
Flask Coherence: A Morphable Hybrid Coherence

Protocol to Balance Energy, Performance and

Scalability
Lucia G. Menezo Valentin Puente Jose-Angel Gregorio

University of Cantabria

Santander, Spain

{gregoriol, vpuente, monaster}@unican.es

Abstract—This work proposes a mechanism to hybridize the

benefits of snoop-based and directory-based coherence protocols

in a single construct. A non-inclusive sparse-directory is used to

minimize energy requirements and guarantee scalability.

Directory entries will be used only by the most actively shared

blocks. To preserve system correctness token counting is used.

Additionally, each directory entry is augmented with a counting

bloom filter that suppresses most unnecessary on-chip and off-chip

requests. Combining all these elements, the proposal, with a low

storage overhead, is able to suppress most traffic inherent to

snoop-based protocols. With a directory capable of tracking just

40% of the blocks kept in private caches, this coherence protocol

is able to match the performance and energy of a sparse-directory

capable of tracking 160% of the blocks. Using the same

configuration, it can outperform the performance and on-chip

memory hierarchy energy of a broadcast-based coherence

protocol such as Token by 10% and 20% respectively.

To achieve these results, the proposal uses an improved

counting bloom filter, which provides twice the space efficiency of

a conventional one with similar implementation cost. This filter

also enables the coherence controller storage used to track shared

blocks and filter private block misses to change dynamically

according to the data-sharing properties of the application. With

only 5% of tracked private cache entries, the average performance

degradation of this construct is less than 8% compared to a 160%

over-provisioned sparse-directory.

Keywords – coherence protocol; multi-core; CMPs

I. INTRODUCTION

The enforcement of hardware coherence in contemporary
CMPs with complex on-chip cache hierarchy constitutes an
interesting problem of competing trade-offs in cost, energy and
performance. The solutions adopted for this problem vary
greatly from system to system, it being unclear whether there is
a universal solution. To achieve the expected scalability of future
many-core CMPs, the use of a directory-based coherence
protocol seems unavoidable. In contrast, current high-
performance commercial systems seem to favor the use of
broadcast-based coherence protocols [9], [14], [16]. This
approach is used sometimes for the intra-chip and off-chip realm
even with a large number of coherent cores. Consequently,
although from the energy standpoint, broadcast-based coherence
loses its appeal when the number of cores in the system grows,
its performance advantage and complexity compared to
directory-based coherence makes it predominant.

In general, directory-based approaches demand inclusivity to
guarantee correctness. When the number of cores grows, simple
approaches such as duplicate-tag directories become inefficient
due to the large associativity required. To meet energy
constraints, the solution adopted is to over-provision the
directory to minimize the unnecessary evictions in private
caches due to directory conflicts under a constrained (and
realistic) associativity [15]. Unfortunately, the size of the private
caches is growing as a consequence of the larger and larger sizes
in the last-level cache (LLC), which implies that the number of
blocks the directory must track has to be larger.

On the other hand, broadcast-based coherence protocols
interrogate all coherence agents in the chip when a core misses
the desired block in its private caches. In order to guarantee
correctness, neither inclusivity nor additional structures to track
block copies are required. Therefore, resource utilization is
better. Nevertheless, this is achieved at the cost of increasing the
traffic and cache snoops, which will decrease the energy
efficiency of the system. In small-scale systems, this might be
tolerable, but when the size of the system grows, the impact will
be noticeable, and possibly unsustainable. A more subtle effect,
but a no less relevant one, is the on-chip resource contention that
characterizes these protocols. As a result, on-chip access latency
can be affected, perhaps degrading the CMP performance under
some particular usage scenarios.

From this standpoint, it would appear that a pure coherence
protocol might not be the most suitable approach to tackle the
problem. Intuitively, it seems that the coherence protocol should
somehow hybridize the best of both types: trying to attain the
performance effectiveness and implementation cost of a
broadcast-based coherence protocol with the energy efficiency
of a directory-based one. This paper addresses this task and
successfully attains a new coherence protocol, denoted FLASK
(FiLtered and Allocated just by Shared block Keeper)
coherence, which can scale as a directory-based coherence
protocol does, while achieving cache effectiveness similar to a
broadcast-based one.

FLASK combines three components in a single logic
substrate. It uses a directory to track blocks that are actively
shared. Therefore, private blocks, which are the most frequent
case, never allocate an entry in the directory unless they are
accessed during their cache lifetime (i.e., from miss to eviction)
by another core. Moreover, the inclusiveness property (both for

This work was supported by the Spanish Government, under contract
TIN2013-43228-P, the University of Cantabria, under grant VP07, and by the

HiPEAC European Network of Excellence.

198978-1-4799-8930-0/15/$31.00 ©2015 IEEE

directory and LLC) is not required, avoiding external private
cache invalidations due to directory conflicts. Correctness is
guaranteed through token counting. When the copies of a shared
block are not being tracked by the directory, after a new request
to the coherence controller a broadcast to all coherence agents is
generated. The replies are used to reconstruct the directory entry.
This approach to perform reconstruction of directory entries on
demand was introduced by MOSAIC [27]. Nevertheless, MOSAIC

allocates directory entries for any on-chip miss (i.e., for both
private and shared blocks) and always generates a broadcast if
there is a miss in the directory. To minimize unnecessary snoops,
each entry in the directory is assisted by a filter that suppresses
most unnecessary snoops. This component can directly identify
the majority of on-chip misses. As a consequence, nearly all of
the requests to off-chip coherence agents (memory controllers
and/or off-chip coherence fabric) are not delayed. In the least
common case, misses in a private cache of an actively shared
block are always tracked by the filter and dealt with through a
multicast to the on-chip coherence agents (private cache
coherence controllers). The filter also has to avoid unnecessary
off-chip requests. Finally, the architecture of the filter proposed
allows us to dynamically assign, according to the sharing degree
of the running workload, storage capacity in the coherence
controller either to track shared blocks in the directory or to
identify privately held blocks. This construct allows us to reduce
the size of the directory even further.

The main contributions of the paper are:

 The hybridization of directory and a broadcast coherence in
a unified logic substrate with optimized implementation and
energy costs.

 The proposed strategy can achieve the performance of a
conventional over-provisioned sparse directory, while
tracking less than 40% of the private cache entries.
Similarly, it improves on Token coherence protocol
performance by 10% and energy delay product by 20%.

 With only 5% of tracked private cache entries, average
performance degradation is less than 8% with respect to a
160% over-provisioned sparse-directory.

 We show that, using an adaptive storage assignation at the
coherence controller according to the workload properties,
we can reduce even further the resources of the directory.
This is based on the distinctive properties of the filter
mechanism used. Under these circumstances, the proposal
is able to match a sparse-directory performance while
tracking only 20% of private cache entries.

II. BACKGROUND AND MOTIVATION

A. Directory Coherence Shortcomings

Directory-based protocols seem to be an attractive approach
to enforce cache coherence in a CMP. Nevertheless, when the
number of cores is high and the on-chip hierarchy complexity
grows, the directory is difficult to scale. We will assume a
multilevel hierarchy with a shared last-level cache (LLC). A cost
effective way to track the coherence information in this structure
is to use a sparse-directory [15]. In contrast to in-cache directory,
only the data actively used by the cores (i.e. contained in private
caches) has to be tracked. This is much more cost effective, since

the storage devoted to LLC is usually larger than private caches.
Additionally, LLC has to be banked in order to alleviate access
contention. In most cases, it is appealing to use scalable
interconnects to connect these banks [17]. Under these
circumstances, it is straightforward to bank the directory
accordingly and attain an easy-to-handle, distributed structure.

