described at this point, might not scale up beyond a limited point.  

Distal and inhibition traffic are assumed to be global by the 
CLA (although inhibition might be local, this is rarely used 
because the performance falls significantly5 and a loss of 
accuracy is incurred [20]). From the network perspective, the 
delay and power requirements will be increased significantly as 
we increase the number of CCs. Note, that the number of 
columns involved in the inhibition process is substantially higher 
than the number of inputs active in the encoder. 

Biological systems do not use global communication in such 
processes. Inhibition, which is performed by inhibitory 
interneurons [44], should have a localized and static radius. 
Similarly, distal activity is constrained to the shape of distal 
dendrites and axons of pyramidal neurons [45]. Proximal traffic 
is less demanding because the CLA algorithm assumes that 
potential proximal synapses are limited. At boot time, each mini-
column can potentially be connected to a subset of inputs, called 
the receptive field [46] of the column. Usually the receptive field 
of each mini-column is a subset of the input bits following a 
topological arrangement. This improves the accuracy of the 
system. Coincidentally, it reduces proximal traffic relevance, 
since the destinations in the multicast packet will be localized in 
the same region of the cortex. 

To circumvent the global communication problem, we propose 
a simple approach that is based on splitting the network into 
separate zones and restricting the inhibition and distal traffic 
within them. We denote these regions as scale-out zones. For 
example, Figure 7 shows those zones used to increase the 
number of CCs from 16 to 64. Instead of requiring broadcasts, 
the traffic generated by columns in any of these zones will be 
restricted to them. If we need to further increase the number of 
mini-columns, we can simply increase the number of zones. 
With this simple approach, traffic will be kept constant. 

The encoder, i.e. proximal traffic, selects the potentially 
connected columns without making distinctions between zones, 

 
Figure 7 Scale-out zones Example 
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i.e. the receptive fields are kept constant. The approach we 
propose is to use as many consecutive values in the encoded 
input sequence as the number of scale-out zones. In this 
example, we will use 4 encoders to simultaneously encode four 
different iterations from the input sequence. Thus, we not only 
increase the throughput of the system but also the load on each 
individual mini-column, since a whole representation is 
scattered throughout the whole system. Additionally, increasing 
the number of zones will keep the total proximal traffic constant 
(since receptive field size is kept constant). 

In an n-zone system, each mini-column only sees an n-th part 
of the input data. Therefore, each CC will require an n-th part of 
memory requirements, improving the system scalability. Access 
times are faster and the time available to accommodate the 
computation (during the communication phase) is n-times 
greater, which might allow slower but denser memory 
technology to be used.  

5 Evaluation Methodology  
5.1 Tools and Benchmarks 

We have developed an integrated simulator, CortexSim[47], 
which simulates the previously depicted mechanisms. 
CortexSim is influenced and verified compared to the NuPIC 
white paper implementation (but with mini-column boost) of the 
CLA algorithm using the Numenta Anomaly Benchmark (NAB) 
[35]. The simulator is connected to a network simulator, Topaz 
[48], in order to obtain precise network timing results and 
DSENT[49] and CACTI[43] to estimate area and energy 
requirements. The data sets used in this evaluation are both 
synthetic and real. We use synthetic data to simplify 
architectural comparisons and realistic data to provide a notion 
of the benefits of the accelerator in a practical scenario. 

The real data is provided by NAB. The NAB corpus of 58 time 
series data files, composed of ~350,000 samples, is designed to 
provide data for research in streaming anomaly detection 
algorithms. It is comprised of both real-world and artificial time 
series data containing labeled anomalous periods of behavior. 
Most data come from real-world scenarios from a variety of 
sources such as Amazon Web Services metrics, Twitter volume, 
advertisement clicking metrics, traffic data, and more. The data 
includes anomalies that are annotated by human reviewers, 
following a strict procedure. This data is processed using many 
anomaly detection mechanisms and serves to compare with CLA 
in this specific task. Each data set has a probationary period 
(~10%), during which the detector’s anomaly detections are 
ignored. Note that in each time series the detector its reset. 
Although the data diversity is quite high, the parameters of the 
cortex are constant in all experiments. Under these conditions, 
NuPIC can reach 65% successful anomaly detection whereas 
other state-of-the-art approaches are 20% behind. 

For the synthetic workload, we will use periodic series of 32-
bit integer data generated from randomly defined polynomials 
(up to fourth degree with randomly chosen coefficients). A 
limited number of points from each one is defined for twenty 
values of x, defining a temporal set. We will repeat each 
temporal set until it is learned by the system. We consider that 
the time series is learned when the number of elements in the 

sequence with all the active mini-columns correctly predicted 
(i.e. no mini-column bursts) is equal to half of all the data points. 
The rationale of this is to keep half of the time for learning new 
sequences and half of the time for predicting them. Therefore, 
half of the iterations will produce the extra traffic of mini-
column bursting or low overlap inhibition that a new input 
sequence appearance will generate. The second half of the time, 
the system will have a stable representation of the input, which 
is less demanding for the network. The number of temporal 
series (i.e. polynomials) used to fulfill strict 98% confidence 
intervals is around ~50.  

