
A Low Cost Fault Tolerant Packet Routing for Parallel Computers

V. Puente, J.A. Gregorio, R. Beivide and F. Vallejo
Computer Architecture Group
University of Cantabria, Spain

�vpuente, jagm, mon, fernando�@atc.unican.es

Abstract

This work presents a new switching mechanism to toler-
ate arbitrary faults in interconnection networks with a neg-
ligible implementation cost. Although our routing technique
can be applied to any regular or irregular topology, in this
paper we focus on its application to k-ary n-cube networks
when managing both synthetic and real traffic workloads.
Our mechanism is effective regardless the number of faults
and their configuration. When the network is working with-
out any fault, no overhead is added to the original routing
scheme. In the presence of a low number of faults, the net-
work sustains a performance close to that observed under
fault-free conditions. Finally, when the number of faults in-
creases, the system exhibits a graceful performance degra-
dation.

1. Introduction

Current 1 trends in computational demands are provok-
ing the proliferation of parallel servers and supercomput-
ers with a large number of processing elements. Reliability
should be an important feature of these complex parallel
systems. Traditionally, fault tolerance has referred to build-
ing systems from redundant components that, used in paral-
lel, are normally applied to some critical mission or appli-
cation. This design approach has not been broadly consid-
ered in general-purpose computers because the mean time
between failures of an isolated component is usually suffi-
ciently high. Nevertheless, in a parallel architecture with
hundreds of processing nodes the sum of all the individual
failure probabilities can be considerable and some mecha-
nism should be incorporated to provide a graceful degrada-
tion system.

Reconfiguring a parallel system to get around its faults
is a good approach to reliability enhancement, since the

1This work has been supported by Spanish CICYT, project TIC2001-
0591-C02-01.

system may continue operating after reconfiguration. To
provide this possibility in an efficient way, an appropriate
design of the system interconnection network is needed.
Moreover, as the interconnection subsystem itself is an im-
portant source of potential faults, robust network designs
should be compulsory in massively parallel computers.

One of the main problems in designing a fault tolerant
network is that deadlock avoidance mechanisms conceived
for normal operation are no longer applicable in the pres-
ence of faults. In a partially operative system, the rout-
ing mechanisms should allow the rest of system to continue
working in a deadlock-free condition. Actually, a truly fault
tolerant interconnection network should allow for the com-
munication between two nodes as long as there is an avail-
able physical path.

Due to the arbitrary nature of failures, finding trustwor-
thy and inexpensive techniques to tolerate them can be a
critical task when considering commercial solutions. In
general, real systems implement very simple mechanisms
that partly addressed the problem, such as the direction or-
der routing used in the Cray T3E [13]. Nevertheless, the
design of fault tolerant networks has been well documented
in the technical literature. A fault tolerant algorithm for
Meshes requiring 4 virtual channels to avoid deadlock in
a network with rectangular regions in failure was proposed
in [2]. The same authors improved their algorithm to tol-
erate non-convex failures in [4]. By adapting these ideas,
the same methodology was applied to Torus networks but
requiring up to 6 virtual channels to tolerate rectangular re-
gions in failure [3]. More recent works have allowed the
consideration of a broader range of failures while increas-
ing the number of resources [14]. A different fault tolerant
adaptive routing that uses deadlock detection and recovery
mechanisms was presented in [17]. Other authors propose
new topologies specifically conceived to improve the sys-
tem fault tolerance [16]. Some of the drawbacks of such
mechanisms are the limitation of dealing with a restricted
number of network faults, the use of specific failure regions
and the dependence of a particular topology. Furthermore,
the high associated hardware costs, which could even re-

duce the network performance in the absence of faults, limit
the applicability of fault tolerant technology.

In this research the basis of a new fault tolerant packet
routing for any kind of interconnection network is presented
and evaluated. We presume the existence of a diagnosis
mechanism and focus on how to use the diagnosis informa-
tion to design a robust and reliable fault tolerant commu-
nication system. The analysis of the network performance
under different failure conditions and workloads allow us
to assure that our switching mechanism exhibits a grace-
ful degradation. Specifically, our proposal relies on the use
of Bubble Flow Control, a deadlock avoidance mechanism
successfully applied to regular and irregular interconnection
networks [12] [11]. Our fault tolerant routing is based on
the permanent existence of a safe path able to communicate
any pair of surviving nodes.

