
Simulation Methodology for Decision Support Workloads

Luis A. Amigo, Valentín Puente, J. Angel Gregorio.

Computer Architecture Group, University of Cantabria.

{lamigo, vpuente, jagm}@atc.unican.es

Abstract

The impact of any new architectural proposal must be

evaluated under realistic working conditions. This class

of analysis requires trustworthy simulation tools and

representative workloads that allow us to know the real

effectiveness of the improvement. In this work, we

propose a methodology that enables the use of an

important family of transactional workloads, such as

decision support system workloads, in a full system

simulator. In contrast to numerical applications, with this

type of workload it is not possible to scale down the

problem size in order to reduce the computational

requirements of the simulation. We will show the

stationary behaviour of the workload and how it can be

employed to reduce computational requirements without

significant loss. Taking into account this fact, we will

show how simulating only 3% of the benchmark the

maximum error in the main system performance metrics

is approximately 5%.

1. Introduction

The methodology to develop new architectural proposals

requires tools able to evaluate their impact under realistic

scenarios. Until a few years ago, most high performance

systems had been almost exclusively used with scientific

or engineering applications. For this reason, new

architectural proposals for these kinds of systems were

analysed employing benchmarks based on numerical

workloads. However, in recent years, a significant

percentage of the supercomputer market is being focused

on transactional workloads [1] and therefore benchmarks

must also be changed. In fact, an important effort is made

by software and hardware vendors in order to establish a

standardized framework for allowing customers to

analyze their requirements before purchasing systems.

One of the main organizations playing an important role

in this trend is the Transaction Processing Performance

Council (TPC) [2] proposing transactional standards such

as the TPC-H benchmark, which we are focusing on. This

benchmark emulates a Decision Support System (DSS) in

cooperation with an Online Transaction Processing

system (OLTP).

The main problem when using these new types of

benchmarks in simulation tools, compared to numerical

ones, is the dramatic increase of computational

requirements. In order to know the impact of any

architectural change, full system simulators, including the

operating system, are essential. This is the only way that

transactional loads can be employed for determining the

performance variations against new architectural

proposals. But this new scenario implies an important

difficulty for the computer architect and it is necessary to

reduce the complexity of the problem without altering its

representative nature.

In numerical applications, this reduction is quite

straightforward: scaling down both the problem size and

the system hardware elements. On the contrary, working

with transactional workloads is not so easy because the

relationship between the workload size and the work

carried out by the system is too complex. Therefore,

reducing computational requirements this way can

completely modify the workload characteristics and hence

other alternatives must be explored.

Statistical approaches have also been proposed [11] in

order to improve simulation speed. This kind of

methodologies offers a general solution that could be

useful on all kind of workloads and simulation platforms.

Rather than use a general approach we would like to use

the workload characteristics to improve performance.

In this work we will show how to reduce computational

demand when a transactional workload is used as an

effective benchmark. The stationary behaviour of the

system throughout the workload execution allows us to

reduce the necessary simulation time. This fact can be

taken into account in order to estimate the impact of any

architectural change in the system by just analyzing a

reduced portion of the benchmark. In this way, we can

considerably reduce the time requirements to study the

phenomenon with a moderate loss of precision and this

can be very important for exploring the design space.

The remainder of this paper is organized as follows:

Section 2 summarizes the main differences between

numerical and transactional workloads from the point of

view of their study under simulated environments.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Section 3 introduces the workload considered in this

study and its implementation. The framework employed

is shown in Section 4. Section 5 details the behaviour of

the benchmark within a real environment and Section 6

confirms the proposed methodology in a simulated

environment. Finally, the main findings of this research

are summarized in Section 7.

2. Numerical versus transactional

workloads.

The execution pattern of numerical workloads is

characterised by consecutive computation and

communication phases. The inherent characteristics in

both phases are quite different and consequently their

demands on the underlying hardware are different. Under

these conditions, in order to establish the final impact of

an architectural change the whole benchmark must be

executed. However, in order to reduce the computational

requirements it is possible to scale down both the problem

size and the architectural parameters of the simulated

system [3]. This reduction is possible because the

relationship between problem and system size and the

computation and communication characteristics is easily

found.

