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Abstract—This work proposes a mechanism to hybridize the 

benefits of snoop-based and directory-based coherence protocols 

in a single construct. A non-inclusive sparse-directory is used to 

minimize energy requirements and guarantee scalability. 

Directory entries will be used only by the most actively shared 

blocks. To preserve system correctness token counting is used. 

Additionally, each directory entry is augmented with a counting 

bloom filter that suppresses most unnecessary on-chip and off-chip 

requests.  Combining all these elements, the proposal, with a low 

storage overhead, is able to suppress most traffic inherent to 

snoop-based protocols. With a directory capable of tracking just 

40% of the blocks kept in private caches, this coherence protocol 

is able to match the performance and energy of a sparse-directory 

capable of tracking 160% of the blocks. Using the same 

configuration, it can outperform the performance and on-chip 

memory hierarchy energy of a broadcast-based coherence 

protocol such as Token by 10% and 20% respectively.  

To achieve these results, the proposal uses an improved 

counting bloom filter, which provides twice the space efficiency of 

a conventional one with similar implementation cost. This filter 

also enables the coherence controller storage used to track shared 

blocks and filter private block misses to change dynamically 

according to the data-sharing properties of the application. With 

only 5% of tracked private cache entries, the average performance 

degradation of this construct is less than 8% compared to a 160% 

over-provisioned sparse-directory. 
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I. INTRODUCTION 

The enforcement of hardware coherence in contemporary 
CMPs with complex on-chip cache hierarchy constitutes an 
interesting problem of competing trade-offs in cost, energy and 
performance. The solutions adopted for this problem vary 
greatly from system to system, it being unclear whether there is 
a universal solution. To achieve the expected scalability of future 
many-core CMPs, the use of a directory-based coherence 
protocol seems unavoidable. In contrast, current high-
performance commercial systems seem to favor the use of 
broadcast-based coherence protocols [9], [14], [16]. This 
approach is used sometimes for the intra-chip and off-chip realm 
even with a large number of coherent cores. Consequently, 
although from the energy standpoint, broadcast-based coherence 
loses its appeal when the number of cores in the system grows, 
its performance advantage and complexity compared to 
directory-based coherence makes it predominant. 

In general, directory-based approaches demand inclusivity to 
guarantee correctness. When the number of cores grows, simple 
approaches such as duplicate-tag directories become inefficient 
due to the large associativity required. To meet energy 
constraints, the solution adopted is to over-provision the 
directory to minimize the unnecessary evictions in private 
caches due to directory conflicts under a constrained (and 
realistic) associativity [15]. Unfortunately, the size of the private 
caches is growing as a consequence of the larger and larger sizes 
in the last-level cache (LLC), which implies that the number of 
blocks the directory must track has to be larger.  

On the other hand, broadcast-based coherence protocols 
interrogate all coherence agents in the chip when a core misses 
the desired block in its private caches. In order to guarantee 
correctness, neither inclusivity nor additional structures to track 
block copies are required. Therefore, resource utilization is 
better. Nevertheless, this is achieved at the cost of increasing the 
traffic and cache snoops, which will decrease the energy 
efficiency of the system. In small-scale systems, this might be 
tolerable, but when the size of the system grows, the impact will 
be noticeable, and possibly unsustainable. A more subtle effect, 
but a no less relevant one, is the on-chip resource contention that 
characterizes these protocols. As a result, on-chip access latency 
can be affected, perhaps degrading the CMP performance under 
some particular usage scenarios.  

From this standpoint, it would appear that a pure coherence 
protocol might not be the most suitable approach to tackle the 
problem. Intuitively, it seems that the coherence protocol should 
somehow hybridize the best of both types: trying to attain the 
performance effectiveness and implementation cost of a 
broadcast-based coherence protocol with the energy efficiency 
of a directory-based one. This paper addresses this task and 
successfully attains a new coherence protocol, denoted FLASK 
(FiLtered and Allocated just by Shared block Keeper) 
coherence, which can scale as a directory-based coherence 
protocol does, while achieving cache effectiveness similar to a 
broadcast-based one.  

FLASK combines three components in a single logic 
substrate. It uses a directory to track blocks that are actively 
shared. Therefore, private blocks, which are the most frequent 
case, never allocate an entry in the directory unless they are 
accessed during their cache lifetime (i.e., from miss to eviction) 
by another core. Moreover, the inclusiveness property (both for 
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directory and LLC) is not required, avoiding external private 
cache invalidations due to directory conflicts. Correctness is 
guaranteed through token counting. When the copies of a shared 
block are not being tracked by the directory, after a new request 
to the coherence controller a broadcast to all coherence agents is 
generated. The replies are used to reconstruct the directory entry. 
This approach to perform reconstruction of directory entries on 
demand was introduced by MOSAIC [27]. Nevertheless, MOSAIC 

allocates directory entries for any on-chip miss (i.e., for both 
private and shared blocks) and always generates a broadcast if 
there is a miss in the directory. To minimize unnecessary snoops, 
each entry in the directory is assisted by a filter that suppresses 
most unnecessary snoops. This component can directly identify 
the majority of on-chip misses. As a consequence, nearly all of 
the requests to off-chip coherence agents (memory controllers 
and/or off-chip coherence fabric) are not delayed. In the least 
common case, misses in a private cache of an actively shared 
block are always tracked by the filter and dealt with through a 
multicast to the on-chip coherence agents (private cache 
coherence controllers). The filter also has to avoid unnecessary 
off-chip requests. Finally, the architecture of the filter proposed 
allows us to dynamically assign, according to the sharing degree 
of the running workload, storage capacity in the coherence 
controller either to track shared blocks in the directory or to 
identify privately held blocks. This construct allows us to reduce 
the size of the directory even further. 

The main contributions of the paper are: 

 The hybridization of directory and a broadcast coherence in 
a unified logic substrate with optimized implementation and 
energy costs. 

 The proposed strategy can achieve the performance of a 
conventional over-provisioned sparse directory, while 
tracking less than 40% of the private cache entries. 
Similarly, it improves on Token coherence protocol 
performance by 10% and energy delay product by 20%. 

 With only 5% of tracked private cache entries, average 
performance degradation is less than 8% with respect to a 
160% over-provisioned sparse-directory. 

