Booting & Shutting Down

Sistemas Informaticos

Index

* Introduction
* Booting, Stage 1: Hardware

* Booting, Stage 2: Bootloader
— LILO
— GRUB

* Booting, Stage 3: Kernel
* Booting, Stage 4: INIT
e Shutting Down

| §

Sistemas Informaticos 2

Introduction

* Booting/Shutting Down are complex procedures, but system
provides mechanisms to deal with them.
* ... However, this is one of the potential troubles of
administration.
* Goals of this Chapter:
— Understand the basic operation of both procedures.
— Being able to customize them.
— Being able to solve generic problems related to Boot process.
* Bootstrapping, Where does the name come from?
— Allusion to “Baron Minchausen”.

— Defines a process where a simple system starts up another one with
higher complexity (starting the system form a small portion of the system
itself).

Sistemas Informaticos 3 ﬁ

Introduction

* The main target of Booting process is loading kernel in memory
and starting its execution.
— ¢What's the content of memory before booting?
— ¢éWhere is the kernel before booting?

* |tis a sequential process divided in 4 stages:

Stage 1: Stage 2: Bootloader Stage 3: Stage 4: INIT
Kernel

BOOT KERNEL INIT
SECTOR LOADING PROCESS

GRUB GRUB GRUB XDM
STAGE 1 STAGE 1.5 STAGE 2 PROCESS
Sistemas Informaticos 4 m

Stage 1: Hardware

Index

* Booting, Stage 1: Hardware

Sistemas Informaticos 5 m

Stage 1: Hardware f

* First Steps:

— After pushing Power-On button, el Reset Vector indicates the CPU the
direction of the first instruction to execute (FFFFFFFOh for x86).

— Such direction corresponds to an EPROM/Flash (motherboard) that stores
the code corresponding to the Firmware (memory-mapped 1/0).

* Firmware:
— Stores Hardware configuration for the system.
— Some configuration parameters with its own power supply (battery).

Sistemas Informaticos 6 ﬁ

Stage 1: Hardware ;‘» s

A

RAM Modules
(System Memory) : Front Side Bus
. DDR2 v
@RAMMGEUE" <, - Channel A
| @EERAMMoGUE)< _* e
: Northbridge < > PCl Express x16 Graphics
| (U RAMIModule < - chip (Graphics card)
— L
(@TRAMModue ")« - [CDR2

Channel B

DMl Interface

Y

(" BIOS (Flash memory))<«—— > | «—»(_ Power Management

(__Serial ATAports)«——»| Southbridge |« »(" Clock Generation

chip

@EEHECGE <« PFdBs)

Sistemas Informaticos 7 m

Stage 1: Hardware

* Tasks to perform:
— Power-on-self-test (POST): examination, verification and start up of
hardware devices (CPU, RAM, Controllers, etc.)

— Configuration of previous aspects, independent of OS (Virtualization
extensions, security, etc.)

— Start up the Operating System: In the case of BIOS, look for the OS loader in
the first block (512 bytes) [Master Boot Record (MBR)] from the booting
device in the configured order. When found, the content is loaded in
memory.

* Two main kinds of Firmware:
— BIOS: Basic Input Output System
— EFI: Extensible Firmware Interface

Sistemas Informaticos 8 m

Stage 1: Hardware

* BIOS (Basic Input/Output System):
— 1975: First appearance in the Operating System CP/M.
— It runsin real address mode (16 bit): 1MB of addressable memory.

— 1990: appears “BIOS setup utility”: allows the user to define some
configuration options (boot priority).
— ROM customized for a particular HW. Provides a small library with 1/0

functions to work with peripherals (keyboard, screen). Very slow (protected

to real mode).

— Emerging applications require more and more BIOS support: Security,
Temperature/Power metrics, Virtualization extensions, Turbo-Boost ...
to put all that in 1MB).

— 2002: Intel develops an alternative firmware: EFI (/UEFI).

Sistemas Informaticos

(Hard

B

Stage 1: Hardware

* EFI/UEFI (Unified Extensible Firmware Interface):
— 2002: Itanium platform from intel provides EFI firmware.