In an on-chip cache, similar to state-of-the-art systems [10],
[14], [16], in order to close the gap in the access time between a
small L1 (dominated by processor clock cycle) and a very large
LLC (dominated by main memory access time), an intermediate
level is required. As a consequence the number of blocks that the
directory has to track is larger. Additionally, those intermediate
levels usually have a substantial associativity. Recent designs
[14][16] also require a large associativity for L1. In summary,
the number of blocks that can be mapped in a set of the directory
could be high. Although in some early CMPs [21] the directory
is provisioned to keep all the blocks in the private caches, when
the number of cores or private cache complexity and size grows,
this is not feasible due to the enormous associativity required by
the directory. However, reducing this associativity increases the
eviction of blocks in the private caches due to conflicts in the
directory.

A rule of thumb [15] suggests that over-provisioning the
directory with twice the capacity required to track the private
caches will diminish the problem. Since the amount of cache to
track and the sharing vector will increase with the number of
cores, the cost of the directory grows quadratically. Otherwise,
the number of invalidations in the private caches would grow
significantly [12], impairing system performance.

Fortunately, the directory cost problem can be tackled by
considering the application semantics. It is known that most
memory regions are accessed privately by a single core most of
the time [11][3]. If the directory is aware (actively [11][3] or
passively [27][12]), we can reduce the number of private blocks
that we have to track in the directory. Consequently, we can
reduce the number of entries without interfering with the private
cache performance.

B. Broadcast Coherence Shortcomings

The main problem with these protocols is their scalability
issues, due to the extra traffic and cache snoops that each private
cache miss triggers. Similarly to the directory, this might grow
when the number of cores is increased (because more traffic is
required) and the private caches are bigger (because the tag
snoops are more costly). With a restricted number of cores,
however, broadcast seems to be the most suitable choice, bearing
in mind that many commercial high-performance processors use
it [10][14][16]. For these systems, cost constraints support this
design decision but it might not be sustainable in future designs.

One way to tackle the problem is to use suitable
interconnections that minimize the utilization of the same
resource in the network by copies of the same message. This will
be done by supporting on-network broadcast and/or on-network
gather [19][22]. At the same time, to avoid both communication
and tag snoop overheads, many works advocate filtering
[10][28] or adapting the protocol behavior to the bandwidth
availability [25][30]. In order to filter out unnecessary memory

199

controller (MC) accesses or off-chip coherence fabric interfaces
(XC), additional mechanisms should be provided [16][10].

C. Cache Coherence Hybridization

Many of the previous solutions proposed to alleviate both
directory and broadcast limitations are based on a
complementary design alternative. For example, in a directory
for shared blocks, the approach followed is to snoop all or a
subset of the coherence agents to see whether they have a copy
of the block when a request misses in the directory and/or LLC
[12][27]. In other works, the coherence protocol acts as a snoop-
based protocol does. Therefore, the resulting protocol mimics a
directory protocol in some cases and a broadcast protocol in
others. The same observation could be made for some broadcast-
based coherence protocols, which reduce the energy overheads
through the insertion of structures to filter unnecessary cache
snoops [28]. In some way, most of these solutions use a “base”
approach (either directory or broadcast) and use the
complementary one to compensate for its inherent limitations.
Similarly, our proposal combines both strategies: a standard
sparse directory [15] and token coherence [24]. We will use a
directory-like structure to track most shared blocks (with
precision in a sharing vector) and private block presence
(approximately). In both cases, token coherence is used to
discover when, after a miss, a block should be classified in one
or other group. The information present in this structure will be
used to minimize the on-chip and off-chip traffic. Then,
intuitively, we can say that both facets of the coherence protocol
operate with similar levels of relevance. Our objective is a
mechanism able to get the best of both worlds: the performance
of a broadcast-based protocol with the energy efficiency of a
directory-based protocol, while incurring a minimal storage
overhead.

III. FLASK COHERENCE

The coherence controller is composed of two key elements:
a sparse directory that will be used only for actively shared data
and a filter that will be in charge of determining when, for a
given address, there is a copy of the block in any private cache.
In both cases, we will use token counting [24] with two
objectives: guaranteeing that coherence invariants are respected
and monitoring when the filter should be updated. The number

of tokens of a block that enters the chip is set to the number of
cores. Then, a copy of a block can be read if it has at least one
token. A copy of the block can be written if it has all the initial
tokens. In this way, we guarantee single writer/multiple readers
invariant for each block. Token counting will be useful to
discover whether a block is being actively shared or not and to
act accordingly, not just in the sparse directory but also in the
filter. Filter management is mostly isolated from coherence
protocol. In fact, the coherence controller will act correctly with
an empty filter. Token counting allows us to use this strategy: it
helps the filter to determine when the last copy of the block
leaves or enters the chip. The filter should be understood as a
traffic filtering device for both on-chip and off-chip traffic. A
high-level representation of the coherence controller is shown in
fig. 1. Next, we will detail how each element operates.

A. Sparse Directory (for the majority of the actively Shared

Blocks)

Broadcast Token Coherence (TokenB) resolves misses in the
private cache by issuing a request to all the potential coherence
agents in the chip where a copy can reside. To avoid this
scenario, we use a sparse-like directory. In contrast to
conventional sparse directories, this will track only actively
shared blocks. This means that when a block is missing in the
chip, an entry will be allocated only in the corresponding private
cache. If the block remains private, when it gets replaced, it will
be progressively moved to further levels until it gets evicted to
the LLC, which is non inclusive. We denote the time between
these two points the private caching period. The block is
actively shared if during the private caching period it is accessed
by another core in the system. If this circumstance arises, we
need to allocate an entry in the directory with its sharing
information, i.e. with the two cores if the second request was a
read, or with the last core if it was a write.

Thus when a processor misses in the corresponding private
cache, it is not possible to determine whether there are copies in
other private caches just by checking whether there is an entry
allocated in the directory or not. Note that when a directory entry
is evicted no external invalidations are sent to the private caches
that hold a copy of the block. At first, after any miss in the
directory, we will assume that it will initiate a reconstruction

Fig. 1. High-level representation of a lookup in the FLASK coherence controller (simplified vision with a direct-mapped sparse directory and a parallel counting
bloom filter with n counters and two hash functions).

MC XC
ON-CHIP NET

Private

Cache

 Core

LLC0 cc LLC0 cc LLC0 cc

TAG SHARERS

TAG SHARERS

TAG SHARERS

…

Directory Tag Index

Hash1

Hash2

C0, C1, .., Cn C0, C1, .., Cn

C0, C1, .., Cn C0, C1, .., Cn

C0, C1, .., Cn C0, C1, .., Cn

…

Initiate

reconstruction
Forward req. to

Main Memory

MC XC

Private

Cache

 Core

Private

Cache

 Core

200

process, which will snoop the remaining coherence agents in
order to recreate the sharing vector. Using token counting, the
directory will be aware when the information received is enough
to unblock the pending memory operation. The on-chip
coherence agents will respond with the count of tokens owned
for the requested data.

There will be 3 potential scenarios:

(1st Case) If the response is delivered from memory, we
consider that the block is private and the requesting core will be
the owner of the data. Then the directory can directly forward
the data and tokens to the requesting processor without
allocating an entry in either the directory or the LLC (i.e. a
private block will not evict the information corresponding to
another shared block).