 We show that, using an adaptive storage assignation at the 
coherence controller according to the workload properties, 
we can reduce even further the resources of the directory. 
This is based on the distinctive properties of the filter 
mechanism used. Under these circumstances, the proposal 
is able to match a sparse-directory performance while 
tracking only 20% of private cache entries. 

II. BACKGROUND AND MOTIVATION 

A. Directory Coherence Shortcomings 

Directory-based protocols seem to be an attractive approach 
to enforce cache coherence in a CMP. Nevertheless, when the 
number of cores is high and the on-chip hierarchy complexity 
grows, the directory is difficult to scale. We will assume a 
multilevel hierarchy with a shared last-level cache (LLC). A cost 
effective way to track the coherence information in this structure 
is to use a sparse-directory [15]. In contrast to in-cache directory, 
only the data actively used by the cores (i.e. contained in private 
caches) has to be tracked. This is much more cost effective, since 

the storage devoted to LLC is usually larger than private caches. 
Additionally, LLC has to be banked in order to alleviate access 
contention. In most cases, it is appealing to use scalable 
interconnects to connect these banks [17]. Under these 
circumstances, it is straightforward to bank the directory 
accordingly and attain an easy-to-handle, distributed structure. 

In an on-chip cache, similar to state-of-the-art systems [10], 
[14], [16], in order to close the gap in the access time between a 
small L1 (dominated by processor clock cycle) and a very large 
LLC (dominated by main memory access time), an intermediate 
level is required. As a consequence the number of blocks that the 
directory has to track is larger. Additionally, those intermediate 
levels usually have a substantial associativity. Recent designs 
[14][16] also require a large associativity for L1. In summary, 
the number of blocks that can be mapped in a set of the directory 
could be high. Although in some early CMPs [21] the directory 
is provisioned to keep all the blocks in the private caches, when 
the number of cores or private cache complexity and size grows, 
this is not feasible due to the enormous associativity required by 
the directory. However, reducing this associativity increases the 
eviction of blocks in the private caches due to conflicts in the 
directory. 

A rule of thumb  [15] suggests that over-provisioning the 
directory with twice the capacity required to track the private 
caches will diminish the problem. Since the amount of cache to 
track and the sharing vector will increase with the number of 
cores, the cost of the directory grows quadratically. Otherwise, 
the number of invalidations in the private caches would grow 
significantly [12], impairing system performance.  

Fortunately, the directory cost problem can be tackled by 
considering the application semantics. It is known that most 
memory regions are accessed privately by a single core most of 
the time [11][3]. If the directory is aware (actively [11][3] or 
passively [27][12]), we can reduce the number of private blocks 
that we have to track in the directory. Consequently, we can 
reduce the number of entries without interfering with the private 
cache performance.  

B. Broadcast Coherence Shortcomings 

The main problem with these protocols is their scalability 
issues, due to the extra traffic and cache snoops that each private 
cache miss triggers. Similarly to the directory, this might grow 
when the number of cores is increased (because more traffic is 
required) and the private caches are bigger (because the tag 
snoops are more costly). With a restricted number of cores, 
however, broadcast seems to be the most suitable choice, bearing 
in mind that many commercial high-performance processors use 
it [10][14][16]. For these systems, cost constraints support this 
design decision but it might not be sustainable in future designs.  

One way to tackle the problem is to use suitable 
interconnections that minimize the utilization of the same 
resource in the network by copies of the same message. This will 
be done by supporting on-network broadcast and/or  on-network 
gather [19][22]. At the same time, to avoid both communication 
and tag snoop overheads, many works  advocate filtering 
[10][28] or adapting the protocol behavior to the bandwidth 
availability [25][30]. In order to filter out unnecessary memory 
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controller (MC) accesses or off-chip coherence fabric interfaces 
(XC), additional mechanisms should be provided [16][10]. 

C. Cache Coherence Hybridization 

Many of the previous solutions proposed to alleviate both 
directory and broadcast limitations are based on a 
complementary design alternative. For example, in a directory 
for shared blocks, the approach followed is to snoop all or a 
subset of the coherence agents to see whether they have a copy 
of the block when a request misses in the directory and/or LLC 
[12][27]. In other works, the coherence protocol acts as a snoop-
based protocol does. Therefore, the resulting protocol mimics a 
directory protocol in some cases and a broadcast protocol in 
others. The same observation could be made for some broadcast-
based coherence protocols, which reduce the energy overheads 
through the insertion of structures to filter unnecessary cache 
snoops [28]. In some way, most of these solutions use a “base” 
approach (either directory or broadcast) and use the 
complementary one to compensate for its inherent limitations. 
Similarly, our proposal combines both strategies: a standard 
sparse directory [15] and token coherence [24]. We will use a 
directory-like structure to track most shared blocks (with 
precision in a sharing vector) and private block presence 
(approximately). In both cases, token coherence is used to 
discover when, after a miss, a block should be classified in one 
or other group. The information present in this structure will be 
used to minimize the on-chip and off-chip traffic. Then, 
intuitively, we can say that both facets of the coherence protocol 
operate with similar levels of relevance. Our objective is a 
mechanism able to get the best of both worlds: the performance 
of a broadcast-based protocol with the energy efficiency of a 
directory-based protocol, while incurring a minimal storage 
overhead.  

III. FLASK COHERENCE  

The coherence controller is composed of two key elements: 
a sparse directory that will be used only for actively shared data 
and a filter that will be in charge of determining when, for a 
given address, there is a copy of the block in any private cache. 
In both cases, we will use token counting [24] with two 
objectives: guaranteeing that coherence invariants are respected 
and monitoring when the filter should be updated. The number 

of tokens of a block that enters the chip is set to the number of 
cores. Then, a copy of a block can be read if it has at least one 
token. A copy of the block can be written if it has all the initial 
tokens. In this way, we guarantee single writer/multiple readers 
invariant for each block. Token counting will be useful to 
discover whether a block is being actively shared or not and to 
act accordingly, not just in the sparse directory but also in the 
filter. Filter management is mostly isolated from coherence 
protocol. In fact, the coherence controller will act correctly with 
an empty filter. Token counting allows us to use this strategy: it 
helps the filter to determine when the last copy of the block 
leaves or enters the chip. The filter should be understood as a 
traffic filtering device for both on-chip and off-chip traffic. A 
high-level representation of the coherence controller is shown in 
fig. 1. Next, we will detail how each element operates. 