The proposed mechanism does not affect the network
performance in absence of failure and it allows the sys-
tem to handle any number and configuration of faults (obvi-
ously, assuming that the network remains connected). Fur-
thermore, its hardware cost is almost negligible. Our tech-
nique is clearly suitable for networks having a high num-
ber of nodes, each of them with a low MTBF (Mean Time
Between Failures). Besides, due to the slight performance
degradation in the presence of a manageable number of
faults, our fault tolerant routing is also a viable solution for
systems with high MTTR (Mean Time To Repair).

In this paper, the authors demonstrate the advantages of
this routing technique by means of its application to k-ary
n-cube networks although any other topology could be also
considered. Besides the typical synthetic workloads, several
real applications running on a complete execution-driven
cc-NUMA simulator have been carried out in order to of-
fer a realistic scenario to evaluate our method. The rest of
the paper is organized as follows: In Section 2 we will in-
troduce the context where our routing mechanism is going
to be used. In Section 3 we will consider the architecture
and the implementation costs of the proposed interconnec-
tion subsystem. Section 4 will be devoted to analyzing the
performance exhibited by our mechanism under both syn-
thetic and real traffic workloads. Finally, in Section 5, the
main conclusions of this work will be summarized.

2. Interconnection network characteristics

In this section, we present the context in which our pro-
posal will be applied. The selected network topology, the
router structure and the packet flow control function are in-
troduced and analyzed.

Although our reconfigurable routing mechanism can be
used without restrictions in any topology, as stated before,
in this paper we will focus on analyzing its application to k-
ary n-cube networks. As is known, these networks have fre-

quently been implemented in several commercial systems
due to both its good cost/performance ratio and scalabil-
ity [8] [13]. Each router can inject packets from one or
more computing elements to the network. Conversely, each
router can eject packets from the network to one or more
computing nodes. Obviously, the router’s mission is to con-
vey packets towards their destination. The design of this
element has to maximize the use of the network resources
avoiding communication anomalies such as packet dead-
lock, livelock and starvation.

Figure 1 shows our basic router organization. In addition
to the usual hardware modules (crossbar, buffers, arbitra-
tion logic, synchronization, etc.), we employ a table to route
packets toward their destination. Although arithmetic rout-
ing can be employed in k-ary n-cubes, table-based routing
offers the necessary flexibility for implementing our fault
tolerant switching mechanism. In fact, most modern paral-
lel systems rely on this routing implementation. The routing
table initialization will be carried out at boot time as in the
SGI Spider [6] or the 21364 Alpha [8]. With current hard-
ware technology the network scalability is not compromised
by the table size.

Table Arbiter
R.U.

Crossbar

From local hosts

T

ROUTER

.

.

Sy
nc

.
Sy

nc
.

To local hosts or
other routers

Fr
om

 o
th

er
 ro

ut
er

s

Figure 1. Basic router organization.

Our router must have two virtual channels per input link
in order to support fully adaptive routing using a technique
derived from [5]. A subset of the total virtual channels will
be configured as an escape virtual network for potentially
blocked packets and the rest will be configured as an adap-
tive virtual network. Bubble Flow Control (BFC) is going
to be used to regulate packet injection on the escape vir-
tual network to avoid exhausting its buffer resources. BFC
will be applied to one or several virtual rings embedded in
the network that includes all the network nodes. This set of
virtual rings constitutes the escape virtual network. In our
mechanism, any node in an escape virtual ring can trans-
mit packets as regulated by Virtual Cut-Through flow con-
trol (VCT) [7]. To enable a packet transmission between
two nodes, VCT flow control must verify the existence of
a free buffer on the destination, which can eventually store

the whole packet in case it blocks at that node. Neverthe-
less, packet injection is a more restricted process that de-
mands the existence of two free buffers in the virtual chan-
nel of every node trying to incorporate a new packet in a
BFC ring (Bubble Condition). As a node in a BFC ring can
simultaneously inject and receive a packet, we have to ap-
ply BFC at any router injecting a packet to assure that its
buffer space will never be exhausted. As there always will
be at least one free buffer in the ring (a Bubble under our ter-
minology), transit packets can progress and deadlock never
occurs. The Bubble Condition will be verified using only
local information about the packet population in the router
buffers.