(2nd Case) If the response comes from LLC and it indicates
that LLC has all the tokens, the directory knows that there is no
other copy of the block in the chip and it can instruct the LLC to
forward the block to the requestor processor. In this case, like in
memory responses, we know that the block is not actively shared
and so it will not be necessary to allocate a new entry in the
directory.

(3rd Case) If any response comes from any of the cores, i.e.
from their private caches, we know that the block is being
actively shared and so a directory entry will be allocated. If the
pending operation is a load, the directory instructs the private
cache with the owner token to forward the data to the requestor
and it keeps counting incoming answers. When the location of
all the tokens is known, the sharer vector is accurate. If the
pending operation is a store, the directory instructs all the private
caches with tokens to forward them to the requestor core
(consequently invalidating the data) and also requests the cache
where the owner token is allocated, to forward the data block to
the requestor processor. When all the tokens are received by the
requesting core, it knows that it can proceed with the operation,
and unblock the directory entry.

The reconstruction approach is based on the one proposed in
MOSAIC [27]. Nevertheless, FLASK never allocates an entry in
the directory unnecessarily (i.e. for a private block). Eventually,
MOSAIC can use the directory to allocate mostly shared blocks,
but on-chip misses will trigger directory replacements.
However, in any case, this will imply a directory-induced private
replacement like in conventional sparse directories. It will
increase the effort necessary to reconstruct sharing information
if the replaced entry was shared through a multicast operation.
Like in the Stash Directory [12], we will allocate only shared
data. In contrast to our proposal, the Stash directory requires an
inclusive LLC to identify shared blocks. This means that in
FLASK (or MOSAIC) more blocks missed in private caches will
be located in LLC because of their greater effective capacity. In
fact, the 2nd scenario will be the most common case. Requesting
the block first from the LLC, in most cases, will make it
unnecessary to ask the remaining coherence agents. Finally, like
in MOSAIC and in contrast to the Stash directory, the eviction of
an entry in the directory does not require invalidating the copies
in the private caches. This will be helpful for frequent read-only
blocks (such as instructions) since eventually they will be shared
without using an entry in the directory. Note that many
workloads, such as most server/transactional applications, have

a large instruction footprint with a high sharing degree [5].
Finally, FLASK will filter unnecessary on-chip and off-chip
traffic through the mechanism described next.

B. Counting Filter (for all the on-chip blocks)

Using the previously described policy to manage the
directory will substantially increase the on-chip and off-chip
request traffic. The second core accessing an actively shared
block will be unable to determine whether it is present in the
chip. Therefore, all the coherence agents should be interrogated
when a miss occurs in the directory. Since our intention is to
keep track of only the actively shared blocks in the directory
(with the object of reducing the size), this will be the common
case.

To tackle this issue, at the directory level, we have to track
whether the data is present or not in the chip. Note that the
aggregate private blocks tracked by this structure can be large,
since both the number of cores in the chip and the private cache
assigned to each one can be large. In contrast to directory, we
can trade off inaccuracy in this structure in order to maintain the
implementation cost constrained. This structure should also be
useful to filter unnecessary memory snoops (i.e. snoop memory
when there is a copy of the block present in the chip).

1) Filtering the On-chip traffic
We propose using a small counting bloom filter [6] attached

to each directory entry to track all the tags contained in the
private sets that map onto the entries of the directory. A counting
bloom filter is an efficient, approximate set membership check
that enables the tracking of a tag’s presence in the private caches
at a fraction of the regular cost. Since this is a filtering structure
and not a correctness construction, we can tolerate the presence
of false positives. These situations might increase traffic and
delay memory accesses but they will not affect system
correctness.

In our case, we need to increment and decrement the counters
of the filter each time a block arrives or leaves the chip. The
event required that triggers the increment in the counters will be
an on-chip miss. This situation can be identified when the data
arrives at the chip after a miss. On the contrary, decrementing
each counter might be a significantly harder task. It requires
identifying when there is no longer a copy of the block in the
chip. We will use token counting for this purpose. As in the first
scenario, if on LLC eviction a block has all the tokens, we know
that there will be no other copies in the chip and consequently
we can decrement the filter directly. The remaining scenario, i.e.
a block that has to be evicted from LLC without all the tokens,
can be much more complex to handle. Fortunately, when a block
is evicted from LLC, in most cases (>99.99%) the block has all
the tokens. This is an expected behavior, since the reuse distance
supported by private caches is much shorter than that supported
by the LLC, given the size ratios between the two caches. Instead
of dealing with the problem through coherence protocol
constraints, we opt to use the fact that the second case is very
unlikely. Then, if we have to evict a block in LLC without all
the tokens, we invalidate any private copy of the block through
a broadcast. When all the tokens are collected in the LLC, we
know that we can decrement the corresponding counters in the
filter.

201

Finally, as with any counting bloom filter, the counters can
overflow [4]. This situation might affect system correctness
since there could be false negatives. Memory requests are likely
for blocks potentially modified in the chip. The coherence
protocol should contemplate this event and handle it
accordingly. As this is a very unusual case, again, it is not cost
effective to increase the complexity of the coherence protocol
because of it. We opt for avoiding counter saturation through
invalidation. If after an on-chip miss (and subsequent addition),
some of the counters reach the maximum value, we invalidate
all the private cache sets mapped onto that portion of the filter.
Although at first sight this might seem to have a huge
performance impact, in practice, with a large variety of
configurations and workloads, it is extremely unlikely that this
event would ever happen. This is consistent with the fact that the
probability of having a counter overflow, is very unlikely [4].

2) Filtering the Off-chip traffic
Broadcast-based coherence protocols in CMP might increase

the demands on the off-chip coherence agents as well as the
energy overhead in unnecessary private cache tag snoops and
traffic. Since this might affect a scarce resource such as the off-
chip bandwidth, it is often managed by complex structures in the
memory controller in charge of filtering or canceling
unnecessary memory requests on the fly [10]. From our
perspective, we can reuse the previously described on-chip
filtering strategy to carry out this task seamlessly. When a tag is
not found in the filter, as false negatives are not tolerated, we
know that it will be found in memory. These are compulsory
accesses. However, if there is a hit in the filter, the block will
most often be in the chip, it being unnecessary to interrogate the
memory. The problem we face is the false positives, which have
a very low but non-zero probability. If we proceed as usual
without asking the memory, the system might reach starvation.
Instead of contemplating these events (e.g. through starvation
detection [24]), we prevent this situation by forcing the cores
without tokens to acknowledge directory entry reconstructions.
In contrast to other protocols [10], the overhead of these
acknowledgements is only present when there is a hit in the
filter. The directory coherence controller will wait for all these
answers before sending a request to the memory. Consequently,
on-chip misses in which the counting bloom filter returns a false
positive will be delayed until the coherence controller is aware
that this block is not inside the chip. Fortunately, if the counting
bloom filter is correctly dimensioned, the probability of having
these false positives will be small enough to not interfere
noticeably with system performance. The consequence is that
memory accesses, in the worst case, will be delayed by a few
tens of cycles. The positive effect of this approach is that the
memory controllers do not have to be able to filter or cancel
unnecessary memory requests. Note that the cost of this
functionality might be substantial.

