
1

CLASSIC: a Cortex-Inspired Hardware Accelerator
V. Puente, J.A. Gregorio

University of Cantabria
Santander, Spain

 vpuente@unican.es

Abstract—
This work explores the feasibility of specialized hardware

implementing the Cortical Learning Algorithm (CLA) in order to fully
exploit its inherent advantages. This algorithm, which is inspired by
the current understanding of the mammalian neo-cortex, is the basis
of the Hierarchical Temporal Memory (HTM). In contrast to other
machine learning (ML) approaches, the structure is not application
dependent and relies on fully unsupervised continuous learning. We
hypothesize that a hardware implementation will be able not only to
extend the existing practical uses of these ideas to broader scenarios
but also to exploit CLA’s hardware-friendly characteristics.

The architecture proposed will enable the system size to be scaled
up compared to a state-of-the-art CLA software implementation. It
may be possible to improve performance by 4 orders of magnitude and
energy efficiency by up to 8 orders of magnitude.

Given the problem’s complex nature, we found that the most
demanding issue, from a scalability standpoint, is the massive degree
of connectivity required. We propose to use a packet-switched network
to tackle this. The paper addresses the fundamental issues of such an
approach, proposing solutions to achieve a scalable proposal. We will
analyze cost and performance when using well-known architectural
techniques and tools. The results obtained suggest that even with
CMOS technology, under constrained cost, it might be possible to
implement a large-scale system. We found that the proposed solutions
enable a saving of ~90% of the original communication costs running
either synthetic or realistic workloads.

Keywords – Cortex, cortical columns, mini-columns, neurons,
packet-switched network, neuroscience, computer architecture

1 Introduction
Mammal brains have a distinct structure compared to other

biological systems: the presence of the neo-cortex. The salient
feature of this construction is that it is anatomically and
functionally remarkably homogeneous. Eighty years ago,
Lorente de Nó [1] discovered that the neo-cortex (from now on,
cortex) is composed of cylinder-like packs of a few thousand
neurons forming columns. Later, V. Mountcastle [2]
anatomically detailed the structure of these columns, which is
approximately two millimeter high, 300-500	 µm	 wide	
structures, where in most mammals a set of six layers can be
distinguished (Figure 1.a). The columns are connected via low-
range axons to other nearby columns (via Layer I and Layer VI)
or other distant columns and the thalamus (via Layers V and VI).
The columns are composed of ~30 µm	wide	structures called
mini-columns (See Figure 1.b) [1]. Regardless of the
functionality of each region, the cortex is quite regular, for
example, in humans it has a surface of ~1600 square centimeters
with few anatomical differences throughout it [2]. This fact has
puzzled neuroscientists for decades: how such regularity can be

the underlying structure for the complex functional organization
of the cortex [3].

In neuroscience the most accepted hypothesis [1] is that the
cortex is some sort of memory system. Its inputs are composed
of incoming signals from the senses and the outputs are the
actions on lower level brain structures. These are then sent to the
motor system and expressed as behavior. The main hypothesis
is that the cortex is continuously building a model of the world
according to the information flow. This model is used to produce
behavior.

Figure 1 (a) Cortical Columns (b) Mini-columns

Initially George and Hawkins [6] hypothesized how the cortex
might implement such a memory structure in order to fulfill the
biological requirements. A theory has been built on the
hypothesis that the cortex is a prediction device, that works as a
self-associative memory and is hierarchically structured as a
Hierarchical Temporal Memory (HTM) [7][8]. The theory,
which is primarily influenced by current neuroscientific
knowledge, includes an algorithm, called the Cortical Learning
Algorithm (CLA) that provides the rules for storing and
retrieving information, i.e. learning and making predictions. The
idea has been used in practical problems such as anomaly
detection, sequence prediction, pattern identification, natural
language processing, etc. Currently HTM only considers the
supra-granular layers of a cortical column. The modeling of the
infra-granular layers in the cortical column [9] is under study and
once this task is done, the hierarchy’s inner workings can be
considered. Therefore, CLA only contemplates intra-cortical
column communication.

Given the current state, other deep-learning techniques (highly
specialized, and in most cases using off-line learning), such as
[10], produce better results in constricted problems. In contrast
with these approaches, CLA has two remarkable properties: the
core algorithm does not change from application to application,

704 V. B. Mountcastle

Fig. 1 A three-dimensional illustration of the developmental events occurring during early stages of
corticognesis in the monkey. The drawing illustrates radial migration, the predominant mode of neuronal
movement, which in primates underlies its columnar organization. After their last division, cohorts of
migrating neurons (MN) traverse the intermediate zone (IZ) and the subplate (SP) where they may
interact with afferents arriving sequentially from the nucleus basalis (NB), the monamine nuclei of the
brainstem (MA), from the thalamic radiation (TR), and from several ipsilateral and contralateral
corticocortical bundles (CC). Newly generated neurons bypass those generated earlier, which are
situated in the deep cortical layers, and settle at the interface between the developing cortical plate (CP)
and the marginal zone (MZ). Eventually they form a radial stack of cells that share a common site of
origin but are generated at different times. Although some, presumably neurophilic, cells may detach
from the cohort and move laterally, guided by an axonal bundle, most are gliophilic, have affinity for
the glial surface, and obey the constraints imposed by transient radial glial (RG) cell scaffolding. This
cellular arrangement preserves the relationship between the proliferative mosaic of the ventricular zone
(VZ) and the corresponding map within the SP and CP, even though the cortical surface in primates
shifts considerably during the massive cerebral growth in the mid-gestational period. The numerals refer
to corresponding units in the VZ and CP. (From Rakic, 1995, with permission from Elsevier Siem
Publishers.)

2

and, like in biological systems, it is continuously learning.
Coincidentally, both properties are required to achieve Artificial
General Intelligence (AGI), as defined by AI theorists [11]. Even
in the emerging state, CLA has already proved its advantages
over other state-of-the-art techniques, in anomaly detection [12],
continuous unsupervised learning [13][14], natural language
processing [15], etc.,

Currently the progress made with CLA is based on software.
There are many implementations, NuPIC [16] is the most
remarkable one and it is supported by Numenta using open
source licensing (AGPLv3). Other companies, such as IBM [17],
are working using their own implementations. Although the
practical uses increase the complexity of these tools, the core
algorithms are simple. This approach provides the flexibility
necessary to explore new practical uses or new core algorithm
variations. Nevertheless, the software limits the system size to a
few thousand mini-columns, which might restrict the practical
uses or advancements in hierarchy definition. To circumvent this
problem, it seems necessary to develop feasible hardware [17].
While proposals such as [18][19] advocate the use of HTM-only
implementations, others, such as [20][21] propose the use
general purpose architectures designed to be used with many
machine learning algorithms, HTM being one example of use
[22][23]. Within the conventional ML realm, there are many
specialized and limitedly flexible hardware implementations,
[24][25][26].

While some might argue that it could be too early to cast a
specialized silicon product, given the algorithm and application
development status, perhaps we need to start addressing the
issues we might encounter later. In contrast with other machine
learning (ML) approaches, such as Deep Neural Networks
(DNN), CLA might bring complicated challenges. Instead of
precisely weighted connections and computing intensive matrix
multiplications, CLA’s foundation is a hyper-connected,
complex and highly dynamic topology to store and retrieve
information. From a naïve hardware perspective, this is hard to
achieve (a single mini-column can potentially be connected to
thousands of different mini-columns). Although emerging
technologies, such as 3D stacking and Non-volatile memory
might ease these stringent requirements, a feasible
implementation in a conventional CMOS process would be
advantageous from the point of view of scalability [24].

Furthermore, CLA has a relevant advantage over DNN or
other weight-based learning: it requires only very low precision
(around 4 bits might suffice) to add and compare instructions.
Unfortunately, using conventional architectures, software
implementations cannot capitalize on this since topology
handling requires frequent and costly data movement throughout
the memory hierarchy, which might complicate the use of
GPGPU programming models. A hardware implementation
could greatly improve both the energy requirements and
performance. It seems feasible to process many millions of
samples per second within a constrained energy envelope.
However, DNN, even using a significantly more costly multi
GPU configuration, is far from achieving that performance [27].