A. Sparse Directory (for the majority of the actively Shared 

Blocks) 

Broadcast Token Coherence (TokenB) resolves misses in the 
private cache by issuing a request to all the potential coherence 
agents in the chip where a copy can reside. To avoid this 
scenario, we use a sparse-like directory. In contrast to 
conventional sparse directories, this will track only actively 
shared blocks. This means that when a block is missing in the 
chip, an entry will be allocated only in the corresponding private 
cache. If the block remains private, when it gets replaced, it will 
be progressively moved to further levels until it gets evicted to 
the LLC, which is non inclusive. We denote the time between 
these two points the private caching period. The block is 
actively shared if during the private caching period it is accessed 
by another core in the system. If this circumstance arises, we 
need to allocate an entry in the directory with its sharing 
information, i.e. with the two cores if the second request was a 
read, or with the last core if it was a write. 

Thus when a processor misses in the corresponding private 
cache, it is not possible to determine whether there are copies in 
other private caches just by checking whether there is an entry 
allocated in the directory or not. Note that when a directory entry 
is evicted no external invalidations are sent to the private caches 
that hold a copy of the block. At first, after any miss in the 
directory, we will assume that it will initiate a reconstruction 

 

Fig. 1. High-level representation of a lookup in the FLASK coherence controller (simplified vision with a direct-mapped sparse directory and a parallel counting 
bloom filter with n counters and two hash functions). 
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process, which will snoop the remaining coherence agents in 
order to recreate the sharing vector. Using token counting, the 
directory will be aware when the information received is enough 
to unblock the pending memory operation. The on-chip 
coherence agents will respond with the count of tokens owned 
for the requested data.  

There will be 3 potential scenarios: 

(1st Case) If the response is delivered from memory, we 
consider that the block is private and the requesting core will be 
the owner of the data. Then the directory can directly forward 
the data and tokens to the requesting processor without 
allocating an entry in either the directory or the LLC (i.e. a 
private block will not evict the information corresponding to 
another shared block).  

(2nd Case) If the response comes from LLC and it indicates 
that LLC has all the tokens, the directory knows that there is no 
other copy of the block in the chip and it can instruct the LLC to 
forward the block to the requestor processor. In this case, like in 
memory responses, we know that the block is not actively shared 
and so it will not be necessary to allocate a new entry in the 
directory.  

(3rd Case)  If any response comes from any of the cores, i.e. 
from their private caches, we know that the block is being 
actively shared and so a directory entry will be allocated. If the 
pending operation is a load, the directory instructs the private 
cache with the owner token to forward the data to the requestor 
and it keeps counting incoming answers. When the location of 
all the tokens is known, the sharer vector is accurate. If the 
pending operation is a store, the directory instructs all the private 
caches with tokens to forward them to the requestor core 
(consequently invalidating the data) and also requests the cache 
where the owner token is allocated, to forward the data block to 
the requestor processor. When all the tokens are received by the 
requesting core, it knows that it can proceed with the operation, 
and unblock the directory entry. 

The reconstruction approach is based on the one proposed in 
MOSAIC [27]. Nevertheless, FLASK never allocates an entry in 
the directory unnecessarily (i.e. for a private block). Eventually, 
MOSAIC can use the directory to allocate mostly shared blocks, 
but on-chip misses will trigger directory replacements. 
However, in any case, this will imply a directory-induced private 
replacement like in conventional sparse directories. It will 
increase the effort necessary to reconstruct sharing information 
if the replaced entry was shared through a multicast operation. 
Like in the Stash Directory [12], we will allocate only shared 
data. In contrast to our proposal, the Stash directory requires an 
inclusive LLC to identify shared blocks. This means that in 
FLASK (or MOSAIC) more blocks missed in private caches will 
be located in LLC because of their greater effective capacity. In 
fact, the 2nd scenario will be the most common case. Requesting 
the block first from the LLC, in most cases, will make it 
unnecessary to ask the remaining coherence agents. Finally, like 
in MOSAIC and in contrast to the Stash directory, the eviction of 
an entry in the directory does not require invalidating the copies 
in the private caches. This will be helpful for frequent read-only 
blocks (such as instructions) since eventually they will be shared 
without using an entry in the directory. Note that many 
workloads, such as most server/transactional applications, have 

a large instruction footprint with a high sharing degree [5]. 
Finally, FLASK will filter unnecessary on-chip and off-chip 
traffic through the mechanism described next.  

B. Counting Filter (for all the on-chip blocks) 

Using the previously described policy to manage the 
directory will substantially increase the on-chip and off-chip 
request traffic. The second core accessing an actively shared 
block will be unable to determine whether it is present in the 
chip. Therefore, all the coherence agents should be interrogated 
when a miss occurs in the directory. Since our intention is to 
keep track of only the actively shared blocks in the directory 
(with the object of reducing the size), this will be the common 
case.  

To tackle this issue, at the directory level, we have to track 
whether the data is present or not in the chip. Note that the 
aggregate private blocks tracked by this structure can be large, 
since both the number of cores in the chip and the private cache 
assigned to each one can be large. In contrast to directory, we 
can trade off inaccuracy in this structure in order to maintain the 
implementation cost constrained. This structure should also be 
useful to filter unnecessary memory snoops (i.e. snoop memory 
when there is a copy of the block present in the chip). 

1) Filtering the On-chip traffic  
We propose using a small counting bloom filter [6] attached 

to each directory entry to track all the tags contained in the 
private sets that map onto the entries of the directory. A counting 
bloom filter is an efficient, approximate set membership check 
that enables the tracking of a tag’s presence in the private caches 
at a fraction of the regular cost. Since this is a filtering structure 
and not a correctness construction, we can tolerate the presence 
of false positives. These situations might increase traffic and 
delay memory accesses but they will not affect system 
correctness. 