IV. FILTER DESIGN CONSIDERATIONS

A. Implementation: Improving Counting Bloom Filter Storage

Efficiency

The storage capacity budget of the coherence controller
should be used to keep block sharers in the sparse directory and
an indication of the presence of a tag in any private
cache in the filter. If we assume a structure similar to fig. 1, (i.e.

assigning an independent filter to the private blocks that map
onto the same directory entry), the storage cost of the filter and
the directory is similar. Additionally, if we do not share the
counters between different hashes, i.e. a parallel bloom filter, the
number of read/write ports is independent of the number of hash
functions. According to [34], the accuracy of this approach is
close to a costlier true bloom filter.

For a conventional Counting Bloom Filter (CBF) with n
private blocks mapped onto the entry, and m counters with the
optimal number of hashes, according to [8], the probability of a
false positive is approximately:

𝑃𝑓𝑝_𝐶𝐵𝐹 ≈ (𝑙𝑛(2))
𝑚/𝑛

Then, to achieve a false positive probability of 5%, we
require that m/n>8, which is equivalent to having at least 8
counters per private cache entry. To minimize the saturation
probability, we need at least 4 bits per counter. In this case, the
overflow probability is approximately e-ln2(ln 2)16/16!)=6.8E-17
[8]. Therefore, we need at least 32 bits per private block. This
represents a saving of 50% for a 64-bit tag.

Unfortunately, conventional hash functions behave far from
ideally, which unbalances counter usage in a CBF [31]. A quasi-
perfect alternative is d-left hashing [37]. Over this base, Bonomi
et al. [7] introduce a new filter called a d-left Counting Bloom
Filter (dlCBF) that at least doubles the efficiency of the counters
of a CBF, with a similar implementation cost. A high-level
representation of this filter is shown in fig. 2. The filter works as
follows: the table is divided into as many sub-tables as necessary
(two in the example, four in practice might suffice). Each table
is divided into “buckets”, five in the example. Each bucket is
divided into multiple cells. Each cell has a small counter and a
few bits to store the address signature. The address signature
(called remainder) and the bucket are computed applying a
conventional hash function to the address and a permutation per

Fig. 2. Sketch of a dlCBF filter. Each cell stores a remainder and a counter.

Address

Hash
Function

bucket1,Remainder1

bucket2, Remainder2

P
e

rm
u

tatio
n

1

P
e

rm
u

tatio
n

2

b0 b1 b2 b3 b4 b0 b1 b2 b3 b4

R1

C cnt

202

sub-table to the previous result. Both can be done using simple
combinatory logic [34]. The counter is only employed for the
unusual case of different addresses with the same remainder (in
practice 2 or 3 bits suffice).

When we compute the bucket for each sub-table, we allocate
one entry in the least used bucket. The key element in this filter
is d-left hashing, which establishes that if two destination
buckets for an address have the same number of entries, the left
one should always be chosen [37]. This allows near-perfect cell
load usage, and consequently better coverage for the filter. In the
case of the example, the bucket chosen is b1 for the first sub-
table and b2 for the second one. If we assume that both have the
same number of entries allocated (two different remainders with
the same number of occurrences), we choose the left table to add
the new remainder. If we assume that the new remainder is not
present in the table, we allocate a new entry for it and set the cell
counter to 1. To look up the filter, the operation is similar. Note
that the total number of bits per bucket is pretty small, so the
search can be done in an external register avoiding the need for
a content addressable memory. Since all sub-tables are handled
independently, like in a parallel bloom filter, we can use a
conventional single-ported SRAM memory. Therefore, like in a
conventional CBF, we can use the same storage to keep either
directory or filter information. The controller logic should route
each access in accordance with its use. Note that filter updates
are done on LLC replacement or on-chip misses; in the first case,
outside the critical path, and in the second one, overlapped with
main memory access. Since the filters are banked, even in the
case of having thousands of pending on-chip memory
operations, the number of pending operations per filter will be
low. Consequently, we can assume that the cost of updating the
filter will be negligible. The look-up of a filter with A sub-tables
is similar to a conventional parallel counting bloom filter with A
hash functions: each bucket in the corresponding sub-table is
read in parallel. We should look up the presence of the remainder
in the bucket. This is equivalent to a tag search in an A-
associative cache, we assume that the look-up operation is the
same as that required for an equivalent directory.

For a dlCBF, the probability of false positives, with a d sub-
table configuration of b buckets each, and r bits per remainder is
given by [7]:

𝑃𝑓𝑝_𝑑𝑙𝐶𝐵𝐹 = 1 − (1 −
1

𝑑 · 𝑏 · 2−𝑟
)𝑛 ≈

𝑛

𝑑 · 𝑏
2−𝑟

Assuming c cells per bucket and a utilization factor of ρ (<1),
and choosing a total number of buckets depending on n as n/(
ρ·c·d):

𝑃𝑓𝑝_𝑑𝑙𝐶𝐵𝐹 ≈ 𝜌 · 𝑐 · 𝑑 · 2−𝑟

Thus, assuming four sub-tables (d=4), eight cells per bucket
(c=8) and a 3/4 usage per bucket (ρ=0.75), to achieve a 5% false
positive probability, the number of bits per remainder is 9.
Assuming a 3-bit counter, each cell requires 12 bits. To
compensate for bucket utilization, we have to multiply this
number by 1/ρ ~16 bits which is necessary per element tracked.
This, is less than half the number required by the conventional
bloom filter mentioned above.

In practice, for a 64-bit physical tag (which might include
sharing vector and block state), this will lead to a 77% saving.
For a 256KB L2 and 32 KB L1I, 32 KB L1D and block sizes of
64 bytes, we will require ~9.2KB per core (less than 3% of the
tracked cache size), whereas a conventional CBF will require
about 20KB. For this configuration each bucket uses 128 bits,
which simplifies table lookup. If we reduce the filter size (to save
area), the false positive probability might increase, but not in a
significant way. Note that all the theoretical estimations are
made assuming no spatial locality or sharing in the stream of
addresses.

In regard to the overflow probability of the 2-bit counter, a
higher bound for the configuration assumed with 5k blocks per
private cache, with cnt=3 bits per counter, is given by [7]:

(
𝑛

2𝑐𝑛𝑡 + 1
) (

1

#𝑏𝑢𝑐𝑘𝑒𝑡𝑠 · 2𝑟
)
2𝑐𝑛𝑡+1

≈ (
5000
9

) (
1

256 · 29
)
9

≈ 4.6 · 10−19

In any case, we have provided a fallback mechanism to
rescue the system in this situation. Note that the system could be
running continuously for months or years, and so the inclusion
of this corner case is not an option.

B. Filter/Directory Resource Partitioning

The filter and the sparse directory are “complementary”
structures, since actively shared blocks will reduce the load on
the filter and private blocks will never use directory entries.
Initially, we will assume storage resources statically splitting the
available SRAM for one or other purpose. Restricting the filter
capacity will increase the probability of false positives, which
will increase the on-chip traffic and delay off-chip misses.
Restricting the directory capacity to the point that the working
set of the actively shared blocks does not fit will increase the
reconstruction probability. This could be used effectively to
provide a low tracking capability (perhaps for less than 20% of
private cache blocks).

dlCBF is able to reconstruct the members from the remainder
and bucket information. To do so, the permutation used to fill up
the tables has to be invertible [7]. Then, it is possible to
reconstruct a sub-table by observing the remainder sub-table and
simply rolling back the permutation. Thus, it is possible to
“move” the tracking of a block from one sub-table to another. In
this way, if we detect that the directory is highly loaded (through
the frequency of reconstructions), we can adaptively de-allocate
one of the entries in the filter and expand the number of ways in
the directory. Similarly, if the workload is not using the directory
entries because all/most of the data are private, we can expand
the filter with additional sub-tables, reducing the false positives
without increasing the reconstruction frequency. Note that this
operation is not possible in a conventional CBF.