— 2005: UEFI. Consortium of companies takes control over the firmware.

Unified EFI Forum.
— Works in 32/64 bits mode.

— Much more flexible than BIOS
¢ Supports big disks (<1TB)
* Supports more booting devices (red)
¢ Can eliminate the need of a bootloader (No stage 2)
* Improved Security (network authentication, signed start up)
¢ Can be modified in-flight.
— Requires support from the OS (Linux, OSX, Windows8)
* Windows XP in the first intel iMacs??

— Can emulate BIOS.
— Supported for VirtualBox

Sistemas Informaticos

Index

Stage 2: Bootloader

— LiLO
— GRUB

Sistemas Informaticos

* Booting, Stage 2: Bootloader

BOOT
LOADER
GRUB GRUB GRUB
STAGE 1 STAGE 1.5

STAGE 2

° [L)
Previous: Disks & Partitions
(]
4
\ Bootloader
\ Code
\
Primary \
partition \
‘\
\
1
\
\
\
\
‘\
Primary ——
partition ‘olume Boot Record|
=
S \ Bootloader !
o tume oot recor
\
Data \ Logical
N Partition
Pnrr_nz?ry \‘ Extended
partition \ it
N)ltended Boot. nec._,}
\
\ folume Boot Record \
)
Logical
Partition
Extended -
Partition <
v
Sistemas Informaticos 12 m

Previous: Disks & Partitions

* Master Boot Record (MBR):
— First block of the Disk, 512 Bytes.

— Partition Table: information about four primary partitions: begin and end
blocks, size, etc. (64 bytes)

— Boot Signature: Numerical value indicating the presence of valid bootloader
code in the code field (0x55AA) (2 bytes).
* Volume Boot Record (VBR):
— First block of each primary partition.
— Could contain bootloader code (indicated by Boot Signature).

* Extended Partition:

— Partition that can be sub-divided into multiple logical partitions.

— Extended Boot Record (EBR): First block of each logical partition. It only
contains a partition table with two fields. Extended partition table forms a
linked list with all logical partitions.

gical p LB

Sistemas Informaticos

Previous: Disks & Partitions

* Linux Naming Convention:

— Remember: I/0 devices are treated as files. Under directory /dev we find all
system disks.

generic PC: 2 IDE controllers, each can have two devices (master/slave).
« /dev/hda: first device (master) of the first IDE controller.
« /dev/hdb: second device (slave) of the first IDE controller.
* /dev/hdc: first device of the second controller.
* /dev/hdd: second device of the second controller.

In a disk, each primary partition is identified with a number from 1 to 4.
« /dev/hdal.: first primary partition of the hda disk.

Logical partitions start from 5.
* /dev/hda5: first logical partition of hda disk.

In SCSI devices same naming convention, changing “sd” by “hd”
¢ /dev/sdal

Sistemas Informaticos ® m

Stage 2: Bootloader

* Hardware requires an OS in charge of providing all the
functionality in a computer.
* Target: loading in memory OS kernel and start running it. Loader
with different locations: USB, CD, Disk ...
* Stage 1:
— Located in MBR: 512 first bytes (block 0) of the active device.
— Loaded in memory by BIOS (Stage 1).
— Triggers, when executed, the load and execution of Stage 2.
* Stage 2:
— Located in the active partition, where the kernel is placed.

— Loads the kernel in memory and transfers control to it (data initialization,
drivers, check CPU, etc.)
— After this process, the init process is executed (Stage 3)

Sistemas Informaticos 15 E

Stage 2: LILO

* Llnux Loader:
— Two stage Bootloader.
— Does not “understand” about operating system, neither about file system.
Only works with physical locations.
— Obsolete (but easy to follow for academic purpose)

* Steps:
Master boot loads LILO from the first active partition and runs it.

¢ LILO can be in the MBR or in the Boot Block of a primary partition. In the second case,
MBR contains the necessary code to load LILO from another block.

LILO requests the user the kind of boot wanted (partition, kernel, mode).
Through a prompt.

LILO loads the kernel and a ramdisk.

