File Systems

(Getting started)

Sistemas de Almacenamiento

Index (Getting started)

* Introduction
— Devices
— Basic aspects about File Systems
* Partitions, Mount/Umount
* FAT File System
* EXT File System

inodes and blocks

block groups (ext2)

journaling (ext3)

Extents y B-Trees (ext4)
* Virtual File System
* Administration

Sistemas de Almacenamiento

Introduction

* Tasks of system administrator on the file system:
— Guarantee user access to local and remote File Systems.

— Supervision and management of storage capacity.
— Protect information against corruption, hw failures and user errors through
periodic backups.

— Guarantee data confidentiality

— Check File systems and repair possible corruptions.
— Connect and configure new disks.

Sistemas de Almacenamiento

Introduction

* Superblock:
* Remember: _ ‘ ‘ . ,
— Keeps information about file system (version, boot file
A " location, number of blocks, first block of / directory,...)
[Master Boot Recore
\ - Read during file system mounting.
i +Code
\ o .
R FS Structure:
Primaria \ . X . . .
\ — Mapping structure of files/directories into blocks (different
5 for each file system)
‘\ Boot Signature
\
Particién
o Primaria l,’ Volume Boot Record| s
2 yd Superblock tended Boot Recof
© 4 FS Structure L
[\
Particion \
L D:E Légica \
Borticon \ Extended
Primaria Directory N
- \ Boot Signature
Particién
Légica
Particién >
Extendida "5
\4
Sistemas de Almacenamiento

Introduction

* Previous concept: Device

— Name assigned to a device, physical (disk, tape, sound card,...) or logic
(terminal, network port, ...).

— Device file: file for app-HW interactions (through the kernel).

* Consistent way to access different devices (same group of commands
— $cat/dev/dsp > my_recording [talk] Scat my_recording > /dev/dsp

— cat /dev/mouse

* Every device file can be located in directory /dev
— Standard devices [stdin, stdout, stderr] and Memory: [mem] (and virtual memory: kmem)
— Specials: [null] (garbage), [zero] (zero generator), [random] (random number generator)...
— Virtual terminals [ttyX] , Parallel and serial ports [IpX, ttySX], Optical devices [cdrom]
— IDE devices [hdXX], USB/SCSI/SATA devices [sdXX], RAID devices [mdX] (or mapper/XXXX)

— Device driver: kernel routines which define how to perform communication

between kernel and HW (Interruptions, DMA, ...)

Sistemas de Almacenamiento

-

Introduction

¢ Distribution of linux files

/dev: special files for device management.

/etc: Configuration files. Do not place here runnable files.

/lib: dynamic libraries to run /bin and /sbin binaries.

tables.

/bin: base system binaries

administrative files and temporary files.

/usr: additional tools accessible by any user.

Sistemas de Almacenamiento

/proc: virtual file system for processes, with information about kernel state

/sbin: binaries employed only by root. Needed for booting & mounting /usr.

/var: variable data files. Including spool directories and files, tracing and

-

Index (Getting started)

* Partitions, Mount/Umount

Sistemas de Almacenamiento 7 E

Partitions, mount/umount

* Disk Partition:
— Logical storage unit which allows to treat a single physical device as multiple
ones, allowing a different File system on each partition.

— High utility for administration tasks:

* Protect directories that tend to grow indefinitely:
— /var/spool against “mailbombing”
— /tmp against careless users/apps

* Divide software and users

— Easier upgrading, avoid users blocking the system

— In recent kernels, the system creates alias for each partition
* Can be employed whenever needed (Loader configuration, mounting, etc.)
* In /dev/disk/{disk-by-uuiid}, links to the corresponding /dev/sdXX

Sistemas de Almacenamiento 8 E

Partitions, mount/umount

* Mount/Umount

mounting process provides access to the content of a disk from the file
system (making use of device file)

Can be done for any storage device (USB, CDROM, cinta,...)
At least one partition (system) is mounted during booting process.

Command mount: mount a file system

¢ Syntax: mount -<options> [file-dev] [mnt-point]
— Option —r: mounting in read-only mode
— Option —t: kind of file system mounted

— Example: mount —t ext3 /dev/hdcl /home/
Umount process disconnects the device from the rest of the system.
Command umount (syntax: umount [mnt-point])

* Doing this requires that no process is making use of the file system to umount

* Command fuser shows the processes making use of it

Sistemas de Almacenamiento 9 E

e. ® #<file sys> <mount point> <type> <options> <dump> <pass>
P ru h n roc /proc proc defaults 0 0
a o S /dev/sdal / ext3 errors=remount-ro 0 1
/dev/sda5 none swap sw 0 0
/dev/hdc /media/cdrom0 udf, is09660 user,noauto 0 0
/dev/£d0 /media/floppy0 auto Irw,user,noauto 0 0

/etc/fstab: static file system information.
#

* Automatic Mount/Umount

— Systems to mount/umount are read from file /etc/fstab.