Initially, for all workloads, we will equally split the storage
capacity between the filter and the directory. Later, and after
observing the application’s behavior, we will explore workload-
dependent partitioning in order to see how beneficial this
approach can be in reducing adverse effects in extreme cases.
We will not discuss implementation cost, although it does not
seem to be an issue. Perhaps some multiplexors will be
necessary to connect the SRAM content to the coherence
controller or the filter. In any case, note that the dynamic

203

behavior will have a negligible impact on performance since the
one-by-one migration of filter sub-table entries to directory
could be done in the background with the normal system
operation. The opposite operation is direct (just requires
invalidating directory entries that will be used as a sub-table).
We will not discuss the mechanism for triggering this process
since the sharing pattern of the applications is quite stable
throughout the execution. The most cost effective way is to
trigger it by software at the beginning of the workload.

V. EVALUATION METHODOLOGY

A. System Configuration

To analyze FLASK, we model a CMP with out-of-order cores
that mimics the execution resources and on-chip cache hierarchy
of the Intel Haswell processor [16]: using 6-wide issue cores
with 196 in-flight instructions and up to 64 pending memory
operations. The number of cores in the CMP is 16. Therefore,
the coherence fabric has to support up to 1024 concurrent
memory operations. There are three levels of cache. The first two
are private, strictly non-inclusive (i.e. L2 acts as a victim cache
of L1). The third level is shared and uses a mesh network, which
is characterized by better on-chip bandwidth scalability than a
ring network. We will assume that the routers in the network can
handle multicast traffic natively [19], have single-cycle low-load
pass-through [23], separate virtual-networks to avoid end-to-end
protocol deadlock and over-provisioned buffering (90 flits per
port). Similarly to the LLC, the directory is banked and
interleaved by the least significant bits. To quantify FLASK’s
properties and to understand how it behaves compared to snoop
and directory-based protocols, we have implemented two
reference protocols based on TokenB [24] and on a sparse-
directory [15] respectively. TokenB has been selected because it
allows a scalable out-of-order network to be used without adding
additional mechanisms outside the coherence controllers. Using
the same methodology and tools, all coherence protocols have
been optimized fairly. A full SLICC specification for a 3-level
hierarchy can be found in [38]. Memory bandwidth is over-
provisioned to avoid the necessity of tuning memory controller
architecture to each protocol. In practice, contention is negligible
in all protocols. In a more realistic environment, broadcast
protocol should be handled carefully to avoid unnecessary
memory requests wasting a very scarce resource such as off-chip
bandwidth [10].A summary of the other main parameters used
in our analysis is shown in Table I.

B. Workloads & Simulation Stack

We will use GEMS [26] as the main tool for our evaluation.
With GEMS, it is possible to perform full-system simulations.
Coherence protocols have been implemented using the SLICC
language (Specification Language for Implementing Cache
Coherence). In order to model accurately interconnection
network contention and its impact on the average access time,
we replace the original network with TOPAZ [1]. For power and
cost modeling, we use CACTI 6.5 [29] for the cache and DSENT
[36] for the network. Ten workloads, shown in Table II, are
considered in this study, including both multi-programmed and
multi-threaded applications (scientific and server) running on
top of the Solaris 10 OS. The numerical applications are three of
the NAS Parallel Benchmarks suite (OpenMP implementation
version 3.4 [20]). The server benchmarks correspond to the

whole Wisconsin Commercial Workload suite [2]. The
remaining class corresponds to multi-programmed workloads
using part of the SPEC CPU2006 suite [35] running in rate mode
(where one core is reserved to run OS services). The mix of
workloads has been selected trying to cover diverse usage
scenarios, varying the sharing degree (from none in SPEC
applications to a large amount in Server Workloads) and sharing
contention (from none in SPEC to a large amount in scientific
applications). Among the NAS applications, we chose the three
with the highest sharing contention. From the SPEC suite, we
chose three applications with a variable range in working set
size. We should emphasize that the three families of applications
exhibit quite dissimilar behavior from the coherence protocol
perspective, but they have to be considered, given the usage
scenarios of general purpose CMPs. Focusing the evaluation on
a single suite of benchmarks, it is hard to consider all the
characteristics we have represented with the selected mix.

We model hardware-assisted TLB fill and register window
exceptions for all target machines. Multiple runs are used to
fulfill strict 95% confidence intervals (error bars are not visible
in most cases). Benchmarks are fast-forwarded to the point of
interest, during which page tables, TLBs, predictors, and caches
are warmed up. In iteration-based applications, such as NPB, a

TABLE I. SUMMARY OF 16-CORE CMP SYSTEM CONFIGURATION

C
o

r
e

A
r
c
h

. Functional Units 4xI-ALU/4xFP-ALU/ 4xD-MEM

ROB size / Issue Width 196, 6-way

Frequency, count 3Ghz, 16 cores

P
r
iv

a
te

 C
a

c
h

e
s (L1)Size/Associativity /

Block Size / Access

Time/Repl.

32KB I/D, 4-way, 64B, 1 cycle,

LRU

(L2)Size / Associativity/
Block Size / Access

Time/Repl.

256KB Unified, 8-way, 64B, 2

cycles, LRU, Exclusive with L1

Outstanding Requests per core 64

S
h

a
r
e
d

L
3

Size / Associativity / Block

Size/Repl.

16MB (or 32MB), 16 (or

32)×1MB, 16-way, 64B , LRU

NUCA Mapping Static, interleaved by LSB

Slice Access Time 6 cycles

Mem
Capacity / Access Time /

Memory Controllers / BW
4GB, 240 cycles, 4/32GBs

N
e
tw

o
r
k

 Topology / Link Latency /
Link Width/Clock

4×4 Mesh, 1 cycle, 16B, 3Ghz

Router Latency (low-load) /

Flow Control / Routing/
Buffering

1-3 cycle/ Wormhole/DOR/10KB

TABLE II. MULTITHREADED WORKLOADS

SERVER

[2]

OLTP
IBM DB2 DBMS, TPC-C like

10000 Transactions

Apache
Apache web server, SpecWeb

like, 25000 Transactions

JBB SpecJBB, 70000 Transactions

Zeus
Zeus web server, SpecWeb like,

25000 Transactions

NPB[20]

Multi-Grid (MG) CLASS A

Fast Fourier
Transform (FT)

CLASS W

LU Diagonalization

(LU)
CLASS A

SPEC [35]

Astar Native, 15 thr.

Hmmer Native, 15 thr.

Omnetpp Native, 15 thr.

204

warm checkpoint is taken in the middle of the execution and with
a reduced number of iteration runs. Transactional workloads are
warmed up by running hundreds of thousands of transactions,
and accurately simulated for a fixed number of transactions.
SPEC workloads are fast-forwarded to the point of interest and
simulate ~8billion instructions.

VI. PERFORMANCE RESULTS

A. Comparative results with reference protocols

The fundamental parameters of the system for the considered
coherence protocols running the selected workloads, namely
execution time, average access-time and memory hierarchy
energy delay product (EDP) are shown from fig. 3 to fig. 5. To
clarify the total storage, we denote it as SDE (Sparse-Dir
Equivalent) capacity. All the results are normalized against
token coherence and the directory size is being swept from a
capacity to track 160% of the private cache blocks (8K SDE
entries) to just 5% (32 SDE entries). Note that in order to keep
implementation cost constant, in FLASK, at this point, half of this
capacity is devoted to the filter and half to the directory. In other
words, in the most extreme case, the FLASK directory will only

have SDE capacity to track 16 shared blocks per controller (256
in the whole chip).