A simplified example that illustrates how this mechanism
operates is shown in Figure 2. When all buffers are ex-
hausted no packet can advance to the following router and
the network is in a deadlocked condition. If the injection of
packets that can exhaust the last storage space is restricted,
deadlock will never occur. It is possible that, if permis-
sion is granted to inject �� from node 3 into node 1 because
there is free space for it, simultaneously the packet �� could
begin to be transmitted to node 3. If this situation occurs si-
multaneously in all the routers composing the ring, packet
deadlock is assured. Notwithstanding, by applying BFC,
such a situation can never arise. In Figure 2, only �� will
be a candidate to be injected in the ring. Obviously, this
packet must compete with �� to obtain the output port once
it is granted the permission by VCT flow control.

Note that transit packets are more likely to advance in the
network than new ones trying to be injected. Consequently,
this strategy if used in isolation, may lead to packet star-
vation. However, when this deadlock-free network is com-
bined with another adaptive virtual network, packet starva-
tion is eliminated [12]. In the adaptive virtual network, all
the packets, new or in transit, are regulated only by VCT
flow control, so all packets will progress, including those at
the injection queues.

In absence of faults, the virtual escape network for a
k-ary n-cube topology is constituted by a collection of
������ BFC rings of size �, as represented in Figure 3.
When these rings are visited under Dimension Order Rout-
ing (DOR), deadlock-free communications are assured in
the resulting escape network. Then, ����� virtual chan-
nels will compose the escape virtual network. The other
����� virtual channels will constitute the fully-adaptive
virtual network. Changes from the escape to the adaptive
network are possible and regulated by VCT flow control.
Changes from the adaptive to the escape network are treated
as a new packet injection and therefore, regulated under
Bubble Flow Control. A more detailed description of BFC
and a study showing its superior performance in respect to
other traditional router alternatives can be seen in [12].

Py Pl

Pz

1 2 3

PxPk

Figure 2. Simple example of BFC application
over a ring.

3 Fault-Tolerant network architecture

In this Section, we will describe the kinds of faults con-
sidered in this research and the corresponding architectural
support which palliates their effect on the performance and
survivability of the networks under study. At the end of the
Section, an evaluation of the added hardware costs will be
considered.

3.1. Fault Model

Depending on their nature, two different kinds of net-
work faults can be considered: link faults and router faults.
The first class is related to physical faults in the media used
to interconnect the routers. The fault can be uni-directional
or bi-directional but we assume that both types cause a com-
munication loss between two neighbor routers. When a
router fault appears, the device interrupts communication
with all the neighboring routers. Therefore, the computing
node or nodes attached to it cannot communicate with any
other processor in the system. A viable fault tolerant mech-
anism must be able to deal with any number and configu-
ration of network faults and it must allow communication
between two computing nodes while a physical path exists
between them. Our method fulfills these conditions.

3.2. Fault-Tolerant routing mechanism

As stated before, one of the most complex problems
inherent in handling any combination of link and/or node
faults is that such faults will induce topological changes af-
fecting the deadlock avoidance mechanism. For example, in
a 2D Torus a fault in any link breaks down one BFC escape
ring and, therefore, it is not always possible to use Dimen-
sional Order Routing to route packets through the virtual
escape network. Most of the proposed solutions add new re-
sources to maintain deadlock-free communications but no-
tably increasing the router complexity. Our approach, in
contrast, is based on rearranging the shape and number of
rings which compose the virtual escape network.