In both cases, the classifier we will use is an anomaly score 
estimator.  

5.2 System Configuration 
With regard to the CLA configuration, we mimic the one used 

by [35]: 45x45 mini-column system with 32 cells per mini-
column (with up to 128 distal segments), with global inhibition, 
a 2045-bit SDR encoder with a diameter in the receptive field of 
32. In contrast to [35], we use a new SDR encoder, succinctly 
introduced in section 1.3. This encoder improves NAB anomaly 
detection by 1-2% compared to the one employed in [35], 
denoted as Random Distributed Scalar Encoder (RDSE). The 
encoder, in synthetic workload, has full integer precision. In 
NAB we limit it to up to 130 levels of quantification (as RDSE 
does in [35]). All CLA parameters are kept constant throughout 
the evaluation. 

With regard to the network, we employ a 2D Torus topology 
with a conventional router with deterministic DOR, using bubble 
flow control [50] as a deadlock avoidance mechanism (single 
buffer of 160 bytes per port, no virtual channels), 4-cycle 
pipeline. We assume that the link wires use low-swing links and 
require a clock cycle to travel from router to router. The clock 
cycle, conservatively, is set to 1 ns. We use dimension-order 
replication for multicast deadlock avoidance [39]. The network 
drain mechanism depicted in Section 4.2 has the routing logic 
embedded.  

6 Performance Results 
6.1 Synthetic Benchmark  

Figure 8 shows the number of clock cycles required for each 
input sample, for 11x11, 16x16 and 23x23 tori. (i.e. different 
numbers of mini-columns per CC). As can be appreciated, for a 
plain approach (sequential) there is little effect on the network 
size, i.e. network contention dominates. This is due to the high 
load that the network supports. Adding more nodes increases the 
raw bandwidth, which in the case of 23x23, allows the time 
required to process an input to be reduced slightly. When we add 
coalescing injectors, the delay is reduced by four times, because 
the inhibition traffic cannot use the links efficiently. The 
contention reduction allows this improvement. Adding 
pipelining opens up the opportunity for further traffic reduction, 
although limited packet size (80bytes) allows limited 
aggregation. Nevertheless, the true advantage of pipelining is 
that computation can be fully overlapped with communication, 
i.e. we might actually need only around 500 cycles to fully 
process an input sample.  
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Since the number of accesses per mini-column is 
approximately 80 (40 for proximal traffic and 40 for distal 
traffic), computing might need ~1300 cycles in 11x11, ~640 in 
16x16 and ~300 cycles in 23x23. It seems that the most suitable 
network for this configuration is the 16x16 system. 

 The reduction in contention of these techniques creates the 
opportunity to reduce the cost of the network by narrowing the 
link widths. Figure 9 provides the results of this change.  

To improve these figures, the out-scaling zones might be 
useful. Figure 10 suggests that moving from 1 zone to 4 zones, 
can significantly reduce the communication cost. It could be 
possible to process an input sample in ~200 network cycles. This 
is because the inhibition and distal traffic only has to reach a 
quarter of the network. Each mini-column on average will 
perceive a quarter of the remote spikes, therefore the CC will 
need a quarter of the memory accesses in order to perform the 
prediction. Consequently, it seems feasible, using a 16x16 
system, to achieve ~160cycles.  
Figure 11 shows the total power (both active, and leakage) 
required by the network. In the out-scaled configurations the 
power is ~250mW for 16x16.  

6.2 Realistic Benchmarks  
Figure 12 to Figure 15 show how the system will perform with 

the anomaly detection benchmark. The corpus of the benchmark 
is composed of different families of data, grouped and tagged on 
the x-axis. The error bars represent the variability of the 
performance metric within each family. According to Figure 9, 
a 16x16 with 16B-wide links is the most interesting. This 
configuration is also the best performer when four out-scaling 
zones are used. Under this configuration the latency processing 
each data set is ~500 cycles and just ~300 when out-scaling is 
used. This means that the 350,000 data of the whole benchmark 
can be ingested by the accelerator in just 0.175-0.1 seconds. The 
average power required by the whole system, under these 
working conditions, will be between 1.2Watts and 350mWatts. 

The latest NuPIC implementation in a 2-socket server based 
on Intel Xeon E5640 running at 2.4Ghz with 60GB of memory 
requires ~3000 seconds to run the detection phase in a single 
core and requires approximately 170Watts. Running in 24 
hardware threads, it takes 234 seconds and 450Watts. If we take 
into account the time and power consumed by the accelerator, 
CLAASIC is between 3·104 and 1.8·104 times faster. In terms of 
energy, the efficiency with respect to a single core is between 
1.5·108 for the single thread execution (versus the more efficient 
configuration) and 3.4·106 for the 24-thread one (versus the less 
efficient configuration). 