As expected, when the size of the directory is below one
fourth of the aggregate private caches’ capacity, the sparse-
directory performance is degraded. In contrast to other previous
works, [12], we observe this degradation with significant
directory size reduction. This is related to the fact that in that
work there is only one level of private caches. Here, L2 acts as a
victim cache for L1. Thus, a directory induced private miss is
eight times more frequent in L2 than L1. If we take into account
that in L2, block reuse is low [18], the results seem reasonable.
With an inclusive L1/L2 (which for an aggressive out-of-order
core and a shared LLC might not be interesting), the effects will
be more noticeable but still not too acute. Additionally, it should
be noted that for an in-order core, directory-induced private
misses (and subsequent hits in L3) will have more effect on
performance. The memory level of parallelism present in the
evaluated system allows the impact to be partially hidden.

As can be seen in fig. 5, sparse directory hits in private
caches are reduced when the count of tracked blocks is
decreased. Thus, there is a substantial increment as data must be

Fig. 3. TokenB Normalized Execution Time.

Fig. 4. TokenB normalized on-chip memory hierarchy EDP.

Fig. 5. TokenB normalized average memory access time.

0.6

0.8

1

1.2

1.4

1.6

1.8

Astar Hmmer Omnet FT LU MG Apache Jbb OLTP Zeus Average

N
o

rm
a

li
ze

d
 E

xe
cu

ti
o

n
 T

im
e TokenB Dir (160%) Flask (160%) Dir (80%) Flask (80%) Dir (40%) Flask (40%)

Dir (20%) Flask (20%) Dir (10%) Flask (10%) Dir (5%) Flask (5%)

0

0.5

1

1.5

2

2.5

Astar Hmm Om
m

FT LU MG Apac Jbb OLTP Zeus Avg

N
o

rm
al

iz
e

d
 M

e
m

. H
ie

r.
 E

D
P Network Directory LLC L2 L1

Flask(5%)

Sparse Dir (160%)
TokenB

0

0.5

1

1.5

2

Astar Hm. Om. FT LU MG Ap. Jbb OLTP Zeus

N
o

rm
. A

v
e

ra
g

e
 A

cc
e

ss
 T

im
e Memory LLC Remote L2 Remote L1 L2 L1

Flask(5%)

Sparse Dir (160%)
TokenB

205

retrieved from LLC (for private blocks) or other private caches
(for actively shared blocks). In numerical or multi-programmed
workloads the former case is more frequent while the latter exists
in server workloads. This is consistent with the sharing degree.
As can be seen for applications with a large portion of shared
data, the latency degradation from 160% to 5% is almost
doubled, degrading the performance by more than 40% on
average. For these cases the intense coherence traffic due to
directory-induced invalidations and subsequent LLC hits makes
the activity increase in the network substantially, which
degrades the energy properties, making it worse than the snoop-
based protocol.

When we look at the performance of the snoop-based
coherence protocol, we can observe unstable behavior. In some
applications it seems to be almost the best performer while in
others it is clearly not. The reason can be found in the on-chip
contention. For some of the scientific applications, there is a
significant traffic pressure on the LLC network. In spite of
having a reasonably dimensioned network (4x4 mesh with 3
GHz clock and 16Byte links) and a router with state-of-the-art
features [19] [23], the latency of the LLC is larger. Despite being
an average sized system, extra traffic imposed by broadcast
requests and the concurrent memory operations (at a given time
there may be more than 16K packets in-flight) seem to surpass
network capabilities. The solution for this unpredictable
behavior is to oversize the network (e.g. increasing the link
width, using topologies with better connectivity, using a more
advanced router, etc.) or to redesign the coherence protocol [30].
Unfortunately this would be inappropriate for bigger systems. In
any case, even in applications where TokenB has a slight
performance advantage, the energy consumption is higher.

 FLASK exhibits very different behavior to the other
protocols. Even in the most extreme configuration, the

performance seems quite unaffected. In the worst case, which is
apache, the performance degradation observed versus token is
13%. In general, it seems that applications with low sharing
degree are correctly handled, with almost negligible
performance degradation. Having only SDE capacity to track
256 private blocks seems to affect other applications more
significantly. This causes more reconstructions, which delays
access to shared data after a capacity miss in private caches,
slightly lengthening LLC access time. In other applications, such
as the multi-programmed workloads, in spite of having a
minimal filter (just 32 buckets per sub-table), the effects both on
performance and energy of this extreme configuration are
negligible. On average the performance degradation when
reducing from 160% SDE capacity to 5% is only 8%, which is a
noteworthy result. In all cases, the number of private-cache
external invalidations due to the replacement of blocks in LLC
without all the tokens is negligible.

Since the on-chip traffic is filtered out, there is no similar
behavior to that observed for TokenB. In general, the energy
requirements of the protocol are smaller than token and are quite
steady regardless of the directory size. Note that this metric is
pessimistic, since we exclude the cores’ power consumption. As
FLASK is the best performer in most cases, the EDP of these
components will be low.

In summary, with almost no tracking capability, FLASK is
more stable and energy efficient than broadcast-based protocol,
and its performance degrades much more gracefully than
conventional sparse-directory when directory size is reduced.

B. Filter Efficiency

The previous results contain some details that we want to
highlight, namely, the filter efficiency. The main figure of merit
is the false positives, which increase on-chip energy and memory

0

0.2

0.4

0.6

0.8

1

1.2

TB
16

0% 80
%

40
%

20
%

10
% 5%

ASTAR HMMER OMNET FT LU MG Apache JBB OLTP Zeus Average

N
o

rm
al

iz
e

d
 B

ro
ad

ca
st

s Avoided Broadcasts False Positives Compuslory Reconstructions TokenB

Fig. 6. TokenB normalized filter efficiency for different SDE sizes.

Fig. 7. TokenB normalized memory latency overhead.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Astar Hm. Om. FT LU MG Ap. Jbb OLTP Zeus

N
o

rm
. M

e
m

.
A

cc
e

ss
 T

im
e

FLASK(5%)

Sparse Dir (160%)TokenB

206

access time. Fig. 6 shows the total number of multicasts over a
range of available storage for the filter capacity.

For reference, we normalize this metric to multicast in
TokenB. Note that, when we take into account that the network
can natively handle multicast traffic and the cache snoop energy
contribution, this might not be directly transferred to link
utilization or energy consumption, as we can contrast these
results with fig. 4. When the directory is dimensioned for 20%
of private caches, false positives seem to be consistent with the
theoretically expected proportion of 5%. If we shrink the SDE
capacity to just 5% of private caches, although there is an
increase in false positives, counter saturation never occurs in any
of the runs of our evaluations. While in some cases, even with
such a small filter, it is able to detect a reasonable number of on-
chip misses; in other cases (such as the NAS applications), it
cannot do so. In some applications, the number of true positives
(private cache misses for actively shared data) grows when we
reduce the size of the directory while in others, it remains almost
unchanged. In the former, the directory is not able to maintain
the shared working set, whereas in others it can do so. In contrast
to this behavior, false positives are more numerous in the latter
applications as private blocks increase the number of elements
to be tracked by the filter.