There are several algorithms for determining the topol-
ogy of our escape network. The one proposed in this paper
is based on a unique directed ring embedded on the network
that can visit each node one or more times up to the node

degree. This ring is based on a specific tour through a span-
ning tree, always embedded in any arbitrary topology. To
obtain the spanning tree, we employ an algorithm based on
random link elimination, but any other of the existing meth-
ods could also be employed. The escape ring topology will
be determined by a peripheral tour through this tree. We
can illustrate the algorithm used to obtain the escape ring as
follows: We trace, without lifting our pencil from the paper,
a path through the tree connecting every vertex and visit-
ing the leaves as soon as possible. We may return to each
vertex as many times as needed to visit all its children, fi-
nally returning to the starting vertex. The resulting tour will
visit all the nodes at least once and each edge twice. As the
tree has � � � links, the resulting directed escape ring will
have ��� � �� links. In fact, if we consider the spanning
tree as a directed graph having unidirectional links, our es-
cape ring constitutes an Eulerian tour inside this tree. Such
a virtual ring, like the one shown in Figure 4 for a 4-ary
2-cube with 12 faulty links, always exists in a connected
graph and is easy to find regardless of the type and number
of faults present. In fact, there are a number of simple al-
gorithms that can be explored to find a safe ring traversing
all the nodes. The quasi-linear complexity of our algorithm
based on a tree tour, makes it suitable to be employed even
in very large networks. In a different context, a similar trip-
based model has been employed in [15] to support multicast
communications in wormhole-routed networks. As a possi-
ble optimization, it is clear that a Hamiltonian path through
the network would provide us with two opposite minimal
length directed escape rings. Although almost any regular
network is Hamiltonian, the search of Hamiltonian paths in
irregular graphs is an NP complete problem. Moreover, an
arbitrary graph does not necessary have a Hamiltonian path.
In our experiments, in parallel with the search of the tour-
based escape ring, we will employ a backtracking algorithm
to find Hamiltonian paths on undirected graphs, as the one
proposed in [1]. For example, in the 4-ary 2-cube with 4
faulty links shown in Figure 5 it is possible to find a Hamil-
tonian path leading to two opposite virtual escape rings. We
will abort the backtracking algorithm if it does not provide
a solution within the time required to the establishment of
the tour-based ring.

Anyway, whichever escape topology is used, one or
two directed virtual rings traversing all the healthy network
nodes are going to be used as escape paths. As these rings
use non-minimal routing, packet livelock could arise. A
packet traveling through a non-minimal routing escape ring
can be incorporated into the adaptive network at any router,
provided that there is room in the selected adaptive buffer.
The packet may need again to enter the escape ring, get-
ting further from its destination. Thus, this packet may in-
definitely travel among virtual networks and never arrive to
destination. Nevertheless, the livelock anomaly disappears

just by limiting the number of times that a packet can aban-
don the escape channels.

In conclusion, the routing operation mode in both a
healthy and a faulty network only differs in the escape net-
work used. Without faults, we will use as many indepen-
dent virtual rings as the topological cycles dictated by the
wrap-around connections, visiting them under DOR rout-
ing. When faults arise, we try to obtain a Hamiltonian path
to be used as an escape ring. If a quick answer is not ob-
tained due to the number and configuration of the faults,
then it is always possible to use the longer escape ring de-
rived from the tour through the spanning tree.

Figure 3. Escape paths on a fault-free 4x4
Torus.

Figure 4. Tree-based escape path for a 4x 4
torus with 12 faulty links.

Figure 5. Hamiltonian-based escape paths for
a 4x 4 torus with 4 faulty links.

3.3. Hardware cost

When a fault arises, the routing tables must be updated to
reflect the topological changes and the resources lost caused
by the fault. The table reprogramming can occur at boot
time [6] [8], or dynamically without resetting the system
[13]. In the case of dynamic reconfiguration, only local
information neighbor’s status would be necessary. To im-
plement our fault tolerant routing mechanism, it must be
possible to reconfigure in each router the local structure of
the escape network. For example, in a fault-free network
any router has a configuration of escape paths similar to the
one shown in Figure 6(a). Using our methodology, in the
case of a West link failure, we could reconfigure the internal
escape connections in the way reflected in Figure 6(b). To
apply BFC, we have to know the pairs ”input channel/output
port” belonging to the escape network. Hence, we must take
into account that the relationship between input and output
router terminals can change over time.

Router

(a)

Router

(b)

Figure 6. Escape paths reconfiguration (a) be-
fore and (b) after, a link fault.