This paper explores this path, presenting the architecture of a
feasible hardware implementation. In contrast with [19], we will

use architectural methodologies/techniques similar to those used
in commercially available products, such as general purpose
chip multiprocessors. Based on the biological properties of
axons and dendrites, we define a system that uses a logical
construct to fulfill the topological flexibility of CLA over an on-
chip network. Given the low computational requirements, by
attaching some simple logic to the routers of this network and
with some memory to store the connectivity status, it could be
possible to implement CLA without requiring complex and
power-hungry general-purpose CPUs or GPUs.

Consequently, like in biological systems, the network is the
point towards which the system gravitates. We will focus our
attention on the communication substrate and procedures to
make CLA feasible. We will describe how, using a packet-
switched network and diverse computer architecture techniques,
we can achieve a practical implementation. Different solutions
will be presented to guarantee system scalability. We will
analyze, through detailed simulation and using well-known
modeling tools, the temporal and energy requirements of the
system. The set of proposals introduced minimizes
communication overheads. The combination of all these
techniques on average reduces network delay and active energy
requirements by ~90%. Since communication seems to be the
most demanding issue, we believe that it might be feasible to
construct a highly scalable hardware-based accelerator.

2 Background and Motivation
Before getting into the proposal details, first we will provide a

brief introduction to the main concepts used by CLA and explain
how software limitations might make a hardware-specialized
implementation of the algorithm attractive. Although the
interested readers might wish to consult the details in the
bibliography provided, we hope that they can obtain an
understanding of the core components, which are surprisingly
simple and elegant.

2.1 Sparse Distributed Representation (SDR)
Empirical evidence [4][5] suggests that the neural system

represents information using sparse activity patterns. In this
representation [6], in contrast to conventional binary data
representation (also known as localist [7]), each bit has semantic
meaning. In this way, the data representation is highly resilient
to a noisy and faulty environment (as is the biological one).
Therefore, changing a few bits in the representation always
produces a value with “similar” meaning to the original. To
convert a localist representation (which can be any
multidimensional data representation), an encoder has to be
used. The encoder will expand the original data by thousands of
bits where, at a given time, only a few can be set (typically ~2%).
Note that, besides resilience, an inherent property of SDR is the
low power requirements. For example, with a perfect encoder, a
2048-bit SDR value will require up to ~280 bits in a localist
binary representation (i.e. 𝑙𝑜𝑔$ %

2048
40 *). Therefore, the SDR

will require, on average, 3.5x fewer bit activations (140 average
bit flips vs 40). Another salient property of SDR is the Union
property (to store multiple data in the same representation with
a low probability of false positive identification) [8], behaving

3

as a space-efficient probabilistic data structure that resembles
some of the properties of Bloom filters [9]. Strikingly, the basic
principle is simple: the number of combinations of a few
elements in a large set is so large1 that a low number of
coincidences enable the identification of a value with a very low
probability of error. Perhaps biology, through evolution, has
achieved a similar design. The foundation of CLA is that the
cortex uses SDR-like representations to store and retrieve
information.

2.2 Hierarchical Temporal Memory and Cortical
Learning Algorithm

Currently CLA focuses on partially replicating the
functionality of the cortical columns. Layer I is mainly used for
interconnecting near cortical columns. Layers II/III, usually
denoted as inference layer, are supposedly devoted to predicting
the state of the cortical column in the next input steps. Layer IV,
denoted sensory layer [1], handles the input signals to the
column coming from the thalamus. Layers V and VI, handle the
output from the cortical column to sub-cortical brain regions
(such as motor commands) and lower level columns in the
hierarchy (such as feedback) respectively. Inference layer
predictions are used to compose the column output, which is
forwarded to higher level cortical columns in the hierarchy. The
thalamus acts as a relay point for the inputs (via primary order
relay nuclei) or other cortical columns in the cortex (via high
order relay nuclei) [10]. To avoid storage redundancy, one of the
most accepted hypotheses is that different cortical columns are
connected hierarchically (mainly layer I/VI to layer IV of remote
columns).

In any case, the organization of this hierarchy (i.e. how the
layers in different regions interact) is not well understood in
neuroscience ([11],[12]–[14]). Therefore, the connections to
other regions are not actually considered by the CLA algorithm.
Although there is an ongoing research effort to support it in
HTM [15] (which coincidentally diverges from the classical
view of hierarchy), we have focused our attention on a single
cortical column. Even in the current state, the CLA algorithm is
enough, from a practical standpoint, to produce a useful system.
The reader should note that the purpose of the theory is not to
mimic brain functionality (at least, currently) but just to use it as
inspiration to implement an alternative prediction system for
time series.

The CLA defines the term mini-column, which is sufficient to
handle hierarchy-less prediction (see Figure 2). A proximal2
dendrite segment [16] could be connected to a subset of the bits
of the input (which will be provided by a localist-to-SDR
encoder). This restriction models the fact that the input action
potential (i.e., spikes) will be observable from a subset of the
mini-columns. The segment models the dendritic growth of the
feed-forward connection of the system. It is well known that
dendritic plasticity is responsible for the learning in the cortex
[17]. For a given input, the intersection between the active inputs

1 For example, %204840 * ≈ 10./, i.e. more than atoms in the Known Universe

(~1076-1082)
2 Note that although the name comes from the term used for dendrites close

to the soma (or cell nucleus) in pyramidal neurons (they are the most numerous

and connected synapses in the segment is determined in each
proximal dendrite segment. The size of this intersection is called
input overlap. When determined, an inhibition process will
select the top ~2% of mini-columns with the largest input
overlap. The remaining mini-columns are inhibited. The
synapses to active inputs in the winning mini-columns are
strengthened and synapses to inactive inputs weakened [18]. To
handle learning, each synapse connection is tracked with a
permanence value. If the value is above a predefined threshold,
the synapse is considered connected. At boot time, the values are
chosen randomly near the threshold value. In the CLA
terminology, this is called spatial pooling. Therefore, the Spatial
Pooler [19] is in charge of producing a stable SDR-compliant
representation of each input value [20][21][22].

The Spatial Pooler output (i.e the inhibition winners' mini-
columns) is forwarded to the component that should predict the
next input according to the current state of each mini-column and
the feed-forward input. The mini-column state is kept in Cells.
Cells will establish relationships with other cells in other mini-
columns. Such relations are tracked by synapses, grouped in
distal dendrite segments3 (see Figure 2). Building a sequence of
these Cell-to-Cell segments, it is possible to predict which mini-
columns will win the inhibition in the next input-sample.

To build this value, each cell can have three possible states:
predicted, non-predicted and active. A cell will be active if its
mini-column wins an inhibition while predicted. When the
number of synapses connected to all active cells in the current
cycle of a particular distal dendrite segment (i.e. the active cells
overlap) is above certain threshold, the owner cell enters in the
predictive state. A mini-column with a cell in the predictive state
is expected to be an inhibition winner in the next iteration.
Therefore, the set of mini-columns with at least one cell in the
predictive state is the prediction of the cortical column.

In the next input-sample, all cells correctly predicted will
perform the learning in the dendritic distal segments that
produced the prediction. The strength of the synapses of the
segment from cells active in the previous iteration is increased
and decreased in synapses from non-active cells [18]. For the
cells incorrectly predicted, i.e. in predicted state but the owner
mini-column did not win the inhibition, all the active synapses

excitatory neuron types in mammalian cortical structures), CLA does not model
the neurons at low level.

3 Although the algorithm used here follows [16], which only includes the
basal dendrites, there is an effort to extend this by differentiating the role of the
apical dendrites into developing a posterior temporal memory.

Figure 2 Graphical Summary of CLA algorithm

4

of the segment that provided the incorrect prediction will be
decreased by a small amount.

If a mini-column is a winner of the inhibition but has no cells
in the predictive state, all the cells in it burst. In one of them
(called the learning cell) new synapses to a subset of the
previously active cells will be added. This learning cell is chosen
to be the owner of the distal segment with most synapses to the
previously active distal cells. If the number of synapses is not
enough (for example, the number is below the prediction
threshold), randomly chosen new ones to other active cells will
be added. If there are no distal segments to choose, a new distal
segment will be created in the least loaded cell in the column. At
boot time, there are no distal segments in the system. Non-
learning bursting cells are used to grow the already present
synapses in the next iteration.

In summary, with every new iteration, the 2% of mini-columns
with the largest number of synapses in the proximal segment
connected to the input are used to predict the 2% of mini-
columns active in the next input sample. The next input will be
used to build, reinforce or weaken the predictions.