Fig. 7 shows the TokenB normalized memory access time
(from the core perspective, i.e. includes the whole latency to
transmit the desired word from memory to the processor back-
end) for FLASK and sparse-dir. Note that memory requests in
both cases will be roughly the same, since most off-chip requests
are induced by LLC capacity misses and both protocols handle
LLC data in the same way. In numerical applications, false
positives for very small filter capacities have a negative effect
due to the delay in off-chip access and the on-chip latency that

the extra traffic adds. Consequently, there is a significant
increase in memory access time. In applications such as the
server workloads, the extra traffic due to compulsory
reconstructions increases the contention, increasing the access
time to the memory controller and therefore delaying the
memory access.

 For the generous off-chip bandwidth considered, the results
are dominated by on-chip effects: on-chip contention and the
additional latency induced by false positives (which delays the
memory request until the coherence controller realizes that there
is no on-chip copy). Even in the most adverse directory
configuration, the effect is less than 5%. This is almost
unnoticeable in the average access time, as can be appreciated in
fig. 5. Note that in a system with many cores or large private
caches, this configuration could reduce the storage footprint
significantly. In any case, directory size can be a useful knob for
the trade-off between implementation and energy cost.

C. Adaptive Filter/Directory resource partitioning

As stated before, dlCBF allows adaptive resource splitting.
Although we did not implement the on-line adaptation, we can
statically choose the best configuration for the application.
Looking at fig. 6, it seems clear that multi-programmed,
numerical applications require few entries in the directory. On
the contrary, for commercial workloads, the on-chip traffic is
dominated by reconstructions. Therefore, we should select only
a 1-way directory for the first two classes (with 7 sub-tables in
the filter) and a 7-way directory for the last class (with just 1 sub-
table in the filter). Note that even in a multi-programmed
workload, a small number of OS addresses might be shared, so
we need at least a 1-way directory. The broadcast signature,
normalized against the token, is shown in fig. 8. The

0

0.2

0.4

0.6

0.8

1

1.2

TB
16

0%
80

%
40

%
20

%
10

%
5%

ASTAR HMMER OMNET FT LU MG Apache JBB OLTP Zeus Average

N
o

rm
al

iz
e

d
 B

ro
ad

ca
st

s

Avoided Broadcasts False Positives Compuslory Reconstructions TokenB

Fig. 8. TokenB normalized traffic filtering with adaptive partitioning.

Fig. 9. 40% SDE Static normalized performance of FLASK with dynamic and static storage allocation.

0.6

0.8

1

1.2

1.4

1.6

1.8

Astar Hmmer Omnet FT LU MG Apache Jbb OLTP Zeus Average

N
o

rm
a

liz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Static (160%) Dyn.(160%) Static (80%) Dyn.(80%) Static (40%) Dyn.(40%)

Static (20%) Dyn.(20%) Static (10%) Dyn.(10%) Static (5%) Dyn.(5%)

207

performance results of the static and dynamic storage allocation
in the memory controller are shown in fig. 9. If we compare these
results with those provided in fig. 6, the effect of the approach is
to halve the storage resources with negligible impact. For
example, under these conditions with 10% SDE capacity, the
traffic requirements are close to 20% of SDE capacity when the
results are statically halved. Consequently with just 10%, in
most applications, a tolerable false positive rate is observed. On
average, with 10% and 5% of SDE capacity, we observe a
performance penalty of about 3% and 6% respectively. Although
dlCBF is suitable for an on-line mechanism, capable of
morphing sparse-directory and filter throughout the application
execution, we left this analysis open for future work. Under
cloud-computing scenarios (with live workload migration), this
might be interesting, given the results seen here. However, in
any case, we believe that such a task should be done in the
software layer, since the switch in behavior will be quite
infrequent.

D. Comparing FLASK with other directory cost reduction

alternatives

FLASK can be combined with other strategies focused on the
same goal [11][12][13][27][32]. Some of them are focused on
eliminating the directory overprovision by emulating large
associativity through multi-hashing indexing and insertion [32]
[33], achieving in most workloads the benefits of a very high
associativity at a fraction of the cost. Therefore, if we increase
the associativity of the sparse directory, we can achieve a similar
effect. Fig. 10 shows the over- provisioned normalized result for
different associativities (ranging from 1-way to 64-way with a
fixed capacity). In order to appreciate conflict misses in the
directory, and given that the computational requirements of the
evaluation framework system and application scalability
prohibit it, we artificially reduce the size to just 20% SDE
(otherwise evictions caused by conflict in the directory are
negligible). Except in the case of FT, whose counterintuitive

behavior is caused by very low directory reuse [32], increasing
the associativity reduces the directory conflicts, which provides
a slight performance degradation. As we can appreciate, 1-way
directory in FLASK is able to outperform the sparse directory
even with 64 ways. In FLASK, the impact of directory conflicts
on performance is negligible. Therefore, FLASK will provide
better performance than techniques focused on minimizing
directory conflicts such as [11][12]. The reasons for this are: (1)
there is no need to perform external invalidations after a
directory eviction, and (2) it only uses the directory to track
actively shared blocks. Under such circumstances, the
experimental observations made by [15] about conflicts are no
longer applicable. In fact, although not exploited here, FLASK

can be used to reduce directory implementation cost (v.gr. using
very low associativity).

Like FLASK, MOSAIC was focused on improving directory
scalability, eluding directory inclusiveness through entry
reconstruction on demand. Fig. 11 compares the on-chip
memory bandwidth consumption for the two approaches, for
different SDE capacities. As expected, the control traffic
generated by FLASK is significantly less than MOSAIC. This is
because directory entry reconstructions in FLASK are performed
only for shared data. This means that in some multi-programmed
workloads, such as hmmer, the total amount of traffic is up to
60% less. When the size of the filter is reduced, the false
positives increase the traffic slightly. With applications with a
high sharing degree, such as apache, this advantage is smaller.
In this last type of benchmarks, when the size of directory is
reduced below 20%, the behavior of the two protocols becomes
more similar due to the fact that most reconstructions are
because of shared blocks. On average, and with a directory of at
least 20%, FLASK enables the reduction of total on-chip traffic
by 20%.

Fig. 10. 160% SDE sparse directory normalized performance for different associativities (20% SDE).

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
al

iz
e

d
 B

an
d

w
id

th Data Control

FLASK

160%

MOSAIC 160%

Fig. 11. MOSAIC versus FLASK on-chip bandwidth utilization.

Astar Hmmer Omnetpp FT LU MG Apache Jbb OLTP Zeus Average

0

0.5

1

1.5

2

2.5

N
o

rm
al

iz
ed

 E
xe

c.
 T

im
e

Dir 1-way D 2-way D 4-way D 8-way D 16-way D 32-way D 64-way

Flask 1-way F 2-way F 4-way F 8-way F 16-way F 32-way F 64-way

208

VII. CONCLUSIONS

We have proposed an evolutionary re-architecture for
directory coherence protocols that can benefit from snoop-based
coherence without paying a high toll. The results enable a
balanced approach that improves system performance in a wide
range of applications.

The proposal might be beneficial to scale the coherence
protocol for many-core systems or for medium-size CMPs, as
we have demonstrated in the results section especially so bearing
in mind recent and forthcoming commercial systems. In any
case, we have shown that even for 16-core CMPs there are both
power and performance benefits versus other protocols.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
helpful comments. Special thanks to Dan Sorin and Viji
Srinivasan for their valuable suggestions.

REFERENCES

[1] P. Abad et al., “TOPAZ: An Open-Source Interconnection Network

Simulator for Chip Multiprocessors and Supercomputers,” in Int.