Nevertheless, the execution pattern of transactional

workloads is not so clear. In this case the main phases

are: connection establishment, query execution and

connection termination. The first and last phases can be

considered transitory with a low impact on the workload

execution, but the behaviour of the central phase is

complex and it is not easy to find a relationship between

problem size and its demands on the architecture.

On the one hand, the amount of work of a

transactional system, as well as its pattern of execution,

depends on the complexity of the database employed. The

same relational scheme but with different data size can

cause a completely different behaviour of the system. In a

DSS, queries usually include a large number of tables.

Depending on the number of occurrences between these

tables, the amount of work needed to carry out a query

will be different. For example, in a situation where two

tables must be related using a particular condition, if there

is no tuple in the first table that matches this condition

then a search is not necessary in the second table.

Because of this, the database size must be carefully

selected in order not to break the significance level of the

workload.

On the other side, the database management system

scheduler estimates the number of data sets to choose the

most suitable query resolution method. Then, depending

on the number of occurrences estimated for a particular

table and its distribution, a query can be solved using

sequential scanning or indexes. In other words, if the

scheduler estimates that the number of occurrences that

matches the query’s condition is small then indexes will

be used. However, if the number of estimated occurrences

is high or they are physically contiguous then a sequential

search will be employed.

When the load size is large enough, using indexes to

resolve queries improves task performance, but it can

generate locks among different processes trying to access

the same data simultaneously. For this reason, if we use a

reduced size of data, the scheduler always tries to use

sequential methods because most occurrences would be

probably contiguous. Under these conditions the

behaviour can change dramatically and the significance

level drops below the real conditions if we scale down

database size. In consequence, it is necessary to work

with a data set size large enough to assure both behaviour

extremes exist.

In numerical workloads, the dependences on the

operating system are practically negligible. The main

influence can be motivated by the memory management

subsystem. Because of this it is not usual to include the

operating system effects in the analysis of architectural

proposals. Consequently, tool complexity and the

simulation process itself are notably simplified.

On the other hand, in transactional workloads a high

dependence on the operating system appears [4]. This

influence is determined by the mechanism employed to

share date among the different processes and the use of

these loads over the I/O subsystems. This dependency

between the database management mechanisms and the

host operating system makes indispensable the inclusion

of the operating system effects in any computer

performance analysis using transactional workloads. For

this reason, a significant number of full system simulators

have appeared that incorporate not only high detail

hardware components but also commercial operating

systems (or a slight modification of them). One of the

most popular of these tools is SimOS [5], a full system

simulator developed at Stanford University able to

simulate MIPS, Alpha or Power PC architectures running

slightly modified versions of the commercial operating

systems IRIX, Digital Unix and AIX. This is the

simulator we use in this work.

3. Workload description.

TPC-H [6] standard models a Decision Support

System belonging to a multinational corporation. This

system includes a database of customers, suppliers, orders

and line items throughout 25 nations and 5 geographic

regions. The DSS system is synchronized periodically

with an On-Line Transaction Processing system, which

receives new orders and updates existing ones. This

synchronization is emulated by inserting new orders and

deleting existing ones. These processes are known as

refresh functions.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Over this database two tests are made whose geometric

average gives us the numerical result of the benchmark.

The first test, known as the Power Test, is done by the

sequential execution of the refresh functions and a stream.

A stream is the name given to the sequential execution of

22 DSS queries from the same connection. The aim of

this test is to obtain the best response time of the system

under test.

Executing several streams concurrently with the

refresh functions does the second one, known as the

Throughput Test. The main objective of this test is

checking the response capability of the system with heavy

workloads.

Database size is proportional to a variable known as

scale factor. Final size comes from the product of the

scale factor and the basic size of the database. The basic

size used is 1 GB of raw data. The scale factor is chosen

depending on the market area of the system. Raw size

increases several times when it is loaded into a relational

scheme. This growth depends on the security mechanisms

provided for the database, such as recovery logs,

mirroring, etc.

3.1. Benchmark implementation.

In order to create a benchmark following the TPC-H

standard we have chosen PostgreSQL [7] as RDBMS.

PostgreSQL is a DBMS originally developed at the

University of Berkeley. The main target of this project

was the development of a free DBMS providing the same

capabilities as a commercial one.