In our case, we need to increment and decrement the counters 
of the filter each time a block arrives or leaves the chip. The 
event required that triggers the increment in the counters will be 
an on-chip miss. This situation can be identified when the data 
arrives at the chip after a miss. On the contrary, decrementing 
each counter might be a significantly harder task. It requires 
identifying when there is no longer a copy of the block in the 
chip. We will use token counting for this purpose. As in the first 
scenario, if on LLC eviction a block has all the tokens, we know 
that there will be no other copies in the chip and consequently 
we can decrement the filter directly. The remaining scenario, i.e. 
a block that has to be evicted from LLC without all the tokens, 
can be much more complex to handle.  Fortunately, when a block 
is evicted from LLC, in most cases (>99.99%) the block has all 
the tokens. This is an expected behavior, since the reuse distance 
supported by private caches is much shorter than that supported 
by the LLC, given the size ratios between the two caches. Instead 
of dealing with the problem through coherence protocol 
constraints, we opt to use the fact that the second case is very 
unlikely. Then, if we have to evict a block in LLC without all 
the tokens, we invalidate any private copy of the block through 
a broadcast. When all the tokens are collected in the LLC, we 
know that we can decrement the corresponding counters in the 
filter. 

201



Finally, as with any counting bloom filter, the counters can 
overflow [4]. This situation might affect system correctness 
since there could be false negatives. Memory requests are likely 
for blocks potentially modified in the chip. The coherence 
protocol should contemplate this event and handle it 
accordingly. As this is a very unusual case, again, it is not cost 
effective to increase the complexity of the coherence protocol 
because of it. We opt for avoiding counter saturation through 
invalidation. If after an on-chip miss (and subsequent addition), 
some of the counters reach the maximum value, we invalidate 
all the private cache sets mapped onto that portion of the filter. 
Although at first sight this might seem to have a huge 
performance impact, in practice, with a large variety of 
configurations and workloads, it is extremely unlikely that this 
event would ever happen. This is consistent with the fact that the 
probability of having a counter overflow, is very unlikely [4]. 

2) Filtering the Off-chip traffic  
Broadcast-based coherence protocols in CMP might increase 

the demands on the off-chip coherence agents as well as the 
energy overhead in unnecessary private cache tag snoops and 
traffic. Since this might affect a scarce resource such as the off-
chip bandwidth, it is often managed by complex structures in the 
memory controller in charge of filtering or canceling 
unnecessary memory requests on the fly [10]. From our 
perspective, we can reuse the previously described on-chip 
filtering strategy to carry out this task seamlessly. When a tag is 
not found in the filter, as false negatives are not tolerated, we 
know that it will be found in memory. These are compulsory 
accesses. However, if there is a hit in the filter, the block will 
most often be in the chip, it being unnecessary to interrogate the 
memory. The problem we face is the false positives, which have 
a very low but non-zero probability. If we proceed as usual 
without asking the memory, the system might reach starvation. 
Instead of contemplating these events (e.g. through starvation 
detection [24]), we prevent this situation by forcing the cores 
without tokens to acknowledge directory entry reconstructions. 
In contrast to other protocols [10], the overhead of these 
acknowledgements is only present when there is a hit in the 
filter. The directory coherence controller will wait for all these 
answers before sending a request to the memory. Consequently, 
on-chip misses in which the counting bloom filter returns a false 
positive will be delayed until the coherence controller is aware 
that this block is not inside the chip. Fortunately, if the counting 
bloom filter is correctly dimensioned, the probability of having 
these false positives will be small enough to not interfere 
noticeably with system performance. The consequence is that 
memory accesses, in the worst case, will be delayed by a few 
tens of cycles. The positive effect of this approach is that the 
memory controllers do not have to be able to filter or cancel 
unnecessary memory requests. Note that the cost of this 
functionality might be substantial. 

IV. FILTER DESIGN CONSIDERATIONS 

A. Implementation: Improving Counting Bloom Filter Storage 

Efficiency 

The storage capacity budget of the coherence controller 
should be used to keep block sharers in the sparse directory and 
an indication of the presence of a tag in any private                                                                                
cache in the filter. If we assume a structure similar to fig. 1, (i.e. 

assigning an independent filter to the private blocks that map 
onto the same directory entry), the storage cost of the filter and 
the directory is similar. Additionally, if we do not share the 
counters between different hashes, i.e. a parallel bloom filter, the 
number of read/write ports is independent of the number of hash 
functions. According to [34], the accuracy of this approach is 
close to a costlier true bloom filter. 

For a conventional Counting Bloom Filter (CBF) with n 
private blocks mapped onto the entry, and m counters with the 
optimal number of hashes, according to [8], the probability of a 
false positive is approximately: 

𝑃𝑓𝑝_𝐶𝐵𝐹 ≈ (𝑙𝑛(2))
𝑚/𝑛



Then, to achieve a false positive probability of 5%, we 
require that m/n>8, which is equivalent to having at least 8 
counters per private cache entry. To minimize the saturation 
probability, we need at least 4 bits per counter. In this case, the 
overflow probability is approximately e-ln2(ln 2)16/16!)=6.8E-17 
[8]. Therefore, we need at least 32 bits per private block. This 
represents a saving of 50% for a 64-bit tag.  

Unfortunately, conventional hash functions behave far from 
ideally, which unbalances counter usage in a CBF [31]. A quasi-
perfect alternative is d-left hashing [37]. Over this base, Bonomi 
et al. [7] introduce a new filter called a d-left Counting Bloom 
Filter (dlCBF) that  at least doubles the efficiency of the counters 
of a CBF, with a similar implementation cost. A high-level 
representation of this filter is shown in fig. 2. The filter works as 
follows: the table is divided into as many sub-tables as necessary 
(two in the example, four in practice might suffice). Each table 
is divided into “buckets”, five in the example. Each bucket is 
divided into multiple cells. Each cell has a small counter and a 
few bits to store the address signature. The address signature 
(called remainder) and the bucket are computed applying a 
conventional hash function to the address and a permutation per 

 

Fig. 2. Sketch of a dlCBF filter. Each cell stores a remainder and a counter. 
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sub-table to the previous result. Both can be done using simple 
combinatory logic [34]. The counter is only employed for the 
unusual case of different addresses with the same remainder (in 
practice 2 or 3 bits suffice).  