Done automatically during boot process (can be also performed at a different

moment with command “mount —a”

File /etc/fstab:
« <file sys>: Device file
* <mount point>: mount point (directory)
* <type>: type of file system (ext3, ext4, vfat, xfs,...)

» <options>: Read or Read/write mode (ro/rw), SUID/SGID support (suid/nosuid), allow user
mounting (user/nouser), allow binary execution (exec/noexec),...

* <dump>: dump frequency (backup utility, obsolete)

* <pass>: order to run fsck on the device. Run at boot time if a illegal umount is performed
for that device (power button)

Sistemas de Almacenamiento 10 E

Partitions, mount/umount

* Example: File system in multiple partitions/disks

homel

IDE 0:0 IDE 0:1 IDE 1:0 IDE 1:1

)) /dev/hdal /dev/hdbl /dev/hdcl /dev/hdd1 m
Sistemas de Almacenamiento J/dev/hda2 1

Index (Getting started)

* FAT File System

Sistemas de Almacenamiento 12 m

FAT File System

* Which are the main requirements for a file system?
— Labeled files (with name)
— File organization as a linked hierarchy (tree-like) of directories.
— Meta-data for every file (generation time, permission, etc.)
* How is this implemented?
— Disk performs sequential storage (blocks), does not know about hierarchies.
— File system.
* FAT: File Allocation Tables

— File system created in 1977 and popularized thanks to MS-DOS.
— Still popular today (FAT32): USB, mem cards, EFl boot partition.

Sistemas de Almacenamiento 13

| §

FAT File System

* File storage

— Afile has two main components:
* Data: one or more disk blocks with binary information.

* Metadata: Name, size, permission, directory, block mapping, ...

— Any file is stored in at least 1 disk block.

* How can | map files in multiple blocks?

List of blocks Start-length pair

(1,1) % 4, 4) (9, 1)
[]

— FAT employs list of blocks, which are stored as a linked list.

| §

Sistemas de Almacenamiento 14

FAT File System

* File Allocation Table

— Linked list structure that holds information about the blocks occupied by
each file.

— It also determines whether a block is in use or not.

FAT Table Data Blocks
2 3 4 5 6 7 8 9
so g3 Ll fEEE
W FAT table values:

[0]: Empty disk block

[1]: Reserved by the O.S.

[1<N<OxFFFF]: Next block in the list
[OXFFFF]: End of the list.

Sistemas de Almacenamiento 15 ﬁ

FAT File System 3
[j Windows

* Directories e\ [j
— Treated as special files. Users
— Itis afile containing a list with the elements in the B
directory.
pfile.sys
Name Index | Dir? | Perm
2 Y rwx
Windows 3 Y rwx
Users 4 Y rwx
Ini?:(ezgge / pfile.sys 5 N r

4 5

3 6 7 8 9
8 00 O
16E

OXFFFF
OXFFFF
OXFFFF
OXFFFF
. N

Sistemas de Almacenamiento

FAT File System

* Problems/Limitations:
— Upper limit, FAT32 supports a maximum disk size of 2TB
— Locating free blocks requires scanning the whole FAT table.

— Prone to file fragmentation (poor locality in blocks from the same file).
Metadata fragmentation-> very expensive searchs.

— Linked lists are not efficient in the presence of small files (a 4-block file
requires 4 readings of the FAT).
* Which is the common case, small or big files?
— Seems to be small ones: 2KB is the most common size, 200KB the average
size.
* Make use of more efficient structures: inodes (index node)

— Employed in the linux file system.

Sistemas de Almacenamiento 17 E

Index (Getting started)

* EXT File System
— inodes and blocks
— block groups (ext2)
— journaling (ext3)
— Extents y B-Trees (ext4)

Sistemas de Almacenamiento 18 E

EXT File System

* Thei-nodes
— Basic building element of the file system.
— Each file (or directory) has associated at least one i-node.

— By default, they consume a 10% of disk storage (can be configured at FS
creation time).