Since the same mini-column/s can encode the same input in
different sequences (or contexts), the cell prediction/activation
is used to disambiguate the specific context. Therefore,
multiple cells are required per mini-column. Nevertheless,
even with a low number of cells, the number of “contexts”
that the system can store for the same value is large. For
example, in a system with 2048 mini-columns with 32 cells
per mini-column, 4032 different temporal contexts can be
represented for the same value.

The CLA terminology used for this task is memory sequencing
and it is done in the Temporal Memory [16].

2.3 Encoding and Classification
To provide an SDR representation, in a practical scenario, an

encoder is needed. There are a few rules that an encoder should
obey in order to fulfill the SDR properties [8]. For a scalar
encoder:

• The SDR representation of similar scalars should have
a high number of set bits in common. Overlap should
decrease smoothly as scalars become less similar.

• The SDR representation of dissimilar scalars should
have very low overlap.

• The SDR representation for a scalar must not change
during the lifetime of the system.

These conditions are fulfilled using a really simple approach
(e.g. by constraining the range of values that can be represented)
or a rather complex one (e.g. with large memory requirements
and/or large encoding costs).

To better understand how SDR works, next we will describe a
simple, yet hardware-feasible encoding strategy. Let’s assume
we need to encode a positive integer, L, into a N-bit SDR
representation S with w active bits.

We use seed1=L div w and seed2=1+L div as seeds of a
pseudo-random generator. Let {Low} be the group composed of
the initial w unique elements generated by the first seed (where
the operation modulo N-1 has been applied). The {High} group
is generated by the second seed (with values not present in

{Low}). We choose the last w-L mod w indexes of {Low}. The
remaining L mod w bits to be set in S are chosen in order from
{High} group. A pseudocode of this encoder is presented in
Figure 3.

Note that for any L, there is n such that n·w≤L<(n+1)·w. The
idea is to generate a unique set of random numbers smaller than
N-1 for each interval. The SDR codification is obtained by using
a sliding window that chooses for each L, a group of bits to set
from its current interval and the remaining bits from the next
one. For example, if L=nw, the SDR encoding of L is the w
randomly generated numbers with seed L div w. If L=nw+1, w-
1 bits are chosen from the same set and 1 bit from the set
generated in the next interval (i.e., the one generated with seed
1+ L div w). In this way, close scalars will have a high number
of bit-sets in common. The probability of having two close
representations for two separate integers is negligible for a
sufficiently large N.
t_SDR encode(uint L) :
 randomGen.seed(L div w)
 t_SDR low
 while low.length() != w:
 int col = randomGen.random() mod (N – 1)
 if col is not in low:
 low.append(col)

 randomGen.seed(1 + L div w)
 t_SDR high;
 while high.length() != L mod w :
 int col = randomGen.random() mod (N – 1)
 if col is not in low:
 high.append(col)

 t_SDR S = merge(low [(L mod w) - 1 : w - 1] ,
 high [0 : L mod w])
 return S

Figure 3 (a) HW-Friendly SDR Encoder
Since pseudo-random generators are deterministic, this

approach does not require storing the conversion, only the logic
necessary to perform the operations. Since other non-scalar time
series can be remapped to scalars, we can consider that the
encoding problem is not a relevant issue from the point of view
of this study.

In contrast with encoding, classifiers are application dependent
components. For example, detecting anomalies in a signal is
straightforward but predicting multiple steps in the future can be
very memory intensive. An Anomaly Detector Classifier is just
a component that computes the fraction of unpredicted mini-
columns (just bit masking current input SDR with the last
prediction). Nevertheless, a Value Predictor Classifier needs a
complex memory structure to store and lookup the current SDR
prediction to determine the next “localist” input. Like in [24], an
optimal way to achieve the desired flexibility is to run the
classification problem in a general-purpose core.

2.4 Software Limitations and Hardware
Opportunities

ANN renaissance in the form of Deep-Learning [23][24] has
been motivated by the large raw computational power of state-
of-the-art heterogeneous multi-GPU/multi-CPU systems. This
has enabled the use of a consolidated theory in increasingly
challenging problems, jumping from simple pattern recognition
of handwriting [25], to enabling a machine to win in a complex
game against the best human [26]. The algorithms underlying

5

these problems are suitable for data level parallelism, where
GPGPU models excel [27].

In contrast, CLA’s inherent nature makes it difficult to exploit
such a paradigm. The synapses, although they require much
simpler computations, can change dynamically. This difficult
data level parallelism extraction will make GPGPU quite
inefficient. Currently the support for this computing model in
NuPIC is not even initiated. Perhaps, as happened with DNN in
the past, CLA might not be able to take full advantage of the
current and forthcoming hardware advancement, which might
constrain the potential of the idea.

A CLA custom hardware accelerator will not only overcome
these limitations by breaking the performance/energy barriers
imposed by general purpose CPUs but will also take advantage
of CLA’s simple computations and low storage requirements.
An insight into this advantage is that the core of most Machine
Learning approaches is floating-point (matrix) multiplication
and CLA only requires low precision integer
addition/comparison. For example, according to [28], 32b FP
multiplications will require 100 times more energy than to add
two 8b integers. Similarly, being able to use only on-chip
memory will reduce the memory access energy by two orders of
magnitude.

Today ASIC-based DNN, such as [29][30][31][32], is
appealing if the data and precision required fits the resources and
the algorithm is well defined. In CLA this might be quite
different because of its distinctive properties (i.e., there is no
problem-specific customization, low memory requirements, low
precision computing). Then, a hardware implementation of CLA
may be more general purpose than a DNN one.

A CLA based ASIC might be useful in future applications. For
example, it might be feasible to use thousands of streams of data
concurrently and, using unsupervised learning, to detect
anomalies. It is not easy to forecast the potential openings, but if
we are able to perform fast CLA Natural Language Processing
(NLP), such as [15], it could be possible to tackle challenging
problems.

Finally, to really explore the full potential of the hierarchical
organization and propose and validate theories about the
underlying and unknown working mechanisms of the cortex, a
hardware implementation would be useful. Under these
circumstances, it is interesting to explore the feasibility of a
silicon-based implementation, as this paper does. Next, we will

introduce the architectural details of a potential implementation
that we have called CLAASIC.

3 About the Feasability of CLAASIC
CLA’s basic assumption is that synaptic plasticity is the key

element used by the cortex to learn (through dendritic growth
[34] as a consequence of the back propagation of post-synaptic
action potential [17]). The relation between mini-columns is
used to store and retrieve information. Such relation is defined
dynamically depending on the connections established via on-
line learning. Therefore, the storage capacity is proportional to
the product of the number of mini-columns by the maximum
number of connections per mini-column. The connectivity of the
neurons can potentially be very high (the dendritic spines can
provide up to tens of thousands of potential synapses).
Nevertheless, most of these synapses are not active (i.e., the pre-
synaptic axon is too distant from the dendrite) or multiple active
synapses correspond to the same pair of neurons (hypothetically
as a redundancy mechanism). Instead of electrically replicating
the morphology of biological systems, which perhaps is
unattainable, we will embed this functionality in a packet-
switched network. We will focus our interest on how to organize
and optimize the communication substrate to emulate axon
spikes and correctly apply the prediction and learning algorithms
of CLA. Instead of using synapses to establish a connection
between two mini-columns, we will use memory structures
attached to each router, modeling dendritic segments and the
required logic performing the spatial pooling and providing
temporal memory. Figure 4 (a) presents a high-level description
of the proposed architecture. The encoder and the classifier will
play the role of I/O interface with the general-purpose processor.
We will implement the actual CLA mechanics in a component
called the Columnar Core (CC). In this example, we will use a
sixteen-core system connected by a packet-switched mesh
network. Figure 4 (b) shows a high-level representation of a CC.
In this case, we will assume that each CC is homogeneous. Next,
we will briefly discuss the requirements of each component to
later focus our attention on the most relevant one: the
communication substrate.

3.1 Communication Requirements
The interconnection network must handle all the traffic

generated by the CLA algorithm. The traffic has four classes: (1)
input traffic incoming through the Encoder, (2) inhibition traffic,

Figure 4 (a) The Columnar Cortex, (b) High-level description of a Columnar Core (CC)

6

(3) lateral activity due to cell activations and (4) mini-column
activation and predictions sent to the classifier. This activity will
be done at logical level using packets instead of physical wires.
For example, each output bit of the Encoder will be connected
to a statically defined set of columns (denoted receptive field).
Then, for a given input, each active bit in the SDR representation
will be transformed into a multicast packet, addressed to the
potentially connected mini-columns. The Encoder will need a
table with the relation between columns and inputs. Therefore, a
multicast packet will emulate each axon spike. Similarly, when
a mini-column enters in the predictive state, a unicast packet will
be sent to the classifier.