When we compute the bucket for each sub-table, we allocate 
one entry in the least used bucket. The key element in this filter 
is d-left hashing, which establishes that if two destination 
buckets for an address have the same number of entries, the left 
one should always be chosen [37]. This allows near-perfect cell 
load usage, and consequently better coverage for the filter. In the 
case of the example, the bucket chosen is b1 for the first sub-
table and b2 for the second one. If we assume that both have the 
same number of entries allocated (two different remainders with 
the same number of occurrences), we choose the left table to add 
the new remainder. If we assume that the new remainder is not 
present in the table, we allocate a new entry for it and set the cell 
counter to 1. To look up the filter, the operation is similar. Note 
that the total number of bits per bucket is pretty small, so the 
search can be done in an external register avoiding the need for 
a content addressable memory. Since all sub-tables are handled 
independently, like in a parallel bloom filter, we can use a 
conventional single-ported SRAM memory. Therefore, like in a 
conventional CBF, we can use the same storage to keep either 
directory or filter information. The controller logic should route 
each access in accordance with its use. Note that filter updates 
are done on LLC replacement or on-chip misses; in the first case, 
outside the critical path, and in the second one, overlapped with 
main memory access. Since the filters are banked, even in the 
case of having thousands of pending on-chip memory 
operations, the number of pending operations per filter will be 
low. Consequently, we can assume that the cost of updating the 
filter will be negligible. The look-up of a filter with A sub-tables 
is similar to a conventional parallel counting bloom filter with A 
hash functions: each bucket in the corresponding sub-table is 
read in parallel. We should look up the presence of the remainder 
in the bucket. This is equivalent to a tag search in an A-
associative cache, we assume that the look-up operation is the 
same as that required for an equivalent directory. 

For a dlCBF, the probability of false positives, with a d sub-
table configuration of b buckets each, and r bits per remainder is 
given by  [7]:  

𝑃𝑓𝑝_𝑑𝑙𝐶𝐵𝐹 = 1 − (1 −
1

𝑑 · 𝑏 · 2−𝑟
)𝑛 ≈

𝑛

𝑑 · 𝑏
2−𝑟

Assuming c cells per bucket and a utilization factor of ρ (<1), 
and choosing a total number of buckets depending on n as n/( 
ρ·c·d): 

𝑃𝑓𝑝_𝑑𝑙𝐶𝐵𝐹 ≈ 𝜌 · 𝑐 · 𝑑 · 2−𝑟

Thus, assuming four sub-tables (d=4), eight cells per bucket 
(c=8) and a 3/4 usage per bucket (ρ=0.75), to achieve a 5% false 
positive probability, the number of bits per remainder is 9. 
Assuming a 3-bit counter, each cell requires 12 bits. To 
compensate for bucket utilization, we have to multiply this 
number by 1/ρ ~16 bits which is necessary per element tracked. 
This, is less than half the number required by the conventional 
bloom filter mentioned above.  

In practice, for a 64-bit physical tag (which might include 
sharing vector and block state), this will lead to a 77% saving. 
For a 256KB L2 and 32 KB L1I, 32 KB L1D and block sizes of 
64 bytes, we will require ~9.2KB per core     (less than 3% of the 
tracked cache size), whereas a conventional CBF will require 
about 20KB. For this configuration each bucket uses 128 bits, 
which simplifies table lookup. If we reduce the filter size (to save 
area), the false positive probability might increase, but not in a 
significant way. Note that all the theoretical estimations are 
made assuming no spatial locality or sharing in the stream of 
addresses. 

In regard to the overflow probability of the 2-bit counter, a 
higher bound for the configuration assumed with 5k blocks per 
private cache, with cnt=3 bits per counter, is given by [7]:  

(
𝑛

2𝑐𝑛𝑡 + 1
) (

1

#𝑏𝑢𝑐𝑘𝑒𝑡𝑠 · 2𝑟
)
2𝑐𝑛𝑡+1

≈ (
5000
9

) (
1

256 · 29
)
9

≈ 4.6 · 10−19

In any case, we have provided a fallback mechanism to 
rescue the system in this situation. Note that the system could be 
running continuously for months or years, and so the inclusion 
of this corner case is not an option. 

B. Filter/Directory Resource Partitioning 

The filter and the sparse directory are “complementary” 
structures, since actively shared blocks will reduce the load on 
the filter and private blocks will never use directory entries. 
Initially, we will assume storage resources statically splitting the 
available SRAM for one or other purpose. Restricting the filter 
capacity will increase the probability of false positives, which 
will increase the on-chip traffic and delay off-chip misses. 
Restricting the directory capacity to the point that the working 
set of the actively shared blocks does not fit will increase the 
reconstruction probability. This could be used effectively to 
provide a low tracking capability (perhaps for less than 20% of 
private cache blocks). 

dlCBF is able to reconstruct the members from the remainder 
and bucket information. To do so, the permutation used to fill up 
the tables has to be invertible [7]. Then, it is possible to 
reconstruct a sub-table by observing the remainder sub-table and 
simply rolling back the permutation. Thus, it is possible to 
“move” the tracking of a block from one sub-table to another. In 
this way, if we detect that the directory is highly loaded (through 
the frequency of reconstructions), we can adaptively de-allocate 
one of the entries in the filter and expand the number of ways in 
the directory. Similarly, if the workload is not using the directory 
entries because all/most of the data are private, we can expand 
the filter with additional sub-tables, reducing the false positives 
without increasing the reconstruction frequency. Note that this 
operation is not possible in a conventional CBF. 

Initially, for all workloads, we will equally split the storage 
capacity between the filter and the directory. Later, and after 
observing the application’s behavior, we will explore workload-
dependent partitioning in order to see how beneficial this 
approach can be in reducing adverse effects in extreme cases. 
We will not discuss implementation cost, although it does not 
seem to be an issue. Perhaps some multiplexors will be 
necessary to connect the SRAM content to the coherence 
controller or the filter. In any case, note that the dynamic 
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behavior will have a negligible impact on performance since the 
one-by-one migration of filter sub-table entries to directory 
could be done in the background with the normal system 
operation. The opposite operation is direct (just requires 
invalidating directory entries that will be used as a sub-table). 
We will not discuss the mechanism for triggering this process 
since the sharing pattern of the applications is quite stable 
throughout the execution. The most cost effective way is to 
trigger it by software at the beginning of the workload.  