Sistemas de Almacenamiento 19 m

EXT File System

* Thei-nodes

indirect block: 1024 ptrs

d
do
Metadata
mode, uid, size,
blocks,...

12 direct pointers: m

1single indirect pointer: 4 .
1024 Bloques * 4KB = 4MB /l \ 1 triple indirect pointer:

2% Bloques + 4KB = 4TB

1 double indirect pointer:

1024 * 1024Bloques + 4KB = 4GB
Sistemas de Almacenamiento 20 m

10

EXT File System A e

cbw

* EXT File System structure 'E]e
— i-node bitmap: bit map of occupied/free inodes.
— block bitmap: bit map of occupied/free blocks.

— I-node table: each input is a single i-node.

i-node block i-node Data

bitmap bitmap table /ﬁ\ blocks
000

~N—— =

Sistemas de Almacenamiento 21 m

EXT File System(ext2)

* Problems/Limitations of EXT:
— Less fragmentation of metadata, but data fragmentation still present.
— i-nodes and their associated date can be far away in the disk.

* ext2 improves data-metadata locality:

— Disk is divided into block groups (group size usually depends on disk physical
properties: cylinder size).

— Each group replicates FS structures: inode/data bitmap, inode table.

Sistemas de Almacenamiento 22 m

11

EXT File System(ext3)

* Consistency of the file system:
— Some operations require multiple and independent write operations in the

file system.
— Example: Add a block to an existing file (size increase).
Inode Bmap Data Bmap I-node table Data blocks
Update tata Update inode Write new block
bitmap

i

* Operations performed in random order
— What happens if the process is interrupted at an intermediate point?

Sistemas de Almacenamiento 23 m

EXT File System (ext3)

* Consistency of the file system:

Inode Bmap Data Bmap Inode table

A—
Result: consistent file system, but D2 data lost

Inode Bmap Data Bmap Inode table Data blocks

Result: inode points to userless data, inconsistent FS (Data bitmap
vs inode

/\ Data blocks

/\ Data Blocks

Inode Bmap Data Bmap Inode table

FH

Sistemas de Almacenamiento 24 m

EXT File System(ext3)

Journaling:

— Atomic pre-writing (at the same time) disk data.

— Disk writes are pre-annotated in a log. Each input: journal.

v2 B2 D, TXE ID=1

— What happens if log write is interrupted?
* Transaction is not completed (data lost) but the FS remains consistent.

— What happens if journal is written correctly, but disk not?

¢ Temporally, file system misses consistency.

Journal

* The log has the information to restore it (during boot, unfinished journals are completed).
— How do we improve performance?

Buffering sequential writes in memory, grouping them as a single log.

* Performing journaling only to Metadata (Data Bitmap + Inode)

Sistemas de Almacenamiento 25 m

EXT File System(ext4)

* Pointers vs Extents:

— Inode pointers are not efficient for big files

* Example: a 100MB file requires 25600 pointers.

* Cannot be avoided if no contiguous blocks, but what happens in the presence of locality?
— Current file systems try to minimize data fragmentation

* Less searches, better performance

Extents behave better in the case of files with adjacent blocks

inode Inode each extent
block 1 block 1 includes a pointer
to ablockand a
block 2 eength 1
length value
block 3 block 2
block 4 length 2
block 5 block 3
. block 6
® Btrees. 0C length 3

— Improved directory encoding to speed up file search.

Sistemas de Almacenamiento

26

[5

13

Index (Getting started)

* Virtual File System

Sistemas de Almacenamiento 27

 §

Virtual File System

* Problem:
— The OS can mount multiple partitions with different file systems.
— Does a process need to use different APIs for each FS?

* Linux makes use of a interface known as Virtual File System (VFS)
— Exposes a POSIX API to the processes.

— re-sends requests to the specific driver of the underlying file system.

Virtual File System Interface

o L
2 %
| |
Sistemas de Almacenamiento =R)\

14

Index (Getting started)

¢ Administration

Sistemas de Almacenamiento

Administration

Adding a new disk:

— Command fdisk: manipulation of the partition table

— BIOS limitations for a PC: only 4 primary partitions (the rest extended)

Syntax: fdisk /dev/sda (Includes a descritive menu of the available operations [m])
Think carefully what you are doing ([q] exit without saving changes)

[v]: look at the content of a unpartitioned disk.

[n]: new partition

[w]: Write the new partition table (Prior revision with [p])

Formatting the new disk:

— File systems supported by the kernel: /proc/filesystems

Most recommended in linux is: ext3/ext4

— Command mkfs: builds a file system in a partition.