Internally the router will receive messages from the spatial
pooling logic (input overlap used in inhibition) and the temporal
memory logic (cell activation). Those messages should be sent
to the potential receptors. To maximize system performance, all
mini-columns can be potential receptors. For example, for global
inhibition, any mini-column should be aware of the input overlap
of the rest of the mini-columns. The overlap is computed as the
count of connected synapses in the proximal segment of the
mini-column for a given input. With this information, the
pooling logic can determine whether the current mini-column is
among the 2% with highest overlap and can feed-forward the
temporal memory logic. Similarly, to construct distal segments,
the algorithm assumes that each mini-column is aware of all the
cells in the active state. Consequently, any outgoing message
from the spatial pooler or temporal memory will be broadcast to
all the Columnar Cores in the system.

At first sight, the communication requirements seem
demanding. There is a large amount of multicast/broadcast
traffic that will require broad network bandwidth and large
energy consumption. Additionally, any of the computations
performed in the computing layer must be done accessing only
local information. Since we cannot rely on any centralized
component to scale the system to thousands of CCs, it is not
evident how to achieve such synchronized behavior under
realistic constraints.

3.2 Computing Requirements
There are two stages in the CLA algorithm that must be applied

sequentially:
Spatial Pooler. The logic in charge will evaluate the input

activity. The computing logic will evaluate the input overlap
with its proximal segment (i.e. the number of synapses
connected to an active input) and broadcast its value (assuming
global inhibition) to the rest of columns in the system.

Inhibition logic might be quite straightforward (assuming
global inhibition). Therefore, in each mini-column, we only need
a counter to record the remote mini-columns with the largest
overlap. If at a certain point this counter is greater than 2% (i.e.
40 for a 2048 mini-column system), the mini-column will self-
inhibit for the current iteration, ignoring the remaining traffic.
To break ties, additionally to the input overlap, each mini-
column will include its ID in the inhibition packet. This k-
winners-take-all inhibition is assisted by the network
mechanisms (fundamentally, in-network replication and
synchronized drain) to not only accelerate the task but also to
convey and compare the incoming inhibition message overlap,

counter increment (if overlap is greater than local), and
comparison if the counter is above the desired sparsity.

The synapses in the proximal segment table of the active inputs
will be adapted if the mini-column wins the inhibition.
Therefore, the spatial logic will require a comparator, a 4-bit
adder and a counter. The maximum overlap required is
~Log2Input bits. For a 2048 input encoder, 12 bits will suffice.

Note that although mini-column boosting might be required to
achieve a balanced mini-column activation pattern [34],
according to [20], it is not cost effective to do so in resource-
constrained environments like an ASIC.

Temporal Memory. The module should handle feed-forward
and cell activity. If we assume that the axon of the cells is global
(i.e. we can form relationships between cells in any mini-
column), a broadcast will be generated when a cell is active. The
corresponding packets will include the origin cell. At
destination, these will be kept in a list of current activations.
Once the current iteration completes, the computing logic will
determine for each mini-column whether the activation was
correctly predicted. In this case, the corresponding distal
segment of the cell in the predictive state will be updated
accordingly (i.e. performing dendrite adaptation according to
[18]). If the mini-column insn’t correctly predicted, the logic
should grow new synapses in the distal segment with higher
overlap with the previously active cells (or create a new one if
there aren’t any). From a naive perspective, this can be difficult
since it requires an extensive search through all the dendritic
segments of the mini-column.

The temporal memory should determine for the current
activations which dendritic segments in the mini-column are
active. The (temporal) cells with an active dendritic segment will
generate a broadcast/multicast in the network. Finally, the mini-
columns that are not predicted correctly will produce a burst,
which from the network perspective is equivalent to an
activation.

3.3 Memory Requirements
The precision required by the algorithm is low. In a practical

problem such as [35], there is no appreciable performance loss
(<1%) when tracking the synapse permanence from full 64b FP
precision to 4-bit integers. The reason for this is that there is low
sensitivity to learning rates. In this application Temporal
Memory uses steps of 0.1 (with permanence between 0 and 1).
The spatial pooler uses smaller values (0.08 for learning and
0.003 for forgetting), which can be modeled with 8-16 levels
stochastically controlled. This is biologically plausible, since in-
cortex dendrite growing/shrinking is a stochastic process [33].

The proximal segments will store the permanence of the
synapses with each potentially connected input bit. Note that
each bit of the SDR representation produced by the encoder is
potentially connected (i.e. a synapse might be formed) to the
chosen subset of mini-columns at boot time. In general, we can
assume that each bit can be connected to any mini-column in the
system. Therefore, the proximal segment must have one entry
for each potential input. In practice, each mini-column will be
connected (i.e. a synapse will be formed) to a subset of encoder
inputs. Thus, we might structure the proximal segment as a
conventional cache indexed by the input index. In practice,

7

having capacity for 64-128 entries in a 2K mini-column system
seems to be enough. The permanence value must be stored
there. Reduced precision weights in DNN have a much more
adverse effects on system performance [31][32]. For example, if
we assume a 2K mini-column system with 1K inputs, the
aggregation of all cortex proximal segments will require
(including tags) between 0.25MB and 0.5MB. However, issues
such as conflicts must be considered. The random nature of the
SDR encoding implies low address locality.

In a naïve approach, each distal segment will require as many
synapses as mini-columns in the system and each cell might have
an unbounded number of segments. In practice, for a 2K mini-
column system, having 128 segments with 40 synapses per cell
provides similar results to an unbounded system [16].
Therefore, excluding tags, ~80KB will be required for 4-bit
precision per mini-column, i.e. 160MB for the whole system.
This amount seems feasible to achieve in on-chip SRAM
memory storage such as is used here. Although orthogonal to
this work, note that this is a raw amount that can be greatly
reduced using the appropiate techniques. Exploiting CLA’s
noteworthy fault resilience (>50% rate of faulty cells can be
tolerated [16]), it could be possible to reduce the final storage
requirements significantly.

3.4 About the Temporal Cost of the Computing Phase
A key insight is that the learning (the most complex part of the

algorithm) is outside the critical path. Since prediction only
requires comparisons and counter increments, it is reasonable to
assume that the time required to perform the prediction will be
memory bounded. Since the memory required per mini-column
is quite small, with the proper SRAM configuration, it could be
possible to use a pipeline with a sustained throughput of one
packet served per cycle.

The learning algorithm, especially distal segment formation, is
more complex. Nevertheless, assuming a uniform distribution of
mini-column activation, learning on one mini-column will be
done with sparse frequency, i.e. only ~2% of the iterations.
Therefore, in the best case, the time budget for the learning is 50
times larger than the prediction. Since (See section 4.3)
computation can be fully overlapped with the communication
phase, the time available for prediction is equal to the time
available to perform the communication. Since learning in CLA
resembles [18], forgetting is only performed on inhibition
winner mini-columns. This is different from conventional STDP
learning rules, which require the decrease of all non-winning
synapses connected to the input [36].

Although the logic in charge of this is not analyzed in this
work, it is reasonable to consider it is not relevant from the
hardware perspective (both in time and area). In contrast with
other works such as [37][38], fully optimization for CLA will
not necessary require complex operation support. In §6.4, we
will discuss how a non-uniform mini-column activation pattern
might affect this using a realistic workload.

4 Communication in the Columnar Cortex
We have identified three major problems in the CC:

communication and synchronization, temporal memory logic
complexity and distal segment organization. From a scalability

standpoint, the most relevant seems to be the former, since the
necessary scalability appears to be a key element in the cortex.
Next, we will discuss the key issues for the communication
substrate and how we propose to deal with them.

4.1 Network Characteristics
Since all the spikes will be modeled as multicast packets, to

optimize performance, the router requires multicast support (i.e,
in-network replication). This feature can be included with
minimal impact using a router similar to [39]. In-network
replication will also reduce energy requirements, since the
copying of the packet is performed through the path to
destination. Finally, it will achieve a low base latency, since
there is no injection serialization.