PostgreSQL uses a client-server scheme [8], that is, for

each new client connection a new server process is

created in order to answer the client’s requests. Each

server has its own memory area in which intermediate

data is processed. As well as this dedicated area, all

server processes are connected to a shared memory area

whose integrity is guaranteed by semaphores. This shared

area works as a cache, storing data used previously by

any server. All data modifications are done in this shared

area. After a modification is done, it has to be transferred

to disk in order to guarantee data durability. Once

durability is guaranteed, all servers may access modified

data.

PostgreSQL does not allow query-level parallelism,

that is, a query cannot be divided among processors. Due

to this lack of parallelism, and in order to generate the

biggest possible workload, during the Throughput Test

we will run a stream for each processor in the system.

We will use a scale factor of 0.1 which gives us a raw

database size of 100 MB. Raw size becomes

approximately 500 MB when it is loaded into a relational

scheme, generating indexes in order to speed up queries

and providing recovery and roll-back mechanisms.

In previous works [9] we proved that this database size

preserves the complexity of the standard and allows all

data to fit in main memory. Fitting all data in main

memory isolates the execution from the performance of

disk devices. Even though this scale factor does not agree

with TPC-H specifications since valid scale factors are

integer values, we will use it because we want to focus

our analysis on the architecture of the system. Using a

scale factor not fitting data in main memory would imply

that there would be a bottleneck in the I/O system. In

order to avoid this problem and be able to find other

bottlenecks we could use perfect disk models. Using these

models would remove the impact of refresh functions and

integrity mechanisms, resulting in a different execution

scheme. Taking all of this into account we will use a

complex disk model and a scale factor of 0.1 in order to

avoid I/O bottlenecks and preserve the execution scheme.

4. Simulated environment.

4.1. SimOS Simulator.

.

SimOS provides three execution models based on

MIPS architecture [10]:

• Embra. - This is the fastest execution model

available in SimOS. Using a direct execution system,

that does not simulate CPU or caches, allows users to

prepare workloads and to interact with the operating

system in the simulated environment. This model is

able to run applications with an execution time just

ten times higher than real systems. There is a

modification of embra that provides a simple cache

model.

• Mipsy. - This model provides a pipelined CPU

like R3000/R4000 processors. In addition it provides

two levels of cache memory and is able to simulate

UMA and NUMA architectures ranging from 1 to 32

processors. Execution time is hundreds of times

higher than the real system.

• MXS. - This model provides a superscalar

processor similar to the MIPS R10000. It is able to

simulate the same architectures that Mipsy does. At

present, this model is incomplete and it only admits

the R3000 instruction set. Simulation time is

thousands of times higher than the real system.

Slowdowns are for one processor, as SimOS is a

sequential application, simulating more than one

processor increases execution times.

The simulated system includes a complete Memory

Management Unit with exception handling in such detail

that translation of virtual addresses into physical ones is

done in the same way as the real system does.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

SimOS also provides both complex and fixed latency

hard disk models. The complex disk model includes a

SCSI drive controller that uses DMA and interrupts in

order to transfer data from/to main memory.

The simulation environment runs the IRIX operating

system version 6.4 which allows the execution of actual

applications but that cannot be upgraded to later versions.

The old OS version with the limited instruction set

lessens (but does not remove) the capacity to run current

applications.

4.2. Computational systems used in this work.

In this work we have used two computational systems:

• A SGI PowerChallenge system with UMA

architecture and eight 200-MHz MIPS R10000

processors, 1 GB of RAM memory, 2 MB secondary

unified cache, 32 KB instruction cache and 32 KB

data cache. This will be the system under test, so all

real and simulated measurement will be done on it.

• A SGI Origin 3200 system with NUMAflex

architecture and 2 nodes with four 400-MHz MIPS

R12000 processors and 2 GB of RAM memory each

node. 8 MB secondary unified cache, 32 KB

instruction cache and 32 KB data cache. This system

will be use as host of the simulation environment.

Both architectures can be used within the simulation

environment so, once stationarity is verified, both

architectures can be simulated.

5. Simulation methodology.

5.1. Considerations about simulation

environment.