Syntax: mkfs [-V —t fs-tipo] /dev/sda3

Sistemas de Almacenamiento

15

Administration

* Checking the file system:

— Command fsck: detection and correction (some cases) of corruption
problems in the FS.
* Compares the list of free blocks with the directions stored in the i-nodes.
|t also verifies the list of free inodes in contrast to the inodes in directory inputs.
* Important limitations against file corruption.
* Should be performed without mounting the file system.
* Periodically it is performed during boot process.

— Command badblocks: detect and exclude broked disk sectors
* Physical error, replace the disk immediately.

- SSM.AAR.T

» Utilities to access fiability/usage information about the disk (requires firmware support).

* smartmontools

Sistemas de Almacenamiento 31 ﬁ

Administration

* Resizing the file system:

— Command resize2fs:
* Supports ext4 and requires kernel >= 2.6

* Adjacent partitions must allow it.

* First make room with fdisk, then resize (increase) with resize2fs.

e |tis also useful to reduce the file system size
— Combined with fdisk we can do anything: break, increase, etc.

— Before working with partition table, make a backup dd if=/dev/sda of=part.bkp count=1 bs=1
* Dangerous
— Command parted: manipulation of partition table and FS
* Syntax: parted /dev/sdX
* Can copy, move change file systems, very powerful
* Dangerous if commands are not executed correctly!!

Sistemas de Almacenamiento 32 ﬁ

16

Administration

Modify file system parameters:

— Command tune2fs: Adjust configurable parameters of the FS
* [-e] policy in the presence of error

¢ [-j] add journaling

Other tools: dd

— Images of the file system:
» ddif=/dev/sdal | gzip > imagen_disco.gz
* gzip —dc imagen_disco.gz | dd of=/dev/sda2
— Copy of the file system:
¢ ddif=/dev/sdal of=/dev/sda2
— Backup of the partition table:
* ddif=/dev/sdal of=backup_part count=512 bs=1

Sistemas de Almacenamiento

17

File Systems
(Advanced)

Index

* Logical Volume Manager (LVM)
* Redundant Array of Inexpensive Disks (RAID)

* Backup

Logical Volume Manager (LVM)

My File System has a size of 4GB, but | only have 2GB Disks. Is there

any solution?

LVM: creates an abstraction layer over
the physical storage, allowing the
creation of logical volumes(“hide” the
underlying HW, exposing a single
Volume to the SW).

Y
)

1r

(Logical Volume

LVM

IIjE(;:O
2GB

IDE 0:1
2GB

Logical Volume Manager (LVM)

LVM Advantages

— Flexible management of disk storage: avoid the limitations imposed by disk
physical size. A File System can be extended through multiple disks.

— Re-sizeable Storage: logical volumes can be extended/reduced in a simple
way. Some operation do not require File System umounting.

— On-line Data movement: data con be moved between disks while these disks
are in use. | can replace a disk without interrupting system service.

— Taking “Snapshots”: eases the process to take snapshots to devices (backup)

Logical Volume Manager (LVM)

LVM Hierarchy: fdev/sda——
X VGDA
— Physical Volumes (PV) Raw Physical
content
* Lowest level of LVM hierarchy
* Complete disk or partition Jdev/sdb—
* Contains VGDA (Volume Group Descriptor Area) and VGDA
the raw physical content. Raz:,:':ey,:'tcal
— Group Volumes (VG) |__VGDA__|
Raw Physical
* equivalent to “super-disks” content
* Built with one or more PVs /dev/s \‘;GDA
— more PVs can be added to the GV without modifying the " Raw Phveical |
i aw Physical
previous ones content
— Logical Volumes(LV)

Physical Volumes

Group Volume

* Equivalent to “super-partitions”
* File Systems are created on a Logical Volume

File Systems

Logical Volume Manager (LVM)

LVM Administration:

Command pvcreate: creation of a Physical Volume.

* Syntax: pvcreate [partition] (It is necessary to previously create a partition with fdisk).

Command vgcreate: creation of a Group Volume from multiple PVs.

* Syntax: vgcreate [name-vol] [PVs]

— Example: vgcreate vg0l1 /dev/sdb /dev/sdcl (group disk sdb and partition sdcl in a GV in /dev/vg01).

Command lvcreate: creation of a Logical Volume

* Syntax: Ivcreate [GV] —L[size] —n[name-vl]

— Example: lvcreate vg01 —L1000M —nvoll (after this we can create the FS with mkfs)

Need more storage?