 The packet size required is quite small. Inhibition traffic will
require overlap and tie-breaker ID (Log2NumColumns
+Log2NumEncoderActiveInputs). Lateral activity will require
the source mini-column and cell ID
(Log2NumColumns+Log2NumTemporalCells). Input activity
will require source ID (Log2NumInputs). For a 2048
column/input system, with 32 cells per mini-column, the size
required will be 22, 16 and 11 bits respectively. Although, these
sizes are much smaller than in a conventional CMP (where in
most cases, the packets are around tens of bytes), the cortex
organization or further enhancement (such as Section 4.5) might
require adjusting the bandwidth availability (i.e., link width).

Since the individual latency of a packet is not critical, a low-
degree network with narrow links might satisfy the
requirements. High-degree networks would require increasing
the complexity of the routers and the wiring cost. Therefore, 2-
D Torus or Mesh [40] will meet these requirements. Although
not explored here, like in biological systems, CLA gracefully
tolerates faulty/noisy input or internal system degradation
[16][41]. Therefore, it will also tolerate a faulty network. With a
fault tolerant network such as [42], it could be possible to scale
up the system size without yield issues even using wafer-to-
wafer-on-wafer 3D integration under aggressive technological
nodes, as [38] suggests.

4.2 Distributed Synchronization
Looking at the algorithm, there are four main phases:

computing overlap of the proximal dendrite with the current
encoded input, determining the winning mini-columns in the
system, determining the lateral activity in each cell in the mini-
column and producing the prediction. Overlapped with these
phases, the adaptation (i.e. learning) of the synaptic segments is
performed.

The main difficulty of performing such tasks in a fully
distributed way is to know when each one should be performed.
For example, input overlap should not be run until all the input
activity is received (i.e., each mini-column has received all input
packets). There will be no acknowledgment message of axon
spike reception. Therefore, each CC should be aware when to
run the corresponding part of the algorithm. Similarly, inhibition
cannot be activated until each mini-column is aware whether it
is one of the most active ones. Finally, prediction cannot be done
until all active cells are known. The simplest, yet most efficient,
way to circumvent this problem is to drain the network content

8

before progressing to the next phase. If the network is empty,
there is a guarantee that all the influencing packets will already
have arrived at their destination.

Figure 5 details all the stages required for the CLA algorithm.
Besides encoding and classifying, there are nine stages, three of
them perform computation in the spatial and temporal logic (S3,
S6 and S9), three correspond to the axon spikes (S1, S4 and S7)
and another three are required to drain the network (S2, S5 and
S8).

The problem of synchronization is then reduced to providing a
scalable network drain mechanism. To guarantee the scalability
of such a mechanism, we need a cost-efficient way to do so
within the network itself. A simple approach is to use
dimensional order routing (DOR) [40] and inject a special
broadcast packet, denoted broom packet, into the extreme
Columnar Cores from the smallest and largest ID (in the example
in Figure 4, these should be CC0 and CC15). These packets will
be allowed to progress to the next routers only if the local router
has no more packets in the injection queue and the transit buffers
at the ports where the router has received the copies of the packet
are empty. The packet is replicated through the remaining ports.
For example, when CC5 receives the CC0 broom packet from
CC4 and CC1, we know that there are no normal spike packets
that might affect the columns handled by CC5. When the transit

4 This could be a system-status dependent number of clock cycles depending

on the computing logic and the network characteristics.

queues from W and N are empty, the router replicates the CC0
broom packet through the S and E ports. This operation will be
applied in the whole cortex until the columnar core CC15
receives the broom packet from CC0. At this point, CC15 is aware
that there are no packets in the network. Then, it can progress to
the next stage in the algorithm. Similarly, when an intermediate
CC receives all the broom packets from CC0 and CC15, it knows
that there are no pending packets in the network for it. It should
be remarked that this mechanism operates in a fully distributed
way and will scale according to the network’s available
bandwidth.

We hypothesize that in biological systems, this drain is not
required because the input rate of change is slow enough to
guarantee that the spatial and temporal memory are handled
satisfactorily. When the input rate is too high, the system will be
unable to learn or predict. As a naïve example, an excessively
fast image rate of change will be perceived by the visual cortex
as noise. Although a similar solution can be applied in our case,
we think that encoder and data are not evolutionarily tuned like
in biological systems and perhaps will require an excessively
long worst-case delay to work correctly in corner cases.

4.3 Pipelined Algorithm: Communication and
Computation Overlap

The nine stages in the algorithm will require a substantial
amount of time and energy. Specifically, the network seems to
play a fundamental role, since it is foreseeable that the time
required to propagate the axon spikes will be large.
Nevertheless, if we look at Figure 5, we can identify stages like
in a general-purpose processor.

Therefore, we can use the same optimization techniques used
there. We can pipeline the algorithm reducing the stages per
input sample to three. Figure 6.(a) shows how that organization
will be beneficial once the pipeline is loaded. The idea is to start
computing the overlap of the next input in the sequence as soon
as we know the current overlap. Then at t34, two operations are
being performed simultaneously in the network. If we move
forward in time, we can see how we can overlap three different
input operations in a single stage. At t6 the information
interchange corresponding to the activation of cells for the first
value, the inhibition for the second value and the input SDR of
the third value are being processed by the network. At t8 we are
simultaneously performing the prediction for the first iteration,
the lateral activity computation for the second one and the
overlay computation for the last one. Even more importantly, we

Figure 5 Stages in CLA Algorithm

Figure 6 (a) CLA pipelined algorithm, (b) Overlapping communication
and computation

Encoder
Proximal
Comm

Network
Drain

Overlap
Comput.

Inhibition
Comm

Network
Drain

Distal
Comm

Network
Drain

Prediction
Output
Write

Classifier
Lateral

Act.

Spatial Pooling

Temporal Memory

S1(PN) S2(ND1) S3(OC) S4(IN) S5(ND2) S6(LC) S7(DN) S8(ND3) S9(PC)

PN Pc ND2 ND1 ND3 IN DN Oc Lc

PN Pc ND2 ND1 ND3 IN DN Oc Lc

PN Pc ND2 ND1 ND3 IN DN Oc Lc

t 0 t1 t2 t3 t4 t5 t6 t7 t8 …. Time

In

pu
t S

eq
ue

nc
e

PN Pc ND2 ND1 ND3 IN DN Oc Lc

In

pu
t S

eq
ue

nc
e

Lc/DN Oc/IN ND2 ND3 ND1 Pc/PN

Lc/DN Oc/IN ND2 ND3 ND1 Pc/PN

Lc/DN Oc/IN ND2 ND3 ND1 Pc/PN

Lc/DN Oc/IN ND2 ND3 ND1 Pc/PN

9

will need only one network drain per input iteration. Once the
pipeline is loaded, we need only three iteration s in the input
sequence to produce a prediction.

This approach creates the opportunity for further
improvements. We do not need to finish the computation phases
before starting to send the outcome of each one (i.e. we can fully
overlap the computation and communication phases). As soon
as spatial and temporal logic starts to generate axon spikes, they
can be injected into the network, as Figure 6(b) shows.
Therefore, the number of clock cycles required to process a
value in the input sequence will be determined by the slowest
portion: communication or computation. The number of cycles
required by the slowest one and the clock cycle will determine
the time required to process one sample in the input sequence.
Finally, network drain should be synchronized across iterations:
broom packets are forwarded in the CC router both if there are
no packets in the injection queue and transit buffers and if all the
local columns have finalized the current iteration (in the spatial
and temporal logic). Therefore, network drain operates as a
synchronization barrier.

4.4 Traffic Aggregation: Coalescing Injectors
To minimize communication cost, combining multiple mini-

columns in a single CC is an effective solution. To use links
between routers with a very short distance can unnecessarily
increase the average latency in the network. To reduce this delay,
the size of the CC (i.e. number of columns) should be tuned to
match the propagation delay with the network clock cycle. This
is well known for a Non-Uniform Cache architecture [43]. With
this approach, it could be possible to aggregate action potentials
coming from multiple mini-columns in the same CC in a single
packet. Although this might increase the number of flits of the
packet, it will reduce the network load.

Finally, the pipelined algorithm creates the opportunity for
additional traffic aggregation. We can combine actions coming
from different stages in the algorithm in a single packet. For
example, inhibition can be combined with the lateral activations
of the previous iteration. To do so, we assume the existence of
coalescent injection queues (similar to the structure used to
support non-blocking caches in general-purpose processors).
Before queuing new packets in the injection buffer of the router,
the packets waiting to be injected are checked. If there is a match
in the destination mask, the previous packet is modified
appending the information about the new one and then
discarding it.