The simulation speed of an eight-processor system,

using the Mipsy model, is about 1.8x105 instructions per

second. Knowing that the execution of the entire

benchmark needs about 1.5x1012 instructions, about a

hundred of days would be necessary to finish the

simulation using this model. If we use the MXS model,

simulation would take more than three years to finish.

This time limitation forces us to develop another

simulation methodology that allows us to study possible

architectural improvements in a reasonable amount of

time.

As has been said before, application size scaling brings

about different behaviour. This different behaviour is due

to the different methods used to solve queries, index

usage, and especially due to the different number of

occurrences between tables in the database. With all of

this we are compelled to run the same workload that has

proven effective in real systems.

Once we established that database workloads could not

be scaled as numerical workloads are, we explored the

possibility of doing a temporary scaling. To achieve this

scaling we use the checkpoint and restart capability

provided by SimOS. This capability allows swapping

between processor models within the same simulation

process.

In order to make a checkpoint, it is necessary to set a

stop point somewhere in the code. Nevertheless, SimOS

does not allow this checkpoint if a branch instruction is

being evaluated in any of the system processors.

Temporary scaling must be done in such a way that it

assures that the working point in the simulation

environment is the same as in real system. Thus, it would

be possible to study the effect of enhancements in the

system.

As has been said, PostgreSQL does not allow intra-

query parallelism so, as our working area is aimed at

multiprocessor architectures, we will focus the simulation

on the Throughput Test. This focus allows the Power

Test’s simulation to be done with a less detailed model;

this gives us a total simulation time of 60 days using the

Mipsy model.

The execution pattern of the Throughput Test shows a

transitory zone at the beginning, due to connexion

establishment, and another at the end, due to connexion

termination and result storage. All the remaining

execution shows a stationary behaviour pattern.

5.2. Testing for statonarity.

Next we will show the behaviour of the workload

during its execution. Obviously, this measurement could

not be made in the simulation environment because we

need to know the behaviour of the whole execution, so it

must be done in the real system. We will analyze different

pieces of the execution trying to find the deviation of the

principal parameters of the system with respect to the

average of the execution. We will focus on instruction

count per cycle and L1 data cache hit ratio.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Figure 1. Error made by approximating L1 data hit ratio
with the average of a time interval.

To obtain this data series we will use the information

provided by the hardware counters included in MIPS

processors. This measurement will be done using a

dynamic loadable module, which induces a deviation of

less than 3%.

In order to test for stationarity, we will study the

Throughput Test. It must be said that the safest place to

introduce a checkpoint is the point where the Power Test

finishes and the Throughput Test begins. Beginning

detailed model execution at this point includes in the

measurement the transitory effect of connection

establishment and cold start misses. Thus, in Figure 1,

error made by approximating L1 data hit ratio with the

average of a time interval is shown. The percentage of

execution time that this interval represents with respect to

the execution of the whole Throughput Test is also

shown.

As can be seen, data cache hit ratio shows a stationary

behaviour. With 10 seconds of execution time, the error

committed is less than 5%. With 2 minutes the further

error made is less than 1%. Using this result we can say

that the behaviour of memory hierarchy can be

characterized by simulating 10 seconds with an error of

less than 5%.

In Figure 2, error committed by approximating

instruction per cycle per processor with the average of a

time interval is shown. The percentage of execution time

that this interval represents with respect to the execution

of the whole Throughput Test is also shown.

Figure 2. Error made by approximating instruction per
cycle per processor.

As can be seen, for short intervals, there is a

substantial error, but from 20 seconds and further, the

error made by approximating total average by interval

average is always below 5%.

Instruction per cycle count is an important indication

of the behaviour of entire system. Thus any variation in

the hit rate of caches, branch predictor or TLB is shown

in it. So the stationary behaviour shown by IPC is a

reflection of system stationarity. This stationary

behaviour allows us, by simulating a piece of the whole

application, to obtain the relative impact of any

architectonic improvement with this workload.

If the error is desired to be lower than 5%, a

simulation interval of at least 20 seconds must be used.

This interval represents only 3% of the original time

required.