To perform internal reconfiguration, the router has an
additional small table of ��� � �� bits, � being the num-
ber of the router ports, as shown in Figure 7. This table
records the needed information about the escape paths con-
figuration. BFC implementation is quite simple. The main
routing table must contain all the profitable output channels
for a given destination. In each router, at least, four virtual
channels are adaptive ones. Similarly, at most, four virtual
channels could belong to the escape paths. If a profitable
output channel for advancing a packet belongs to the es-
cape virtual network and the packet movement implies an
injection in such a network, it is necessary to check the ful-
filling of the Bubble Condition before sending the request
to the arbiter

To illustrate the above mechanism we focus in the ex-
ample showed in Figure 7. The escape paths configuration
is represented by doted lines at the right part of the Figure.
All the adaptive profitable channels labeled as ”vc1” in the
main routing table can be requested to the arbiter without
any limitation. In some cases, before requesting the remain-

ing profitable channels labeled as ”vc2”, the Bubble Condi-
tion must be checked. For example, for advancing a packet
stored in the ”vc2” channel associated to input port 0 to the
”vc2” channel associated to the output port 3, Bubble con-
dition is irrelevant as the packet continues traveling through
the escape ring. Nevertheless, if the same packet tries to ad-
vance towards the ”vc2” channel associated to output port 1,
Bubble condition must be verified as this packet movement
represents a new injection in the escape ring. If a packet
stored at any ”vc1” channel tries to advance to any of the
”vc2” channels associated to output ports 0, 1 or 3, again
Bubble condition must be fulfilled. To distinguish among
all these cases, we use the additional small table. The value
of any bit at position ��� �� indicates when Bubble condition
must be checked. A zero means that Bubble condition ful-
fillment is required to advance a packet from input channel
� to output port �.

As it can be seen, the required additional table and its
control logic is fairly simple. We will employ in our ex-
periments a pipelined router having five stages as the one
presented in [12]. Although this table is located in the crit-
ical path of the routing stage, it is known that this pipeline
stage does not determine the router clock cycle. Usually,
the crossbar arbitration stage is more costly, so there will
be no increment in the router clock cycle. In conclusion,
the added cost in respect to a router without fault tolerance
capabilities is imputable only to the reconfiguration of the
escape paths. Moreover, no overhead is added to the router
pass time.

Dest 0 1 2 3 0 1 2 3
0 0 1 0 1 0 0 1 1
1 1 1 0 0 1 0 0 0
...
n 1 0 1 0 1 0

 InPort 0 1 2 3
AnyVC1 0 0 1 0

0 vc2 0 0 1 1
1 VC2 1 0 1 0
2 VC2 0 0 1 0
3 VC2 0 1 1 0

Dest. inPort

4

Bubble Condition

8xn
 vc1 vc2

4

1

2

3

0 4

4

4

8

Request to
arbiter

Escape paths
configuration

Figure 7. Added complexity in the routing unit
to support escape path reconfiguration in bi-
dimensional networks (example).

4 Network performance analysis

In order to assess the viability of our proposal, several
performance measurements on healthy and faulty k-ary n-
cube networks are going to be presented, analyzed and
compared. The results obtained show a graceful system

degradation under any combination of network faults. In
this work, we have decided to compare performance results
among different healthy and faulty networks only using our
fault tolerant routing. A number of reasons support this de-
cision. First of all, our original routing mechanism with-
out fault tolerant capabilities outperforms any other typical
routing algorithm having similar hardware costs [12]. Sec-
ond, regardless the operating conditions of the network, the
use of our fault tolerant routing does not imply any incre-
ment on the router pass time. In addition, up to our knowl-
edge, the proposed mechanism is the cheapest one in terms
of the hardware costs. Finally, our intention here is to high-
light the graceful degradation exhibited by our switching
mechanism.

A simulator denoted as SICOSYS has been employed to
carry out this study [10]. Its main advantages with respect
to hardware-level simulators are its similar high accuracy
and its lower computational cost. To study the performance
degradation suffered by a faulty state-of-the-art CC-NUMA
multiprocessor running realistic workloads, ED-SICOSYS
has been employed [10]. This execution-driven simulator
has been derived from RSIM [9] by replacing its original
network module, NETSIM, with our more detailed and flex-
ible SICOSYS simulator.