4.5 Scaling Traffic: Scale-out Zones
Biological systems would lead us to believe that the best

approach to increase system storage is to increase the number of
mini-columns and not the number of cells (and distal segments)
per mini-column. From a practical perspective, if we increase the
number of mini-columns, we might reduce the number of distal
dendritic segments required per cell. Although from a software
perspective this does not seem interesting, from the hardware

5 Due to requiring the computation of the average distance between all

connected synapses and their respective mini-columns in the input and the SP to
update the inhibition radius, performance drops by more than 20x.

standpoint, it is relevant because it might reduce the
interconnection cost and perhaps the complexity of the CC.
Therefore, in a hypothetical silicon implementation it would be
desirable to increase the number of columns as much as the
technology allows, i.e. depending on the yield and/or power
envelope. Unfortunately, the communication system, as
described at this point, might not scale up beyond a limited point.

Distal and inhibition traffic are assumed to be global by the
CLA (although inhibition might be local, this is rarely used
because the performance falls significantly5 and a loss of
accuracy is incurred [20]). From the network perspective, the
delay and power requirements will be increased significantly as
we increase the number of CCs. Note, that the number of
columns involved in the inhibition process is substantially higher
than the number of inputs active in the encoder.

Biological systems do not use global communication in such
processes. Inhibition, which is performed by inhibitory
interneurons [44], should have a localized and static radius.
Similarly, distal activity is constrained to the shape of distal
dendrites and axons of pyramidal neurons [45]. Proximal traffic
is less demanding because the CLA algorithm assumes that
potential proximal synapses are limited. At boot time, each mini-
column can potentially be connected to a subset of inputs, called
the receptive field [46] of the column. Usually the receptive field
of each mini-column is a subset of the input bits following a
topological arrangement. This improves the accuracy of the
system. Coincidentally, it reduces proximal traffic relevance,
since the destinations in the multicast packet will be localized in
the same region of the cortex.

To circumvent the global communication problem, we propose
a simple approach that is based on splitting the network into
separate zones and restricting the inhibition and distal traffic
within them. We denote these regions as scale-out zones. For
example, Figure 7 shows those zones used to increase the
number of CCs from 16 to 64. Instead of requiring broadcasts,
the traffic generated by columns in any of these zones will be
restricted to them. If we need to further increase the number of
mini-columns, we can simply increase the number of zones.
With this simple approach, traffic will be kept constant.

The encoder, i.e. proximal traffic, selects the potentially
connected columns without making distinctions between zones,

Figure 7 Scale-out zones Example

Cl
as

sif
ie

r

En
co

de
r

10

i.e. the receptive fields are kept constant. The approach we
propose is to use as many consecutive values in the encoded
input sequence as the number of scale-out zones. In this
example, we will use 4 encoders to simultaneously encode four
different iterations from the input sequence. Thus, we not only
increase the throughput of the system but also the load on each
individual mini-column, since a whole representation is
scattered throughout the whole system. Additionally, increasing
the number of zones will keep the total proximal traffic constant
(since receptive field size is kept constant).

In an n-zone system, each mini-column only sees an n-th part
of the input data. Therefore, each CC will require an n-th part of
memory requirements, improving the system scalability. Access
times are faster and the time available to accommodate the
computation (during the communication phase) is n-times
greater, which might allow slower but denser memory
technology to be used.

5 Evaluation Methodology
5.1 Tools and Benchmarks

We have developed an integrated simulator, CortexSim[47],
which simulates the previously depicted mechanisms.
CortexSim is influenced and verified compared to the NuPIC
white paper implementation (but with mini-column boost) of the
CLA algorithm using the Numenta Anomaly Benchmark (NAB)
[35]. The simulator is connected to a network simulator, Topaz
[48], in order to obtain precise network timing results and
DSENT[49] and CACTI[43] to estimate area and energy
requirements. The data sets used in this evaluation are both
synthetic and real. We use synthetic data to simplify
architectural comparisons and realistic data to provide a notion
of the benefits of the accelerator in a practical scenario.

The real data is provided by NAB. The NAB corpus of 58 time
series data files, composed of ~350,000 samples, is designed to
provide data for research in streaming anomaly detection
algorithms. It is comprised of both real-world and artificial time
series data containing labeled anomalous periods of behavior.
Most data come from real-world scenarios from a variety of
sources such as Amazon Web Services metrics, Twitter volume,
advertisement clicking metrics, traffic data, and more. The data
includes anomalies that are annotated by human reviewers,
following a strict procedure. This data is processed using many
anomaly detection mechanisms and serves to compare with CLA
in this specific task. Each data set has a probationary period
(~10%), during which the detector’s anomaly detections are
ignored. Note that in each time series the detector its reset.
Although the data diversity is quite high, the parameters of the
cortex are constant in all experiments. Under these conditions,
NuPIC can reach 65% successful anomaly detection whereas
other state-of-the-art approaches are 20% behind.

For the synthetic workload, we will use periodic series of 32-
bit integer data generated from randomly defined polynomials
(up to fourth degree with randomly chosen coefficients). A
limited number of points from each one is defined for twenty
values of x, defining a temporal set. We will repeat each
temporal set until it is learned by the system. We consider that
the time series is learned when the number of elements in the

sequence with all the active mini-columns correctly predicted
(i.e. no mini-column bursts) is equal to half of all the data points.
The rationale of this is to keep half of the time for learning new
sequences and half of the time for predicting them. Therefore,
half of the iterations will produce the extra traffic of mini-
column bursting or low overlap inhibition that a new input
sequence appearance will generate. The second half of the time,
the system will have a stable representation of the input, which
is less demanding for the network. The number of temporal
series (i.e. polynomials) used to fulfill strict 98% confidence
intervals is around ~50.

In both cases, the classifier we will use is an anomaly score
estimator.

5.2 System Configuration
With regard to the CLA configuration, we mimic the one used

by [35]: 45x45 mini-column system with 32 cells per mini-
column (with up to 128 distal segments), with global inhibition,
a 2045-bit SDR encoder with a diameter in the receptive field of
32. In contrast to [35], we use a new SDR encoder, succinctly
introduced in section 1.3. This encoder improves NAB anomaly
detection by 1-2% compared to the one employed in [35],
denoted as Random Distributed Scalar Encoder (RDSE). The
encoder, in synthetic workload, has full integer precision. In
NAB we limit it to up to 130 levels of quantification (as RDSE
does in [35]). All CLA parameters are kept constant throughout
the evaluation.

With regard to the network, we employ a 2D Torus topology
with a conventional router with deterministic DOR, using bubble
flow control [50] as a deadlock avoidance mechanism (single
buffer of 160 bytes per port, no virtual channels), 4-cycle
pipeline. We assume that the link wires use low-swing links and
require a clock cycle to travel from router to router. The clock
cycle, conservatively, is set to 1 ns. We use dimension-order
replication for multicast deadlock avoidance [39]. The network
drain mechanism depicted in Section 4.2 has the routing logic
embedded.

6 Performance Results
6.1 Synthetic Benchmark

Figure 8 shows the number of clock cycles required for each
input sample, for 11x11, 16x16 and 23x23 tori. (i.e. different
numbers of mini-columns per CC). As can be appreciated, for a
plain approach (sequential) there is little effect on the network
size, i.e. network contention dominates. This is due to the high
load that the network supports. Adding more nodes increases the
raw bandwidth, which in the case of 23x23, allows the time
required to process an input to be reduced slightly. When we add
coalescing injectors, the delay is reduced by four times, because
the inhibition traffic cannot use the links efficiently. The
contention reduction allows this improvement. Adding
pipelining opens up the opportunity for further traffic reduction,
although limited packet size (80bytes) allows limited
aggregation. Nevertheless, the true advantage of pipelining is
that computation can be fully overlapped with communication,
i.e. we might actually need only around 500 cycles to fully
process an input sample.

11

Since the number of accesses per mini-column is
approximately 80 (40 for proximal traffic and 40 for distal
traffic), computing might need ~1300 cycles in 11x11, ~640 in
16x16 and ~300 cycles in 23x23. It seems that the most suitable
network for this configuration is the 16x16 system.

 The reduction in contention of these techniques creates the
opportunity to reduce the cost of the network by narrowing the
link widths. Figure 9 provides the results of this change.