The kernel starts running once it is loaded into memory.

Sistemas Informaticos 16 m

Stage 2: LILO

Device where LILO is installed (IDE/SATA/

* Configuration: /etc/lilo.conf Floppy..)
boot=/dev/hda #o by ID File with information about disk blocks
geE T - R

map=/boot/map

install=/boot/boot.b
prompt \

timeout=50 Loader Assembly code.
message=/boot/message
linear

i Kernel for booting and its options
default=linux /

with the files required to boot system.

image=/boot/vmlinuz-2.6.2-2 Linux system partition (/). Not necessarily

label=linux a disk (usb loader).
read-only

root=/dev/hda2 #o by UUID Filesystem loaded in memory as a
initrd=/boot/initrd-2.4.2-2.img <— ramdisk. Software support not provided

by the kernel to initialize the system.
other=/dev/hdal
label=dos
optional

Link to other loader (boot a different OS)

Sistemas Informaticos 17 E

Stage 2: LILO

Configuration: /etc/lilo.conf

— Any change in the files employed in boot process (boot.b, kernel, ramdisk)
requires loader update:

* map file must reflect those changes, otherwise booting process is corrupted.
e Check if map file is updated: # lilo -q
* Update map file: # lilo [-v]

A booting error cannot be fixed from the shell...
Possible error sources:

— Installation of a new OS overwriting MBR (MS$)
— Failed kernel compilation

— Modification in boot files without map updating.

Rescue Systems:
— mkbootdisk

Sistemas Informaticos

— Installation Live CD (option rescue) or specialized (SystemRescueCD) - m

Stage 2: GRUB/GRUB2

* GRand Unified Bootloader: linux loader
Bootloader with three stages.

Can work with file systems (ext2, ext3, ext4,...), directly accessing partitions
(no map files)

Supports EFI

Much more flexible, has its own mini-shell (grub>)

* Booting parameters can be decided through that prompt. It is possible to indicate the
kernel and the ramdisk before startup (booting a OS which was not in the boot menu).

e “c” from the startup window opens the console with the values for the selected input.

* “e” edits each input in n-curses format.

¢ “kernel”, “initrd” loads a kernel or a ramdisk.

* “boot” boots your OS

¢ Access to the file system and command has auto-complete (TAB)

— Currently the most employed is GRUB2.

Sistemas Informaticos 19 E

Stage 2: GRUB/GRUB2

¢ GRand Unified Bootloader:

— Configuration:
* More complex scripts than LILO. Advantage: Modifications in files required to boot (kernel
o initrd) are processed “automatically”.
* Everything in /etc/default/grub and /etc/grub.d/
* Final configuration (/boot/grub) is performed through the command “update-grub”.

— Stages:

¢ Stage 1: boot.img stored in MBR (or VBR), loaded in memory and executed (loads the first
sector of core.img).

* Stage 1.5: core.img stored in the blocks between MBR and first partition (MBR gap),
loaded in memory and executed. Loads its configuration file and drivers for the file
system.

* Stage 2: Load Kernel and ramdisk, accessing directly to the file system (/boot/grub).

Sistemas Informaticos 20 m

10

Stage 2: Bootloader

* Having physical access to a system, stages 1 & 2 can become a
weakness.
— Modifying boot options we could obtain superuser privileges.

* Protect BIOS and loader with password.

* Example: Protection of GRUB2 with password

— Edit /etc/grub.d/00_header and at the end of the file add (remember to
perform update-grub after that):

cat << EOF

set superusers=“alumno"

password alumno <<<<<secuencia de grub-mkpasswd-pbkdf2>>> o <<password-plano>>
export superusers

EOF

Sistemas Informaticos 21 ﬁ

M [\(smees |[semenr)

Kernel

Index
B EA,

* Booting, Stage 3: Kernel

Sistemas Informaticos 22

11

Stage 3: Loading the Kernel

* The bootloader has loaded in memory kernel & ramdisk files
— vmlinuz-2.6.26-2-686

* Once finalized Stage 2, kernel execution starts:

Sistemas Informaticos 23 E

initrd.img-2.6.26-2-686

The Kernel un-compresses itself.