V. EVALUATION METHODOLOGY 

A. System Configuration  

To analyze FLASK, we model a CMP with out-of-order cores 
that mimics the execution resources and on-chip cache hierarchy 
of the Intel Haswell processor [16]: using 6-wide issue cores 
with 196 in-flight instructions and up to 64 pending memory 
operations. The number of cores in the CMP is 16. Therefore, 
the coherence fabric has to support up to 1024 concurrent 
memory operations. There are three levels of cache. The first two 
are private, strictly non-inclusive (i.e. L2 acts as a victim cache 
of L1). The third level is shared and uses a mesh network, which 
is characterized by better on-chip bandwidth scalability than a 
ring network. We will assume that the routers in the network can 
handle multicast traffic natively [19], have single-cycle low-load 
pass-through [23], separate virtual-networks to avoid end-to-end 
protocol deadlock and over-provisioned buffering (90 flits per 
port). Similarly to the LLC, the directory is banked and 
interleaved by the least significant bits. To quantify FLASK’s 
properties and to understand how it behaves compared to snoop 
and directory-based protocols, we have implemented two 
reference protocols based on TokenB [24] and on a sparse-
directory [15] respectively. TokenB has been selected because it 
allows a scalable out-of-order network to be used without adding 
additional mechanisms outside the coherence controllers. Using 
the same methodology and tools, all coherence protocols have 
been optimized fairly. A full SLICC specification for a 3-level 
hierarchy can be found in [38]. Memory bandwidth is over-
provisioned to avoid the necessity of tuning memory controller 
architecture to each protocol. In practice, contention is negligible 
in all protocols. In a more realistic environment, broadcast 
protocol should be handled carefully to avoid unnecessary 
memory requests wasting a very scarce resource such as off-chip 
bandwidth [10].A summary of the other main parameters used 
in our analysis is shown in Table I. 

B. Workloads & Simulation Stack 

We will use GEMS [26] as the main tool for our evaluation. 
With GEMS, it is possible to perform full-system simulations. 
Coherence protocols have been implemented using the SLICC 
language (Specification Language for Implementing Cache 
Coherence). In order to model accurately interconnection 
network contention and its impact on the average access time, 
we replace the original network with TOPAZ [1]. For power and 
cost modeling, we use CACTI 6.5 [29] for the cache and DSENT 
[36] for the network. Ten workloads, shown in Table II, are 
considered in this study, including both multi-programmed and 
multi-threaded applications (scientific and server) running on 
top of the Solaris 10 OS. The numerical applications are three of 
the NAS Parallel Benchmarks suite (OpenMP implementation 
version 3.4 [20]). The server benchmarks correspond to the 

whole Wisconsin Commercial Workload suite [2]. The 
remaining class corresponds to multi-programmed workloads 
using part of the SPEC CPU2006 suite [35] running in rate mode 
(where one core is reserved to run OS services). The mix of 
workloads has been selected trying to cover diverse usage 
scenarios, varying the sharing degree (from none in SPEC 
applications to a large amount in Server Workloads) and sharing 
contention (from none in SPEC to a large amount in scientific 
applications). Among the NAS applications, we chose the three 
with the highest sharing contention. From the SPEC suite, we 
chose three applications with a variable range in working set 
size. We should emphasize that the three families of applications 
exhibit quite dissimilar behavior from the coherence protocol 
perspective, but they have to be considered, given the usage 
scenarios of general purpose CMPs. Focusing the evaluation on 
a single suite of benchmarks, it is hard to consider all the 
characteristics we have represented with the selected mix.  

We model hardware-assisted TLB fill and register window 
exceptions for all target machines. Multiple runs are used to 
fulfill strict 95% confidence intervals (error bars are not visible 
in most cases). Benchmarks are fast-forwarded to the point of 
interest, during which page tables, TLBs, predictors, and caches 
are warmed up. In iteration-based applications, such as NPB, a 

TABLE I. SUMMARY OF 16-CORE CMP SYSTEM CONFIGURATION 

C
o

r
e 

A
r
c
h

. Functional Units 4xI-ALU/4xFP-ALU/ 4xD-MEM 

ROB size / Issue Width 196, 6-way 

Frequency, count  3Ghz, 16 cores 

P
r
iv

a
te

 C
a

c
h

e
s (L1)Size/Associativity / 

Block Size / Access 

Time/Repl. 

32KB I/D, 4-way, 64B, 1 cycle, 

LRU 

(L2)Size / Associativity/ 
Block Size / Access 

Time/Repl. 

256KB Unified, 8-way, 64B, 2 

cycles, LRU, Exclusive with L1 

Outstanding Requests per core 64 

S
h

a
r
e
d

 

L
3
 

Size / Associativity / Block 

Size/Repl. 

16MB (or 32MB), 16 (or 

32)×1MB, 16-way, 64B , LRU 

NUCA Mapping Static, interleaved by LSB 

Slice Access Time 6 cycles 

Mem 
Capacity / Access Time / 

Memory Controllers / BW 
4GB, 240 cycles, 4/32GBs 

N
e
tw

o
r
k

 Topology / Link Latency / 
Link Width/Clock 

4×4 Mesh, 1 cycle, 16B, 3Ghz 

Router Latency (low-load) / 

Flow Control / Routing/ 
Buffering 

1-3 cycle/ Wormhole/DOR/10KB 

TABLE II. MULTITHREADED WORKLOADS  

SERVER 

[2] 

OLTP 
IBM DB2 DBMS, TPC-C like 

10000 Transactions 

Apache 
Apache web server, SpecWeb 

like, 25000 Transactions 

JBB SpecJBB, 70000 Transactions 

Zeus 
Zeus web server, SpecWeb like, 

25000 Transactions 

NPB[20] 

Multi-Grid (MG) CLASS A 

Fast Fourier 
Transform (FT) 

CLASS W 

LU Diagonalization 

(LU) 
CLASS A 

SPEC [35] 

Astar Native, 15 thr. 

Hmmer Native, 15 thr. 

Omnetpp Native, 15 thr. 
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warm checkpoint is taken in the middle of the execution and with 
a reduced number of iteration runs. Transactional workloads are 
warmed up by running hundreds of thousands of transactions, 
and accurately simulated for a fixed number of transactions. 
SPEC workloads are fast-forwarded to the point of interest and 
simulate ~8billion instructions.  