4.1. Study under synthetic traffic

Firstly, we will focus on analyzing the network response
to a progressive fault injection process under random traffic
conditions. Failures were randomly generated and each ex-
periment contemplating more than one faulty element was
simulated 20 times. For a clear analysis, we will consider
node and link faults separately and only bi-directional fault
links. The network under study was a 64-node (8x8) Torus
managing packets of 40 phits. Figure 8 and Figure 9 show
the average results of packet throughput for a different num-
ber of faulty links and faulty nodes respectively.

 Mean Throughput

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8
Supply Load (phits/cycle/router)

1 faulty links
2 faulty links
4 faulty links
8 faulty links
16 faulty links
32 faulty links
64 faulty links
no faults

A
cc

ep
te

d
 L

oa
d

 (
p

h
it

s/
cy

cl
e/

ro
u

te
r)

Figure 8. Impact of link faults of an 8x8 torus
under uniform traffic pattern.

 Mean Throughput

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8
Supply Load (phits/cycle/router)

1 faulty nodes
2 faulty nodes
4 faulty nodes
8 faulty nodes
16 faulty nodes
32 faulty nodes
no faults

A
cc

ep
te

d
 L

oa
d

 (
p

h
it

s/
cy

cl
e/

ro
u

te
r)

Figure 9. Impact of node faults of an 8x8 torus
under uniform traffic.

With a low number of faults, just a small degradation in
network throughput can be observed. Under one fault of
any kind (link or node), the maximum achievable through-
put falls less than 15%. The throughput remains practically
unchanged until four faults occur. It must be noted that the
system can always sustain a throughput level close to its
maximum value beyond the network saturation point. Ad-
ditionally, in the presence of a low number of faults, base
latency degradation is almost negligible. The main rea-
son explaining this behavior is that most of the packets use
minimal paths to reach their destination without traveling
through the escape paths. Besides, the average distance
from a topological point of view remains nearly unchanged
when the number of faults is low. When the proportion of
faults increases, the topological average distance is longer,
which translates in a higher base latency. Finally, we must
highlight that even with a very high number of faults, the
network remains operative. Note that 64 faulty links in a
64-node Torus represent half of the total network links. It
is important to remark that the performance of a fault-free
network using Bubble Flow Control is higher than those of-
fered by other current proposals [12].

For the previously shown results, in 40% of the networks
it was not possible to find, a Hamiltonian path for more than
2 faults. It is clear that the suitability of our controlled in-
jection routing mechanism will depend on the impact of the
selected topology for implementing the escape network on
the overall network performance. Fortunately, we can as-
sure that this impact is almost negligible. To prove this fact,
we analyze the performance in a healthy 8x8 Torus using the
two different previously considered virtual escape networks
separately, as shown in Figure 10. It can be seen that the
differences between both approaches are negligible. This
behavior can be explained by examining the way in which
the escape network is used and by considering the average
length traversed by potentially blocked packets. It must be
remembered that the escape network in our switching mech-

anism is used only as the last routing alternative. Moreover,
as changes from the escape network to the adaptive one are
permitted at any time, packets always try to travel through
the shorter adaptive routes. Besides, the restricted injec-
tion mechanism controlling the escape network reduces the
volume of traffic this virtual network can manage. In con-
clusion, the average use of the escape virtual channels is
clearly lower than the use of the adaptive virtual channels.

0

20

40

60

80

100

120

140

160

180

200

0 0.1 0.2 0.3 0.4 0.5

L
a

te
n

c
y
 (

c
y
c
le

s
)

Supply load (phits/cycle/router)

Hamiltonian-based Cycle
 Tree-based Cycle

Figure 10. Latency values for the two different
escape paths.

We can illustrate the low utilization of the escape net-
work by analyzing the packet average distances in respect
to the traffic volume for the two different alternatives, as
shown in Figure 11. In both cases, only a light increment
with respect to the network average distance was measured.
This increment is, obviously, proportional to the number
of packets which uses the escape path. Nevertheless, only
a tiny difference in throughput of around 1% can be ob-
served when the two escape network alternatives are com-
pared. These experimental measures show that the perfor-
mance of our routing mechanism is quite independent of the
selected ring for implementing the escape virtual network,
which confirms the versatility of our fault tolerant routing
mechanism.