* add a new Physical Volume to the Group Volume (vgextend)

* Extend the Logical Volume to the larger Group Volume (lvextend)

* Re-size the File System (resize2fs).
— Can do this online !!! (...In contrast, reductions must be done offline)

* We can also reduce VG and LV (vgreduce, lvreduce)

File Systems

Index

* Redundant Array of Inexpensive Disks (RAID)

File Systems u E

RAID (Redundant Array of Inexpensive Disks)

* Mechanism to provide reliability and performance in disks.

— Make use of multiple disks to create the illusion of a disk with larger capacity,
faster access and fault tolerant.

Transparent to the user and the OS..

Different configuration options (Reliability vs Performance vs Capacity)
denoted as levels [RAIDO ... RAID7].

Can be implemented via HW or SW

* HW Implementation: High efficiency but
also high cost. ‘}

— RAID Controller: CPU +dedicated sw, RAM + non-
voletile memory.

S

* SW Implementation: Efficient management
of simplest RAID configs (0,1).

File Systems € E

RAID (Redundant Array of Inexpensive Disks)

* RAID O (striping) :
— Data are divided into segments (strips) and distributed among multiple disks.

* parallel access to disks.

— Performance: improves read/write latency
* Speed increases as the number of disks grows (also depends on data size).

— Reliability: no fault tolerance.
— Capacity: 100% storage utilized (no redundancy).

Controller Controller RAID 0 (M disks): Tyrite= (Thiock *Nbiocks)/ Maiscos
Dajia’*”:‘ DEI}L—n; 2z
~block1 - ~block1 -
t~—block 2 4 —— _block 2 - e e _— - A
= 0| ES a1 e | e | S
~block 1
1 Disk: j;};;(;ﬂ

- *
Twrite_ Tblock Nblocks

File Systems 2 E

RAID (Redundant Array of Inexpensive Disks)

* RAID 1 (mirroring) :
— Employ a secondary disk to copy all data being modified
— Performance: low performance caused by writes (everything replicated)
— Reliability: High redundancy, one disk can fail.
— Capacity: 50% of total capacity available.

Contr. Contr. Contr.

File Systems

RAID (Redundant Array of Inexpensive Disks)

* RAID 4 (striping + parity) :

— One disk stores information about the parity of the rest.

Block-level division (1 strip= 1 block). Can access disks individually.

Performance: High performance for reads. Bottleneck for writes.

Reliability: Tolerance to 1 faulty disk.
PA= AO xor Al xor A2
If disk 2 fails:

Contr. A2= AQ xor Al xor PA

Capacity: Only 1 disk is not available.

éHow to calculate new parity after a write event?
(Example: write in block B1)

Optionl: Read the rest of blocks (B0, B2) and recalculate
Option2: Read the content of B1 and PB and calculate: PB,,, = PB, xor B1 ., xor B1 4

File Systems

RAID (Redundant Array of Inexpensive Disks)

* Write problem in RAID 4:
— Need to write in positions 0, 5, 7

Contr.

Write process:
1. Read the blocks 0,5,7 and PA,PB,PC.
2. Calculate the new value of PA, PB, PC

0 1 2
., —~ || WL 3. Write new data blocks
. — |, Write new parity blocks

Serialized (writes in the same disk)-> Low
performance

File Systems 12 E

RAID (Redundant Array of Inexpensive Disks)

* RAID 5 (striping + distributed parity) :
— Parity information is distributed among all the disks.
Similarly to RAID 4, block-level division (1 strip= 1 block).

Performance: Eliminate the writes bottleneck.

Reliability: Tolerates 1 faulty disk. [Contr.

. . Jo—
Capacity: only 1 disk lost. =

File Systems 13 E

RAID (Redundant Array of Inexpensive Disks)

* RAID Administration, command mdadm :

— Creation of a RAID device:
e #mdadm --create /dev/md0 --verbose --level=0 --raid-devices=2 /dev/sdb /dev/sdc2
* Itis necessary the previous partitioning of disks (fdisk)
» Creation process can be monitorized: # cat /proc/mdstat
* Created a RAID in /dev/md0. On it we can create a File System (or a LVM Physical Volume).
— Monitorization of RAID system:
* #cat /proc/mdstat

* #mdadm --monitor [options] /dev/mdO

— Elimination (deactivation) of RAID:
* “Stop” device: # mdadm --stop /dev/md0

* Clean previous information from a RAID disk: # mdadm --zero-superblock /dev/sdX

File Systems 14 E

RAID (Redundant Array of Inexpensive Disks)

e Procedure for a disk failure:

— Assume a RAID5 system, still operative with a significant performance
degradation.