VI. PERFORMANCE RESULTS 

A. Comparative results with reference protocols 

The fundamental parameters of the system for the considered 
coherence protocols running the selected workloads, namely 
execution time, average access-time and memory hierarchy 
energy delay product (EDP) are shown from fig. 3 to fig. 5. To 
clarify the total storage, we denote it as SDE (Sparse-Dir 
Equivalent) capacity. All the results are normalized against 
token coherence and the directory size is being swept from a 
capacity to track 160% of the private cache blocks (8K SDE 
entries) to just 5% (32 SDE entries). Note that in order to keep 
implementation cost constant, in FLASK, at this point, half of this 
capacity is devoted to the filter and half to the directory. In other 
words, in the most extreme case, the FLASK directory will only 

have SDE capacity to track 16 shared blocks per controller (256 
in the whole chip).  

As expected, when the size of the directory is below one 
fourth of the aggregate private caches’ capacity, the sparse-
directory performance is degraded. In contrast to other previous 
works, [12], we observe this degradation with significant 
directory size reduction. This is related to the fact that in that 
work there is only one level of private caches. Here, L2 acts as a 
victim cache for L1. Thus, a directory induced private miss is 
eight times more frequent in L2 than L1. If we take into account 
that in L2, block reuse is low [18], the results seem reasonable. 
With an inclusive L1/L2 (which for an aggressive out-of-order 
core and a shared LLC might not be interesting), the effects will 
be more noticeable but still not too acute. Additionally, it should 
be noted that for an in-order core, directory-induced private 
misses (and subsequent hits in L3) will have more effect on 
performance. The memory level of parallelism present in the 
evaluated system allows the impact to be partially hidden. 

As can be seen in fig. 5, sparse directory hits in private 
caches are reduced when the count of tracked blocks is 
decreased. Thus, there is a substantial increment as data must be 

 
Fig. 3. TokenB Normalized Execution Time. 

 
Fig. 4. TokenB normalized on-chip memory hierarchy EDP. 

 
Fig. 5. TokenB normalized average memory access time. 
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retrieved from LLC (for private blocks) or other private caches 
(for actively shared blocks). In numerical or multi-programmed 
workloads the former case is more frequent while the latter exists 
in server workloads. This is consistent with the sharing degree.  
As can be seen for applications with a large portion of shared 
data, the latency degradation from 160% to 5% is almost 
doubled, degrading the performance by more than 40% on 
average. For these cases the intense coherence traffic due to 
directory-induced invalidations and subsequent LLC hits makes 
the activity increase in the network substantially, which 
degrades the energy properties, making it worse than the snoop-
based protocol. 

When we look at the performance of the snoop-based 
coherence protocol, we can observe unstable behavior. In some 
applications it seems to be almost the best performer while in 
others it is clearly not. The reason can be found in the on-chip 
contention. For some of the scientific applications, there is a 
significant traffic pressure on the LLC network. In spite of 
having a reasonably dimensioned network (4x4 mesh with 3 
GHz clock and 16Byte links) and a router with state-of-the-art 
features [19] [23], the latency of the LLC is larger. Despite being 
an average sized system, extra traffic imposed by broadcast 
requests and the concurrent memory operations (at a given time 
there may be more than 16K packets in-flight) seem to surpass 
network capabilities. The solution for this unpredictable 
behavior is to oversize the network (e.g. increasing the link 
width, using topologies with better connectivity, using a more 
advanced router, etc.) or  to redesign the coherence protocol [30]. 
Unfortunately this would be inappropriate for bigger systems. In 
any case, even in applications where TokenB has a slight 
performance advantage, the energy consumption is higher. 

 FLASK exhibits very different behavior to the other 
protocols. Even in the most extreme configuration, the 

performance seems quite unaffected. In the worst case, which is 
apache, the performance degradation observed versus token is 
13%. In general, it seems that applications with low sharing 
degree are correctly handled, with almost negligible 
performance degradation. Having only SDE capacity to track 
256 private blocks seems to affect other applications more 
significantly. This causes more reconstructions, which delays 
access to shared data after a capacity miss in private caches, 
slightly lengthening LLC access time. In other applications, such 
as the multi-programmed workloads, in spite of having a 
minimal filter (just 32 buckets per sub-table), the effects both on 
performance and energy of this extreme configuration are 
negligible. On average the performance degradation when 
reducing from 160% SDE capacity to 5% is only 8%, which is a 
noteworthy result. In all cases, the number of private-cache 
external invalidations due to the replacement of blocks in LLC 
without all the tokens is negligible. 

Since the on-chip traffic is filtered out, there is no similar 
behavior to that observed for TokenB. In general, the energy 
requirements of the protocol are smaller than token and are quite 
steady regardless of the directory size. Note that this metric is 
pessimistic, since we exclude the cores’ power consumption. As 
FLASK is the best performer in most cases, the EDP of these 
components will be low. 

In summary, with almost no tracking capability, FLASK is 
more stable and energy efficient than broadcast-based protocol, 
and its performance degrades much more gracefully than 
conventional sparse-directory when directory size is reduced.  

B. Filter Efficiency 

The previous results contain some details that we want to 
highlight, namely, the filter efficiency. The main figure of merit 
is the false positives, which increase on-chip energy and memory 
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Fig. 6. TokenB normalized filter efficiency for different SDE sizes. 

 

Fig. 7. TokenB normalized memory latency overhead. 
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access time. Fig. 6 shows the total number of multicasts over a 
range of available storage for the filter capacity. 

For reference, we normalize this metric to multicast in 
TokenB. Note that, when we take into account that the network 
can natively handle multicast traffic and the cache snoop energy 
contribution, this might not be directly transferred to link 
utilization or energy consumption, as we can contrast these 
results with fig. 4.  When the directory is dimensioned for 20% 
of private caches, false positives seem to be consistent with the 
theoretically expected proportion of 5%. If we shrink the SDE 
capacity to just 5% of private caches, although there is an 
increase in false positives, counter saturation never occurs in any 
of the runs of our evaluations.  While in some cases, even with 
such a small filter, it is able to detect a reasonable number of on-
chip misses; in other cases (such as the NAS applications), it 
cannot do so. In some applications, the number of true positives 
(private cache misses for actively shared data) grows when we 
reduce the size of the directory while in others, it remains almost 
unchanged. In the former, the directory is not able to maintain 
the shared working set, whereas in others it can do so. In contrast 
to this behavior, false positives are more numerous in the latter 
applications as private blocks increase the number of elements 
to be tracked by the filter.  