Detects memory map, the CPU and its features supported.

Starts the display (console) to show information through the screen.
Checks the PCl bus, creating a table with the peripheral detected.

Initializes the system in charge of virtual memory management, including
swapper.

Initializes the drivers for the peripherals detected (Monolithic or modular).
Mount file system root (“/”).
Calls the init process (Stage 4): PID 1, father of the rest of processes.

Index

* Booting, Stage 4: INIT

Sistemas Informaticos 24 m

Stage 4: INIT

INIT
PROCESS
XOM
PROCESS

12

Stage 4: INIT

* The init process performs the following tasks:

— Step 1: Configuration: read from the file /etc/inittab the initial
configuration of the system: Operation mode, runlevels, consoles,...

— Step 2: Initialization: Runs the command /etc/init.d/rc.S (debian), which
performs a basic initialization of the system.

— Step 3: Services: According to the runlevel configured, runs the scripts/
services pre-established for that runlevel.
* Runlevels (Operation modes)
Standard: 7 levels. Each distribution its own configuration (here Debian)

Level S: only executed at boot time (replaces /etc/rc.boot)

Level O: Halt. Employed to Shut down the system.

Level 1: Single User. Maintenance tasks (no active network)

Level 2-5: Multiuser. All the network and Graphical services activated.

Sistemas Informaticos 25

Level 6: Reboot: Similar to level 0. E

Stage 4: INIT

* Step 1, Configuration. The file /etc/inittab:

/etc/inittab: init(8) configuration.

The default runlevel.
id:2:initdefault:

Boot-time system configuration/initialization

script. This is run first except when booting in
emergency (-b) mode.

si::sysinit:/etc/init.d/rcS

Normally not reached, but fallthrough in case of
emergency.
z6:6:respawn:/sbin/sulogin

What to do in single-user mode. # What to do when CTRL-ALT-DEL is pressed.
~~:S:wait:/sbin/sulogin ca:12345:ctrlaltdel:/sbin/shutdown -tl -a -r now

/etc/init.d executes S and K scripts upon change
of runlevel.
10:0:wait:/etc/init.d/rc
11:1:wait:/etc/init.d/rc
:2:wait:/etc/init.d/rc
13:3:wait:/etc/init.d/zrc
4
5}
6

Note that on most Debian systems tty7 is used by
the X Window System, so if you want to add more
getty's go ahead but skip tty7 if you run X.
2345:respawn:/sbin/getty 38400 ttyl
23:respawn:/sbin/getty 38400 tty2
23:respawn:/sbin/getty 38400 tty3
23:respawn:/sbin/getty 38400 tty4
23:respawn:/sbin/getty 38400 tty5
23:respawn:/sbin/getty 38400 ttyé6

:wait:/etc/init.d/rc
:wait:/etc/init.d/rc
:wait:/etc/init.d/rc

o us WN KO
o U WN o

Sistemas Informaticos 26 m

13

Stage 4: INIT

» Stage 1, Configuration. The file /etc/inittab:
— Line format: id:runlevels:action:process
— id: identifier for the entry inside inittab
— runlevels: execution levels for that entry (empty means all)
— action: What must init do with the process.
¢ wait: wait until it finishes
« off: ignore the entry (deactivated)
¢ once: run only once
¢ respawn: rerun the process if it dies
* sysinit: ask the user what to do with that entry
* Special: ctrlaltdel
— process: sh line indicating init which process to start when this entry is
reached.

Sistemas Informaticos 27 E

Stage 4: INIT

* Step 2, Initialization. The file /etc/init.d/rc:
— Input parameters: the runlevel. Example rc 2: multiuser

— Tasks:

* Establish PATHs

* Load swap space: swapon

¢ Check and mount local filesystems (/ets/fstab)

¢ Activate and configure the network

* Remove not necessary files (/tmp)

* Configure tje kernel. Load modules: Drivers (managing dependencies)

» Triggers the startup of the services associated to the runlevel.
— Modifying the runlevel: command init, telinit

* Allows changing from one runlevel to another

e ¢Single User?