Symposium on Networks-on-Chip (NOCS), 2012, pp. 99–106.
[2] A. R. Alameldeen et al., “Simulating a $2M commercial server on a $2K

PC,” Computer (Long. Beach. Calif)., vol. 36, no. 2, pp. 50–57, Feb.

2003.
[3] M. Alisafaee, “Spatiotemporal Coherence Tracking,” in Int. Symposium

on Microarchitecture (MICRO), 2012, pp. 341–350.

[4] J. Almeida and A. Z. Broder, “Summary cache: a scalable wide-area
Web cache sharing protocol,” IEEE/ACM Trans. Netw., vol. 8, no. 3, pp.

281–293, Jun. 2000.

[5] I. Atta, P. Tözün, X. Tong, A. Ailamaki, and A. Moshovos, “STREX,”
in Int. Symp. on Computer Architecture (ISCA), 2013, vol. 41, no. 3, p.

273.

[6] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[7] F. Bonomi, M. Mitzenmacher, and R. Panigrahy, “An improved

construction for counting bloom filters,” in ESA’06 14th Annual
European Symposium, 2006, pp. 684–695.

[8] A. Broder and M. Mitzenmacher, “Network Applications of Bloom
Filters: A Survey,” Internet Math., vol. 1, no. 4, pp. 485–509, Jan. 2004.

[9] M. Butler, “AMD ‘Bulldozer’ Core - a new approach to multithreaded

compute performance for maximum efficiency and throughput,” in
Symposium on High-Performance Chips (HotChips), 2010.

[10] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B.

Hughes, “Cache Hierarchy and Memory Subsystem of the AMD
Opteron Processor,” IEEE Micro, vol. 30, no. 2, pp. 16–29, Mar. 2010.

[11] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. F. Duato,

“Increasing the effectiveness of directory caches by deactivating
coherence for private memory blocks,” in Int. Symp. on Computer

Architecture (ISCA), 2011, p. 93.

[12] S. Demetriades and S. Cho, “Stash Directory: A Scalable Directory for
Many-Core Coherence,” in International Symposium on High

Performance Computer Architecture (HPCA), 2014.

[13] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo
directory: A scalable directory for many-core systems,” in 2011 IEEE

17th Int. Symp. on High Performance Computer Architecture, 2011, pp.

169–180.
[14] E. J. Fluhr et al., “POWER8: A 12-core server-class processor in 22nm

SOI with 7.6Tb/s off-chip bandwidth,” in International Solid-State

Circuits Conference (ISSCC), 2014, pp. 96–97.
[15] A. Gupta, W. Weber, and T. Mowry, “Reducing memory and traffic

requirements for scalable directory-based cache coherence schemes,” in

Int. Conference on Parallel Processing (ICPP), 1990, pp. 312–321.

[16] P. Hammarlund et al., “Haswell: The Fourth-Generation Intel Core

Processor,” IEEE Micro, vol. 34, no. 2, pp. 6–20, 2014.
[17] J. Huh et al., “A NUCA substrate for flexible CMP cache sharing,” IEEE

Trans. Parallel Distrib. Syst., vol. 18, no. 8, pp. 1028–1040, 2007.

[18] A. Jaleel, K. B. Theobald, S. C. Steely, and J. Emer, “High performance
cache replacement using re-reference interval prediction (RRIP),” in Int.

Symposium on Computer Architecture (ISCA), 2010, pp. 60–72.

[19] N. E. Jerger, L. S. Peh, and M. Lipasti, “Virtual circuit tree multicasting:
A case for on-chip hardware multicast support,” in International

Symposium on Computer Architecture (ISCA), 2008, pp. 229–240.

[20] H. Jin, M. Frumkin, and J. Yan, “The OpenMP implementation of NAS
parallel benchmarks and its performance,” NASA Ames Research

Center,” Technical Report NAS-99-011, Citeseer, 1999.

[21] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-Way
Multithreaded Sparc Processor,” IEEE Micro, vol. 25, no. 2, pp. 21–29,

Mar. 2005.

[22] T. Krishna, L.-S. Peh, B. M. Beckmann, and S. K. Reinhardt, “Towards
the ideal on-chip fabric for 1-to-many and many-to-1 communication,”

in Int. Symposium on Microarchitecture (MICRO), 2011, vol. 2, pp. 71–

80.
[23] A. Kumary, P. Kunduz, A. P. Singhx, L.-S. Pehy, and N. K. Jhay, “A

4.6Tbits/s 3.6GHz single-cycle NoC router with a novel switch allocator

in 65nm CMOS,” in International Conference on Computer Design
(CCD), 2007, pp. 63–70.

[24] M. M. K. Martin, M. D. Hill, and D. A. Wood, “Token Coherence:

decoupling performance and correctness,” in 30th Annual International
Symposium on Computer Architecture, 2003. Proceedings., 2003, pp.

182–193.
[25] M. M. K. Martin, D. J. Sorin, M. D. Hill, and D. A. Wood, “Bandwidth

adaptive snooping,” in International Symposium on High Performance

Computer Architecture (HPCA), pp. 251–262.
[26] M. M. K. Martin et al., “Multifacet’s general execution-driven

multiprocessor simulator (GEMS) toolset,” ACM SIGARCH Comput.

Archit. News, vol. 33, no. 4, p. 92, Nov. 2005.
[27] L. G. Menezo, V. Puente, and J. A. Gregorio, “The case for a scalable

coherence protocol for complex on-chip cache hierarchies in many-core

systems,” in Int. Conference on Parallel Architectures and Compilation
Techniques (PACT), 2013, pp. 279–288.

[28] A. Moshovos, “RegionScout: Exploiting Coarse Grain Sharing in

Snoop-Based Coherence,” in Int. Symp. on Computer Architecture
(ISCA), 2005, pp. 234–245.

[29] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing

NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0,” in Int. Symposium on Microarchitecture (MICRO), 2007,

pp. 3–14.

[30] A. Raghavan, C. Blundell, and M. M. K. Martin, “Token tenure:
PATCHing token counting using directory-based cache coherence,” in

Int. Symposium on Microarchitecture (MICRO), 2008, pp. 47–58.

[31] M. V. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient hardware
hashing functions for high performance computers,” IEEE Trans.

Comput., vol. 46, no. 12, pp. 1378–1381, 1997.

[32] D. Sanchez and C. Kozyrakis, “SCD: A scalable coherence directory
with flexible sharer set encoding,” in 18th IEEE Int. Symposium on High

Performance Computer Architecture, 2012, pp. 1–12.

[33] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling Ways and
Associativity,” in MIcro 2010, 2010, pp. 187–198.

[34] D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam, “Implementing

Signatures for Transactional Memory,” Int. Symp. Microarchitecture,
pp. 123–133, 2007.

[35] SPEC Standard Performance Evaluation Corporation, “SPEC 2006.” .

[36] C. Sun et al., “DSENT - A Tool Connecting Emerging Photonics with
Electronics for Opto-Electronic Networks-on-Chip Modeling,” in Int.

Symposium on Networks-on-Chip (NOCS), 2012, pp. 201–210.

[37] B. Vöcking, “How asymmetry helps load balancing,” J. ACM, vol. 50,
no. 4, pp. 568–589, Jul. 2003.

[38] “SLICC specification of Flask and Counterpart Coherence Protocols.”

[Online]. Available: http://www.atc.unican.es/galerna/flask.

209