Out-scale improvement in speed and efficiency comes at the 
cost of accuracy. In practice, the average anomaly detection rate 
falls 9% compared to the standard configuration. Note that none 
of the remaining parameters of the CLA are changed when out-
scaling is used. 

 
Figure 8 Network clock cycles per input sample for different 2-

D square mesh sizes with different algorithm optimizations 
(16-byte links)   

 
 Figure 9 Number of clock cycles per input sample for 
different 2-D square mesh sizes using pipelining and 

coalescing injectors with different link widths 

 
Figure 10 Network clock cycles required to process an input 

sample with 4 out-scaling zones compared with no out-
scaling with 8 to 16-byte links 

 
 Figure 11 Power required processing an input sample with 

four out-scaling zones compared with no out-scaling with 8 to 
16-byte links 
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6.3 Approximate Power and Area 
Although the memory implementation has not been detailed in 

this work, a rough approximation using a CACTI model for a 
256-bank 160MB SRAM (power results have been used in the 
previous section) was carried out. According to the CACTI and 
DSENT models, a 16x16 system will require ~43mm2 
(0.154mm2 per memory and 0.014 per router). Therefore, it 
seems feasible to scale up the system size without much trouble.  

Both energy and power cost can be considered as a worst-case 
value.  On the one hand, the most memory intensive snoops 
(which correspond to the distal traffic) can be filtered out. On 
the other hand, CLA fault resilience [16] could be taken into 
account to minimize the total memory required. In contrast with 
other approaches, such as [32], we did not need to reduce the 
number of synapses compared to the software counterpart. 

6.4 Constrained Learning Effects on Realistic 
Benchmarks 

Previously, in §3.4, we discussed how in a best-case scenario 
the learning of a particular mini-column will be 2% of the time. 
In the case of NAB, the budget time ranges from 10.000 to 
30.000 clock cycles. Nevertheless, in this realistic scenario, the 

activation frequency of the mini-columns is not perfectly 
homogeneous. To quantify this, in terms of accuracy, we run the 
simulation imposing a hard date line of x10 in the column-update 
(i.e. the same mini-column can be updated only in 1 of each 10 
input iterations). Therefore, it is not possible to update any 
dendritic segment with higher frequency (learning is just 
skipped). The change in the system accuracy as a consequence 
of this restriction is negligible (<0.1% of changes in anomaly 
detection in all NAB data sets). Even in this case, still we have a 
budget of time from 1000 to 3000 clock cycles to perform the 
learning. With such a relaxed constraint the required hardware 
can be highly optimized, its cost being negligible in a 
hypothetical complete design. The only consequence of 
constraining learning frequency is that the system learns more 
slowly (which is unnoticed in this application for the time budget 
set).. 

7 Conclusions & Future Direction 
This exploratory journey provides a suitable design proposal 

for a cortex-inspired hardware accelerator. A priori, the solutions 
presented enable the biggest challenge to be dealt with, namely 

 
Figure 12 Network clock cycles per input epoch with each NAB data 

set for a 16x16 CC Configuration with 16-byte wide links, varying 
optimizations 

 

 

 
 Figure 13  Average Network clock cycles for NAB with different 

system sizes and network bandwidths 
 

 
Figure 14  Network clock cycles per input epoch with each NAB data 
set for a 16x16 CC configuration with and without out-scaling zones 

 
Figure 15   Full chip power requirements with each NAB data set for 

a 16x16 CC configuration with and without out-scaling zones 
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the communication substrate.  From the evidence gathered, from 
an engineering standpoint, this is not a problematic issue.  

The next steps should address the implementation of learning 
logic and the dendrite segments. Additionally, the use of other 
practical problems for the CLA as well as anomaly detection will 
be considered. Specifically, value prediction might be 
interesting. For example, combining CLAASIC with a 
conventional von-Neumann core; we could carry out the 
classifier task in the regular core, while the CLA algorithm can 
be executed in the accelerator with a much higher efficiency and 
speed. 

Since CLAASIC multichip organizations are feasible, the 
proposal is suitable for hypothetical hierarchical organization. 
Note that inter-region connectivity will be much sparser [51] so 
it seems practical to fit these communication requirements 
within the constrained bandwidth of I/O. The fault tolerance 
resilience of CLA and its low energy requirements, lead us to 
think that using emerging technologies, such as 3D stacking and 
non-volatile memories, will be achievable. Consequently, in our 
view, HTM/CLA might reach biological-level raw capabilities 
using hardware such as that proposed in this work.  
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