To improve these figures, the out-scaling zones might be
useful. Figure 10 suggests that moving from 1 zone to 4 zones,
can significantly reduce the communication cost. It could be
possible to process an input sample in ~200 network cycles. This
is because the inhibition and distal traffic only has to reach a
quarter of the network. Each mini-column on average will
perceive a quarter of the remote spikes, therefore the CC will
need a quarter of the memory accesses in order to perform the
prediction. Consequently, it seems feasible, using a 16x16
system, to achieve ~160cycles.
Figure 11 shows the total power (both active, and leakage)
required by the network. In the out-scaled configurations the
power is ~250mW for 16x16.

6.2 Realistic Benchmarks
Figure 12 to Figure 15 show how the system will perform with

the anomaly detection benchmark. The corpus of the benchmark
is composed of different families of data, grouped and tagged on
the x-axis. The error bars represent the variability of the
performance metric within each family. According to Figure 9,
a 16x16 with 16B-wide links is the most interesting. This
configuration is also the best performer when four out-scaling
zones are used. Under this configuration the latency processing
each data set is ~500 cycles and just ~300 when out-scaling is
used. This means that the 350,000 data of the whole benchmark
can be ingested by the accelerator in just 0.175-0.1 seconds. The
average power required by the whole system, under these
working conditions, will be between 1.2Watts and 350mWatts.

The latest NuPIC implementation in a 2-socket server based
on Intel Xeon E5640 running at 2.4Ghz with 60GB of memory
requires ~3000 seconds to run the detection phase in a single
core and requires approximately 170Watts. Running in 24
hardware threads, it takes 234 seconds and 450Watts. If we take
into account the time and power consumed by the accelerator,
CLAASIC is between 3·104 and 1.8·104 times faster. In terms of
energy, the efficiency with respect to a single core is between
1.5·108 for the single thread execution (versus the more efficient
configuration) and 3.4·106 for the 24-thread one (versus the less
efficient configuration).

Out-scale improvement in speed and efficiency comes at the
cost of accuracy. In practice, the average anomaly detection rate
falls 9% compared to the standard configuration. Note that none
of the remaining parameters of the CLA are changed when out-
scaling is used.

Figure 8 Network clock cycles per input sample for different 2-

D square mesh sizes with different algorithm optimizations
(16-byte links)

 Figure 9 Number of clock cycles per input sample for
different 2-D square mesh sizes using pipelining and

coalescing injectors with different link widths

Figure 10 Network clock cycles required to process an input

sample with 4 out-scaling zones compared with no out-
scaling with 8 to 16-byte links

 Figure 11 Power required processing an input sample with

four out-scaling zones compared with no out-scaling with 8 to
16-byte links

12

6.3 Approximate Power and Area
Although the memory implementation has not been detailed in

this work, a rough approximation using a CACTI model for a
256-bank 160MB SRAM (power results have been used in the
previous section) was carried out. According to the CACTI and
DSENT models, a 16x16 system will require ~43mm2
(0.154mm2 per memory and 0.014 per router). Therefore, it
seems feasible to scale up the system size without much trouble.

Both energy and power cost can be considered as a worst-case
value. On the one hand, the most memory intensive snoops
(which correspond to the distal traffic) can be filtered out. On
the other hand, CLA fault resilience [16] could be taken into
account to minimize the total memory required. In contrast with
other approaches, such as [32], we did not need to reduce the
number of synapses compared to the software counterpart.

6.4 Constrained Learning Effects on Realistic
Benchmarks

Previously, in §3.4, we discussed how in a best-case scenario
the learning of a particular mini-column will be 2% of the time.
In the case of NAB, the budget time ranges from 10.000 to
30.000 clock cycles. Nevertheless, in this realistic scenario, the

activation frequency of the mini-columns is not perfectly
homogeneous. To quantify this, in terms of accuracy, we run the
simulation imposing a hard date line of x10 in the column-update
(i.e. the same mini-column can be updated only in 1 of each 10
input iterations). Therefore, it is not possible to update any
dendritic segment with higher frequency (learning is just
skipped). The change in the system accuracy as a consequence
of this restriction is negligible (<0.1% of changes in anomaly
detection in all NAB data sets). Even in this case, still we have a
budget of time from 1000 to 3000 clock cycles to perform the
learning. With such a relaxed constraint the required hardware
can be highly optimized, its cost being negligible in a
hypothetical complete design. The only consequence of
constraining learning frequency is that the system learns more
slowly (which is unnoticed in this application for the time budget
set)..

7 Conclusions & Future Direction
This exploratory journey provides a suitable design proposal

for a cortex-inspired hardware accelerator. A priori, the solutions
presented enable the biggest challenge to be dealt with, namely

Figure 12 Network clock cycles per input epoch with each NAB data

set for a 16x16 CC Configuration with 16-byte wide links, varying
optimizations

 Figure 13 Average Network clock cycles for NAB with different

system sizes and network bandwidths

Figure 14 Network clock cycles per input epoch with each NAB data
set for a 16x16 CC configuration with and without out-scaling zones

Figure 15 Full chip power requirements with each NAB data set for

a 16x16 CC configuration with and without out-scaling zones

13

the communication substrate. From the evidence gathered, from
an engineering standpoint, this is not a problematic issue.

The next steps should address the implementation of learning
logic and the dendrite segments. Additionally, the use of other
practical problems for the CLA as well as anomaly detection will
be considered. Specifically, value prediction might be
interesting. For example, combining CLAASIC with a
conventional von-Neumann core; we could carry out the
classifier task in the regular core, while the CLA algorithm can
be executed in the accelerator with a much higher efficiency and
speed.

Since CLAASIC multichip organizations are feasible, the
proposal is suitable for hypothetical hierarchical organization.
Note that inter-region connectivity will be much sparser [51] so
it seems practical to fit these communication requirements
within the constrained bandwidth of I/O. The fault tolerance
resilience of CLA and its low energy requirements, lead us to
think that using emerging technologies, such as 3D stacking and
non-volatile memories, will be achievable. Consequently, in our
view, HTM/CLA might reach biological-level raw capabilities
using hardware such as that proposed in this work.

Acknowledgments
This work was supported in part by the Spanish Government

(Ministerio de Ciencia, Innovación y Universidades) under
Grant TIN2016- 80512-R.

8 References
[1] D. P. Buxhoeveden, “The minicolumn hypothesis in neuroscience,” Brain, vol. 125, no. 5, pp. 935–

951, May 2002.
[2] D. C. VanEssen and H. a Drury, “Structural and functional analyses of human cerebral cortex using a

surface-based atlas,” J. Neurosci., vol. 17, no. 18, pp. 7079–7102, 1997.
[3] V. B. Mountcastle, “The columnar organization of the neocortex,” Brain, vol. 120. pp. 701–722, 1997.
[4] B. A. Olshausen and D. J. Field, “Sparse coding of sensory inputs,” Current Opinion in Neurobiology,

vol. 14. pp. 481–487, 2004.
[5] J. T. Wixted et al., “Sparse and distributed coding of episodic memory in neurons of the human

hippocampus.,” Proc. Natl. Acad. Sci. U. S. A., vol. 111, no. 26, pp. 9621–6, Jul. 2014.
[6] I. Theophilou, N. N. Lathiotakis, M. A. L. Marques, and N. Helbig, “Generalized Pauli constraints in

reduced density matrix functional theory,” Mar. 2015.
[7] G. J. Rinkus, “Sparsey: event recognition via deep hierarchical sparse distributed codes,” Front.

Comput. Neurosci., vol. 8, Dec. 2014.
[8] S. Ahmad and J. Hawkins, “Properties of Sparse Distributed Representations and their Application to

Hierarchical Temporal Memory,” Mar. 2015.
[9] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Commun. ACM, vol. 13,

no. 7, pp. 422–426, Jul. 1970.
[10] F. Clascá, P. Rubio-Garrido, and D. Jabaudon, “Unveiling the diversity of thalamocortical neuron

subtypes,” Eur. J. Neurosci., vol. 35, no. 10, pp. 1524–1532, 2012.
[11] C. T. Anderson, P. L. Sheets, T. Kiritani, and G. M. G. Shepherd, “Sublayer-specific microcircuits of

corticospinal and corticostriatal neurons in motor cortex.,” Nat. Neurosci., vol. 13, no. 6, pp.
739–44, Jun. 2010.

[12] F. Briggs, “Organizing principles of cortical layer 6.,” Front. Neural Circuits, vol. 4, p. 3, Jan. 2010.
[13] A. M. Thomson, “Neocortical layer 6, a review.,” Front. Neuroanat., vol. 4, no. March, p. 13, Jan.