* Restore original state.

Sistemas Informaticos 28 m

14

Stage 4: INIT

» Step 3, services. The directories /etc/init.d and /etc/rcN.d:

All the services available are found in /etc/init.d
¢ Examples: cron, ssh, Ipd, ...

How to indicate each runlevel which ones to start?
* With a special directory, /etc/rcN.d/ (being N el runlevel).

* In these directories a list of links to the services is found.

The directory /etc/rcN.d/

¢ The links begin with letters “S” or “K” plus two digits (execution order).

* “S”:executed in ascending order when a runlevel is started (ssh start).
* “K”:executed in descending order when shutting down (ssh stop).
¢ These links are controlled with “update-rc.d”

S99local: script to perform local configurations
* minor booting aspects: auxiliary kernel modules, personalized services,...
¢ Employed by the administrator
It really runs the script /etc/rc.local

Sistemas Informaticos 29 E

Stage 4: INIT

¢ Manual administration of services:

— After booting process, services can be modified (stop running services or
start new services).

Directly through its script (example ssh):
* # /etc/init.d/ssh [stop/start/restart/status]

Or through the command service:
* service --status-all: reads /etc/init.d/ verifying service state [+] [-] [?]

These changes are volatile (lost after reboot).
¢ Permanent with update.rc-d

Checking possible errors concerning boot process
 # tail -f /var/log/messages (Another important files: syslog, daemon.log
e #ls-lart /var/log

Sistemas Informaticos 30 m

15

Stage 4: INIT

* Manual administration of services:
— Examples of start script and services command:

#!/bin/sh
#SIMPLIFICADO

[-£ /usr/local/sbin/sshd2] || exit 0
PORT=

PORT="grep Port /etc/ssh2/sshd2_config | awk '{ x = $2 } END {print x}' -°
if ["XSPORT" = "x"]

then

PORT=22
£i & dEGUEppery
See how we were called. File Edit View Terminal Tabs Help

case "$1" in
start) # Start daemons

o eTog sehd2 in port $PORT: " SysV Runlevel Config -: stop service =/+: start service h: help g: quit
/usr/local/sbin/sshd2
echo "done." service 1 2 3 4 5 o] 6)
stop) # Stop daemons. B
echo -n "Shutting down sshd2 in port $PORT: " acpi-supp$ {I} {;
kill cat /var/run/sshd2_$PORT.pid" .
echo "done." - alsa-utils [] [l
is anacron [] x1
restart) apmd [l [x]
gg s:oit aﬁd [l [x:
50 sta: bittorrent [] [l
*) o bluez-utig [] [x]
echo "Usage: sshd2 {start|stop|restart}"
exit
esac
oG © Use the arrow keys or mouse to move around. ~n: next pg ~p: prev pg
space: toggle service on / off
Sistemas Informaticos 31 ﬁ
. .
Sutting Down
Sistemas Informaticos 32 m

16

Shutting Down

* Never shut down directly (reset!).

— If this rule is not respected, there is a high probability of loosing or
corrupting system files (with a bit of bad luck, fully broken system)

— Intermediate Buffers for disk read/write. Synchronization.

* Never shut down without warning all system users
— Periodically programmed shut-downs.

» Steps for a correct shut down:
— Warn all the users previously.
— Stop all the services associated to the (/etc/rcN.d/Kxxservice stop)
— Send the specific signal to all the processes to end their execution.
— Users and processes still present, killed.
— Subsystems shut down sequentially.
— File System unmounted (synchronizes pending changes with disk)

Sistemas Informaticos

Shutting Down

¢ Command shutdown:

— Format: /sbin/shutdown -<options> time message
* Option -r: reboot instead power off
e Option -h: stop the system(with ACPI).

— Message: message sent to all users.

— time: delay to begin the shutdown (mandatory)
¢ Format: hh:imm
* Supports now+,minutes

e /etc/shutdown.allow or inittab
— Avoid Ctrl+Alt+Del

* Other commands: /sbin/halt, /sbin/poweroff

Sistemas Informaticos

17