6. Simulation results.

In this chapter we will verify that this stationary

behaviour is reflected by the simulation environment. We

will simulate a PowerChallenge system, identical to that

used, employing a Mipsy model. We will simulate during

10 days trying to get enough information about the

simulation environment’s behaviour. With the data series

obtained, we can observe the evolution of IPC and L1

data hit ratio.

Figure 3 shows instantaneous IPC during simulation,

moreover, total average and interval average are shown.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Figure 3. IPC value, average and interval average
versus simulated times.

Figure 4 shows the same numbers as before but for L1

data cache hit ratio. As can be seen, as we increase

interval size, the error made is constantly reducing. It has

to be said that these data have been taken from a piece of

the whole execution therefore the value given for total

average may not be accurate. According with the real

system’s results, this inaccuracy is less than 5% in IPC

and less than 1% in data cache hit ratio. On the other

hand, data could not be compared with the real system

since we are simulating a pipelined processor and real

systems have superscalar ones.

Those figures agree with the estimations obtained

during execution in real systems. Thus, they demonstrate

the suitability of the simulation’s methodology.

Figure 4. L1 data cache hit ratio, average and interval
average versus simulated time.

7. Conclusions

The increasing use of transactional workloads in high

performance computing compels us to include them in

our work plan in order to check the effectiveness of new

architectural proposals.

The unaffordable computation time required to execute

complex transactional workloads in complete system

simulators obliges us to take a less restrictive approach.

In this work we have shown the stationary nature of a

TPC-H benchmark done on a database created using

PostgreSQL. Using this stationary nature we are able to

test relative performance of new proposals simulating a

twenty-second interval. The wall clock time of this

simulation, using 400 MHz MIPS R12000 processors, is

less than 36 hours. Using a low detailed model allows us

to get the workload ready in less than three hours for an

eight-processor system. Since we are using checkpoint

and restart, this workload only has to be prepared once

for each system.

Taking all of this into account, we may evaluate a new

proposal in only two days, for an eight-processor system,

knowing that the error found would be less than five

percent.

8. Acknowledgements
This work has been supported by the “Comisión

Interministerial de Ciencia y Tecnología” (CICYT),

project TIC-2001-591-C02-01.

The authors would like to express their appreciation to

William Hachfeld of SGI for his help in the development

of the libraries that have enabled the sampling of the

hardware counters of the R10000/R12000 processors.

9. References

[1] See http://www.top500.org for further details.

[2] See http://www.tpc.org for further details.

[3] David E. Culler, Jaswinder Pal Singh. “Parallel Computer

Architecture”. 1999 Morgan Kaufmann Publishers, Inc.

[4] L. A. Barroso, K. Gharachorloo, and E. D. Bugnion.

“Memory System Characterization of Commercial

Workloads”. In Proceedings of the 25th International

Symposium on Computer Architecture, June 1998.

[5] M. Rosenblun, E. Bugnion, S. Devine, and S. A. Herrod.

“Using the SimOS machine simulator to study complex

computer systems”. ACM Transactions on Modelling and

Computer Simulation, Vol. 7, No. 1, January 1997, Pages

78–103.

[6] “TPC Benchmark H (Decision Support) Standard

Specification Rev. 1.3.0”. 1993 – 2002 Transaction

Processing Performance Council.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

[7] See http://www.postgresql.org for further details.

[8] “PostgreSQL Developer Version of the Docs. Internal

Architecture” 1996-2003 by The PostgreSQL Global

Development Group. Available on-line.

[9] L. Amigo, V. Puente, J.A. Gregorio, “Demanda

computacional del benchmark TPC-H”. Proceedings of the

XIII Jornadas de paralelismo, Lleida. 2002. (in Spanish)

[10] Steve Herrod, Mendel Rosenblum, Edouard Bugnion, Scott

Devine, Robert Bosch, John Chapin, Kinshuk Govil, Dan

Teodosiu, Emmett Witchel, and Ben Verghese, “The

SimOS simulation environment”. ©1996-1998 Stanford

University. Available on-line at

http://simos.standford.edu/userguide.

[11] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi,

James C. Hoe. “SMARTS: Accelerating Microarchitecture

Simulation via Rigorous Statistical Sampling”. Proceedings

of the 30th Annual International Symposium on Computer

Architecture (ISCA). San Diego, California June 2003.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