Average distance evolution

4

4,05

4,1

4,15

4,2

4,25

4,3

4,35

4,4

4,45

10 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Supply load (phits /cycle/router)

0,5

1

1,5

2

2,5

3

%
 V

ariation

Hamilton-based path

Tree -based path

(%)Variation

Average distance evolution

4

4,05

4,1

4,15

4,2

4,25

4,3

4,35

4,4

4,45

4

4,05

4,1

4,15

4,2

4,25

4,3

4,35

4,4

4,45

10 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 10 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

D
is

ta
nc

e
av

er
ag

e

0,5

1

1,5

2

2,5

3

0,5

1

1,5

2

2,5

3
Hamilton-based path

Tree -based path

(%)Variation

Figure 11. Average distance variation be-
tween hamiltonian and tree escape paths.

4.2. Study under realistic workload conditions

To assess the network behavior under realistic workload
conditions, the impact of an increasing number of faults on
the execution time of different parallel applications has been
analyzed. To assure the finalization of the programs we
have considered only link faults that cannot isolate any com-
puting node. We will emulate a multiprocessor system with
64 nodes assuming that each network router has attached
a single-processor computing node. Also, given the high
computational cost of this analysis, just one of the 20 ran-
dom samples for each faulty network was considered. That
is, we simulate a single network in failure for each num-
ber of faulty links. This network was the one whose per-
formance under synthetic traffic was closest to the average
value observed with the 20 samples previously considered.

The parameters of the CC-NUMA multiprocessor em-
ulated in this paper (cache coherence protocol, processor
architecture, memory hierarchy, etc.) have the default val-
ues set by RSIM except for the cache line size (32 bytes),
the command packet size (8 bytes) and the processor speed
which has been established at 650 MHz. As the physical
channel width or phit size is 2 bytes, a data packet will con-
tain 40 bytes or 20 phits. The command packets, request
or invalidation, are consequently 4 phits long. The router
clock was set to 177MHz, as derived from a specific imple-
mentation presented in [12].

To carry out this realistic evaluation, we fed our sim-
ulation platform with three applications selected from the
SPLASH-2 suite: Radix, FFT and LU, which had already
been ported into RSIM by researchers at Rice University
[9]. These three applications were selected because they
have significant communication demands, and each one
represents a different case of network load. Radix applies a
high pressure in terms of volume of information to be han-
dled by the network while exhibiting a practically uniform
communication pattern. FFT, however, applies a medium
load on the network but the communication pattern has no
spatial locality. Finally, LU applies lower load on the net-
work but it gives rise to hot spots. The default problem size
for FFT is 64K double complexes. Due to the high demand
for computational resources, the problem size for LU has
been reduced from its default value of 512x512 to 256x256.
The problem size for Radix has also been reduced from one
million integer keys to a half-million using a radix of a half-
million. For the emulated system size, these changes do not
compromise the accuracy of the results. The capacity of
the different levels of the memory hierarchy was chosen in
such a way that the results obtained are significant for the
selected problem sizes and for the dimensions of the global
system.

The normalized execution times of the applications un-
der study are represented in Figure 12. At first glance, it

can be seen that our routing proposal provides the system
with a graceful performance degradation. The maximum
degradation in presence of a high number of faults is in
the order of 25%. Amazingly, the performance degrada-
tion executing the LU application with 16 faulty links is
close to 10%. These results are consistent with the behav-
ior observed under synthetic traffic conditions. Remem-
ber that although some degradation was observed on net-
work throughput, base latencies remained constant. As it is
known, parallel applications demand a high packet through-
put only on certain phases of their execution. Hence, the
increase on the parallel execution time can be proportion-
ally inferior to the throughput degradation observed under
synthetic traffic.

0

20

40

60

80

100

120

0 1 2 4 8 16

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 t

im
e

(%
)

0

20

40

60

80

100

120

0 1 2 4 8 16

SYNC
MEM
BUSY

FFT LU

Number of faulty links Number of faulty links

Figure 12. Performance degradation for FFT
and LU using 64 processors.