2010.
[14] M. Vélez-Fort et al., “The Stimulus Selectivity and Connectivity of Layer Six Principal Cells Reveals

Cortical Microcircuits Underlying Visual Processing,” Neuron, vol. 83, no. 6, pp. 1431–43,
Aug. 2014.

[15] M. Lewis, S. Purdy, S. Ahmad, and J. Hawkins, “Locations in the Neocortex: A Theory of
Sensorimotor Object Recognition Using Cortical Grid Cells,” Front. Neural Circuits, vol. 13,
no. 3, 2019.

[16] J. Hawkins and S. Ahmad, “Why Neurons Have Thousands of Synapses, a Theory of Sequence
Memory in Neocortex,” Front. Neural Circuits, vol. 10, p. arXiv:1511.00083 [q-bio.NC], Mar.
2016.

[17] C. Grienberger, X. Chen, and A. Konnerth, “Dendritic function in vivo,” Trends Neurosci., vol. 38,

no. 1, pp. 45–54, Nov. 2014.
[18] S. El-Boustani et al., “Locally Coordinated Cell-wide Synaptic Plasticity of Visual Cortex Neurons in

vivo,” Science (80-.)., vol. In Press, no. June, pp. 1349–1354, 2018.
[19] Y. Cui, S. Ahmad, and J. Hawkins, “The HTM Spatial Pooler—A Neocortical Algorithm for Online

Sparse Distributed Coding,” Front. Comput. Neurosci., vol. 11, Nov. 2017.
[20] J. Mnatzaganian, E. Fokoué, and D. Kudithipudi, “A Mathematical Formalization of Hierarchical

Temporal Memory Cortical Learning Algorithm’s Spatial Pooler,” no. August, pp. 1–11, Jan.
2016.

[21] J. Hawkins, S. Ahmad, and Y. Cui, “A Theory of How Columns in the Neocortex Enable Learning
the Structure of the World,” Front. Neural Circuits, vol. 11, pp. 0–15, Oct. 2017.

[22] M. Pietroń, M. Wielgosz, and K. Wiatr, “Formal Analysis of HTM Spatial Pooler Performance Under
Predefined Operation Conditions,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9920 LNAI,
2016, pp. 396–405.

[23] S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah, “Comparative Study of Caffe, Neon,
Theano, and Torch for Deep Learning,” Nov. 2015.

[24] M. Abadi et al., “TensorFlow: A system for large-scale machine learning,” May 2016.
[25] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document

recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
[26] “AlphaGo Wins Final Game In Match Against Champion Go Playe,” IEEE Spectrum, 2016. [Online].

Available: http://spectrum.ieee.org/tech-talk/computing/networks/alphago-wins-match-
against-top-go-player.

[27] S. Chetlur et al., “cuDNN: Efficient Primitives for Deep Learning,” Oct. 2014.
[28] M. Horowitz, “Computing’s energy problem (and what we can do about it),” in 2014 IEEE

International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp.
10–14.

[29] A. S. Cassidy et al., “Real-Time Scalable Cortical Computing at 46 Giga-Synaptic OPS/Watt with
~100× Speedup in Time-to-Solution and ~100,000× Reduction in Energy-to-Solution,” in
SC14: International Conference for High Performance Computing, Networking, Storage and
Analysis, 2014, pp. 27–38.

[30] T. Chen et al., “DianNao,” in Proceedings of the 19th international conference on Architectural
support for programming languages and operating systems - ASPLOS ’14, 2014, pp. 269–284.

[31] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep Learning with Limited Numerical
Precision,” Feb. 2015.

[32] S. Han et al., “EIE: Efficient Inference Engine on Compressed Deep Neural Network,” Feb. 2016.
[33] W. Sin, K. Haas, E. Ruthazer, and H. Cline, “Dendrite growth increased by visual activity requires

NMDA receptor and Rho GTPases,” Nature, vol. 2112, no. 1998, pp. 2108–2112, 2002.
[34] DeSieno, “Adding a conscience to competitive learning,” in IEEE International Conference on Neural

Networks, 1988, pp. 117–124 vol.1.
[35] A. Lavin and S. Ahmad, “Evaluating Real-Time Anomaly Detection Algorithms -- The Numenta

Anomaly Benchmark,” in 2015 IEEE 14th International Conference on Machine Learning and
Applications (ICMLA), 2015, pp. 38–44.

[36] N. Caporale and Y. Dan, “Spike Timing–Dependent Plasticity: A Hebbian Learning Rule,” Annu. Rev.
Neurosci., vol. 31, no. 1, pp. 25–46, 2008.

[37] F. Walter, M. Sandner, F. Rcohrbein, and A. Knoll, “Towards a neuromorphic implementation of
hierarchical temporal memory on SpiNNaker,” in 2017 IEEE International Symposium on
Circuits and Systems (ISCAS), 2017, pp. 1–4.

[38] A. Kumar, Z. Wan, W. W. Wilcke, and S. S. Iyer, “Toward Human-Scale Brain Computing Using 3D
Wafer Scale Integration,” ACM J. Emerg. Technol. Comput. Syst., vol. 13, no. 3, pp. 1–21,
Apr. 2017.

[39] N. E. Jerger, L. S. Peh, and M. Lipasti, “Virtual circuit tree multicasting: A case for on-chip hardware
multicast support,” in 35th International Symposium on Computer Architecture - ISCA’08,
2008, pp. 229–240.

[40] J. Duato, S. Yalamanchili, and L. Ni, “Interconnection Networks: An Engineering Approach,” Oct.
1997.

[41] Y. Cui, S. Ahmad, and J. Hawkins, “Continuous Online Sequence Learning with an Unsupervised
Neural Network Model,” Neural Comput., vol. 28, no. 11, pp. 2474–2504, Nov. 2016.

[42] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide, “Immunet: a cheap and robust fault-tolerant
packet routing mechanism,” in Proceedings. 31st Annual International Symposium on
Computer Architecture, 2004., 2004, pp. 198–209.

[43] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing NUCA Organizations and
Wiring Alternatives for Large Caches with CACTI 6.0,” in 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 2007), 2007, pp. 3–14.

[44] R. M. Bruno and D. J. Simons, “Feedforward mechanisms of excitatory and inhibitory cortical
receptive fields.,” J. Neurosci., vol. 22, no. 24, pp. 10966–10975, 2002.

[45] R. Lorente De Nó, “Studies on the structure of the cerebral cortex. II. Continuation of the study of the
ammonic system.,” J. für Psychol. und Neurol., vol. 46, pp. 113–117, 1934.

[46] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties by learning a
sparse code for natural images,” Nature, vol. 381, no. 6583, pp. 607–609, Jun. 1996.

[47] V. Puente, “Cortexim.” [Online]. Available: https://github.com/cortexsim.
[48] P. Abad, P. Prieto, L. G. Menezo, A. Colaso, V. Puente, and J.-Á. Gregorio, “TOPAZ: An Open-

Source Interconnection Network Simulator for Chip Multiprocessors and Supercomputers,” in
2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip, 2012, pp. 99–106.

[49] C. Sun et al., “DSENT - A tool connecting emerging photonics with electronics for opto-electronic
networks-on-chip modeling,” Proc. 2012 6th IEEE/ACM Int. Symp. Networks-on-Chip, NoCS
2012, pp. 201–210, 2012.

[50] V. Puente, C. Izu, R. Beivide, J. A. Gregorio, F. Vallejo, and J. M. Prellezo, “The Adaptive Bubble
Router,” J. Parallel Distrib. Comput., vol. 61, no. 9, pp. 1180–1208, 2001.

[51] S. M. Sherman, “The function of metabotropic glutamate receptors in thalamus and cortex,”
Neuroscientist, vol. 20, no. 2, pp. 136–149, 2014.

14

Valentin Puente received the BS, MS and PhD degree from the University of Cantabria, Spain, in 1995 and 2000 respectively.
He is currently an Associate Professor of Computer Architecture at the Department of Computers and Electronics of the same
University. His research interests focus on computer architecture and the impact that emerging paradigms or technology
changes might have on it.

Jose-Angel Gregorio received the BS, MS and PhD in Physics (Electronics) from the University of Cantabria, Spain, in 1978
and 1983 respectively. He is currently a Professor of Computer Architecture in the Department of Computers and Electronics
in the same University. His main research interests focus on chip multiprocessors (CMPs) with special emphasis on the
memory subsystem, interconnection network and coherence protocol of these systems.