Fig. 7 shows the TokenB normalized memory access time 
(from the core perspective, i.e. includes the whole latency to 
transmit the desired word from memory to the processor back-
end) for FLASK and sparse-dir. Note that memory requests in 
both cases will be roughly the same, since most off-chip requests 
are induced by LLC capacity misses and both protocols handle 
LLC data in the same way. In numerical applications, false 
positives for very small filter capacities have a negative effect 
due to the delay in off-chip access and the on-chip latency that 

the extra traffic adds. Consequently, there is a significant 
increase in memory access time. In applications such as the 
server workloads, the extra traffic due to compulsory 
reconstructions increases the contention, increasing the access 
time to the memory controller and therefore delaying the 
memory access. 

 For the generous off-chip bandwidth considered, the results 
are dominated by on-chip effects: on-chip contention and the 
additional latency induced by false positives (which   delays the 
memory request until the coherence controller realizes that there 
is no on-chip copy). Even in the most adverse directory 
configuration, the effect is less than 5%. This is almost 
unnoticeable in the average access time, as can be appreciated in 
fig. 5. Note that in a system with many cores or large private 
caches, this configuration could reduce the storage footprint 
significantly. In any case, directory size can be a useful knob for 
the trade-off between implementation and energy cost.  

C. Adaptive Filter/Directory resource partitioning 

As stated before, dlCBF allows adaptive resource splitting. 
Although we did not implement the on-line adaptation, we can 
statically choose the best configuration for the application. 
Looking at fig. 6, it seems clear that multi-programmed, 
numerical applications require few entries in the directory. On 
the contrary, for commercial workloads, the on-chip traffic is 
dominated by reconstructions. Therefore, we should select only 
a 1-way directory for the first two classes (with 7 sub-tables in 
the filter) and a 7-way directory for the last class (with just 1 sub-
table in the filter). Note that even in a multi-programmed 
workload, a small number of OS addresses might be shared, so 
we need at least a 1-way directory. The broadcast signature, 
normalized against the token, is shown in fig. 8. The 
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Fig. 8. TokenB normalized traffic filtering with adaptive partitioning. 

 

Fig. 9. 40% SDE Static normalized performance of FLASK with dynamic and static storage allocation. 
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performance results of the static and dynamic storage allocation 
in the memory controller are shown in fig. 9. If we compare these 
results with those provided in fig. 6, the effect of the approach is 
to halve the storage resources with negligible impact. For 
example, under these conditions with 10% SDE capacity, the 
traffic requirements are close to 20% of SDE capacity when the 
results are statically halved. Consequently with just 10%, in 
most applications, a tolerable false positive rate is observed. On 
average, with 10% and 5% of SDE capacity, we observe a 
performance penalty of about 3% and 6% respectively. Although 
dlCBF is suitable for an on-line mechanism, capable of 
morphing sparse-directory and filter throughout the application 
execution, we left this analysis open for future work. Under 
cloud-computing scenarios (with live workload migration), this 
might be interesting, given the results seen here. However, in 
any case, we believe that such a task should be done in the 
software layer, since the switch in behavior will be quite 
infrequent.  

D. Comparing FLASK with other directory cost reduction 

alternatives 

FLASK can be combined with other strategies focused on the 
same goal [11][12][13][27][32]. Some of them are focused on 
eliminating the directory overprovision by emulating large 
associativity through multi-hashing indexing and insertion [32] 
[33], achieving in most workloads the benefits of a very high 
associativity at a fraction of the cost. Therefore, if we increase 
the associativity of the sparse directory, we can achieve a similar 
effect. Fig. 10 shows the over- provisioned normalized result for 
different associativities (ranging from 1-way to 64-way with a 
fixed capacity). In order to appreciate conflict misses in the 
directory, and given that the computational requirements of the 
evaluation framework system and application scalability 
prohibit it, we artificially reduce the size to just 20% SDE 
(otherwise evictions caused by conflict in the directory are 
negligible). Except in the case of FT, whose counterintuitive 

behavior is caused by very low directory reuse [32], increasing 
the associativity reduces the directory conflicts, which provides 
a slight performance degradation. As we can appreciate, 1-way 
directory in FLASK is able to outperform the sparse directory 
even with 64 ways. In FLASK, the impact of directory conflicts 
on performance is negligible. Therefore, FLASK will provide 
better performance than techniques focused on minimizing 
directory conflicts such as [11][12]. The reasons for this are: (1) 
there is no need to perform external invalidations after a 
directory eviction, and (2) it only uses the directory to track 
actively shared blocks. Under such circumstances, the 
experimental observations made by [15] about conflicts are no 
longer applicable. In fact, although not exploited here, FLASK 

can be used to reduce directory implementation cost (v.gr. using 
very low associativity). 

Like FLASK, MOSAIC was focused on improving directory 
scalability, eluding directory inclusiveness through entry 
reconstruction on demand. Fig. 11 compares the on-chip 
memory bandwidth consumption for the two approaches, for 
different SDE capacities. As expected, the control traffic 
generated by FLASK is significantly less than MOSAIC. This is 
because directory entry reconstructions in FLASK are performed 
only for shared data. This means that in some multi-programmed 
workloads, such as hmmer, the total amount of traffic is up to 
60% less. When the size of the filter is reduced, the false 
positives increase the traffic slightly. With applications with a 
high sharing degree, such as apache, this advantage is smaller. 
In this last type of benchmarks, when the size of directory is 
reduced below 20%, the behavior of the two protocols becomes 
more similar due to the fact that most reconstructions are 
because of shared blocks. On average, and with a directory of at 
least 20%, FLASK enables the reduction of total on-chip traffic 
by 20%. 

 

Fig. 10. 160% SDE sparse directory normalized performance for different associativities (20% SDE). 
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VII. CONCLUSIONS 

We have proposed an evolutionary re-architecture for 
directory coherence protocols that can benefit from snoop-based 
coherence without paying a high toll. The results enable a 
balanced approach that improves system performance in a wide 
range of applications. 

The proposal might be beneficial to scale the coherence 
protocol for many-core systems or for medium-size CMPs, as 
we have demonstrated in the results section especially so bearing 
in mind recent and forthcoming commercial systems. In any 
case, we have shown that even for 16-core CMPs there are both 
power and performance benefits versus other protocols. 
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