5 Conclusions

A new fault tolerant routing for any kind of interconnec-
tion networks has been proposed in this paper. Our routing
is based on the application of a controlled packet injection
policy to a virtual deadlock-free network. Faults are toler-
ated by rearranging the shape and number of rings which
compose the virtual escape network. The viability of our
proposal has been demonstrated in realistic scenarios. Our
technique is effective regardless the number of faults and
their configuration. When operating in fault-free condi-
tions, the network does not support any overhead. In the
presence of a low number of faults, the use of our mecha-
nism allows the network to achieve a sustained performance
close to that observed under fault-free conditions. When
the number of faults increases, our system exhibits a grace-
ful performance degradation. Furthermore, even with a high
number of links and/or node faults, the network remains op-
erative.

In addition, the hardware cost of our technique can be
considered negligible when compared with other current
fault tolerant switching mechanisms. Although the results
shown in this paper have been obtained for k-ary n-cube
networks, the same technique can be applied to any other
regular or irregular topology without additional cost.

References

[1] B. Bollobas, T. I. Fenner, and A. M. Frieze. An algorithm
for finding hamiltonian paths and cycles in random graphs.
Combinatorica, 7(4):327–341, 1987.

[2] R. V. Boppana and S. Chalasani. Fault-tolerant wormhole
routing algorithms for mesh networks. IEEE Trans. on Com-
puters, 44(7):848–864, 1995.

[3] S. Chalasani and R. Boppana. Fault-tolerant wormhole rout-
ing in tori. Proceedings of 8th ACM Conference on Super-
computing, July 1994.

[4] S. Chalasani and R. V. Boppana. Communication in multi-
computers with nonconvex faults. IEEE Trans. on Comput-
ers, 46(5):616–622, 1997.

[5] J. Duato. A necessary and sufficient condition for deadlock-
free routing in cut-through and store-and-forward networks.
IEEE Trans. on Parallel and Distributed Systems, 7(8):841–
854, 1996.

[6] M. Galles. Spider: a high-speed network interconnect. IEEE
Micro, 17(1):34–39, Jan-Feb 1997.

[7] P. Kermani and L. Kleinrock. Virtual cut-through: A new
computer communication switching technique. Computer
Networks, 3:267–286, 1979.

[8] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and
D. Webb. The Alpha 21364 network architecture. IEEE
Micro, 22(1):26–35, Jan-Feb 2002.

[9] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM: An
execution-driven simulator for ilp-based shared-memory
multiprocessors and uniprocessors. IEEE TCCA Newsletter,
October 1997.

[10] V. Puente, J. A. Gregorio, and R. Beivide. SICOSYS: An in-
tegrated framework for studying interconnection network in
multiprocessor systems. Proc. of the IEEE 10th Euromicro
Workshop on Parallel and Distributed Processing, 2002.

[11] V. Puente, J. A. Gregorio, R. Beivide, F. Vallejo, and
A. Ibaez. A new routing mechanism for networks with ir-
regular topology. Supercomputing 2001, November 2001.

[12] V. Puente, C. Izu, R. Beivide, J. A. Gregorio, F. Vallejo,
and J. M. Prellezo. The adaptative bubble router. Journal
of Parallel and Distributed Computing, 61(9):1180–1208,
September 2001.

[13] S. L. Scott and G. M. Thorson. The Cray T3E network:
Adaptive routing in high performance 3D torus. Hot Inter-
connects IV, 1996.

[14] J. Shih. Wormhole routing for torus networks with faults.
Parallel Computing, 27:1817–1829, 2001.

[15] X. X. Lin, P. K. McKinley, and L. M. Ni. Deadlock-free mul-
ticast wormhole routing in 2D mesh multicomputers. IEEE
Trans. on Parallel and Distributed Systems, 5(8):793–800,
1994.

[16] L. Ziang. Fault tolerant networks with small degree. SPAA,
2000.

[17] J. Zin, Z. Liu, and A. A. Chen. Compressionless routing:
a framework for adaptive and fault-tolerant routing. IEEE
Trans. on Parallel and Distributed Systems, 8(3):229–244,
1997.