— Broken disk can be automatically restored:

1.

2
3
4.
5

Eliminate broken disk from RAID: # mdadm /dev/md0 —r /dev/sdc1
Physically replace with another one (identical)

Create the partitions as in the original: # fdisk /dev/sdc

Add it to the RAID device: # mdadm /dev/md0 —a /dev/sdcl
Monitorize the reconstruction process: # cat /proc/mdstat

— We can simulate a disk failure:
e #mdadm /dev/md0 —f /dev/sdcl

* All the process log information in /var/log/messages

File Systems

RAID (Redundant Array of Inexpensive Disks)

* Combination RAID + LVM
— RAID must be implemented below LVM

Physical Disks

/dev/sda

File Systems

Partitions RAID Device Physical Volumens Group Volume
S (on RAID device)
. /dev/md0 /dev/mdo
/dev/sdal
VGDA
- = Raw physical
- content
/dev/sdb1l
—_—— .‘§ RAID 0 AID O
S .
eviedel J_E /dev/md1 /dev/md1
: /dev/s cl/ VGDA
-‘j:iﬂ Raw physical
S |__content |
/dev/sdel J*-' __veoa]
~—— Raw physical
. content
/dev/sdf1
S RAID 5 RAID 5

Index

* Backup

File Systems

[5

17

Backup

RAID+journaling not enough to provide 100% availability.
* Essential: backup copies

— Solution for multiple unexpected events, both HW and SW.
— Mainly “the users”.

¢ Performed with dedicated resources:

-

g

— Hard Disks S
* Exclusively dedicated to backup

* SAN Servers ~

* Disk hierarchy with decreasing performance T>:

— Tapes (or other magnetic support z

e LTO (Linear Tape-Open) (LTO-6 Ultrium):
— 2.5TB capacity, 160MB/s transference.
* Others: SAIT, AIT

File Systems

Backup

* Backup Policy: configured according to our requirements

— What do we need to store?
* Data from users/apps/system

* Select the critical parts of the system

When do we want to backup?
* Do not overload systems with useless work
* Depends on the kind of utilization and the part of the file system.

* Employ programming/automatization mechanisms (cron)

Where do we want to backup?

« Efficient labeling and organization of storage support (tapes)

Check always that the backup finished correctly (recuperation test)

File Systems 19 E

Backup

* Basic system tool: dump/restore

Present in most UNIX/Linux systems

Many advanced tools employ this as starting point.

Designed to work at File System level
* Can copy any kind of files (even devices)
* Preserves permissions, property and timestamps of files

e “sparse” files managed correctly.

backups are performed incremental (backup levels)
* Only available for the whole File Systems.
* Level 0: (FULL) Copy all files from scratch.
* Level 1: (INCREMENTAL) Add to the previous backup only modified files

* Level N: Add to the previous backup the files modified since the last time a “less than N”
backup was performed.

* The information about backup history is stored in /etc/dumpdates.

File Systems 20 E

Backup

* Creation of backups with dump command

— Syntax: dump -<level> <options> -f [destination] [File system]
* Level: int from 0 (FULL) to 9
* Option —f: destination of backup file. Can be a device file (tape)
* Option —u: update the file /etc/dumpdates after the backup.
* Example: # dump -Ou -f /dev/tape /

* Recovery with restore command
— restore —C: Compare the stored File system (from /)

— restore —i: interactive operation with backup:
« add/delete: files/dirs to the restoration list
* cd/Is/pwd: move through the backup FS (Files with * are in the restoration list)

* extract: restore the files from the list

— restore —r: restore the whole file system
* #restore —r —f <backup_file> <destination>
T UC|

File Systems

Backup

» Alternative tools(rudimentary):

— Command tar (package):
* Can understand devices without file system

* Can be completed with compression tools (bzip, zip)

— Command dd
e #ddif=/dev/sda2 of=/dev/tape
— Command cp —a: optimal to replicate disk content (at file level)

* Advanced tools for distributed systems backup

— Data Protector (HP): many different platforms, relatively cheap, can be
integrated with HP OpenView

— Legato/Tivoli (IBM): expensive licensing

— Bacula: GNU alternative to non-free software

rdump + rrestore + HW adecuado + scripting = enough

File Systems 22 E

