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Abstract1 

 
A new and efficient mechanism to tolerate failures in 

interconnection networks for parallel and distributed 
computers, denoted as Immunet, is presented in this work. 
In the presence of failures, Immunet automatically reacts 
with a hardware reconfiguration of the surviving network 
resources. Immunet has four important advantages over 
previous fault-tolerant switching mechanisms. Its low 
hardware costs minimize the overhead that the network 
must support in absence of faults. As long as the network 
remains connected, Immunet can tolerate any number of 
failures regardless of their spatial and temporal 
combinations. The resulting communication infrastructure 
provides optimized adaptive minimal routing over the 
surviving topology. The system behavior under successive 
failures exhibits graceful performance degradation. 

Immunet reconfiguration can be totally transparent to 
the applications running on the parallel system as they will 
only be affected by the loss of those data packets 
circulating through the broken components. The rest of the 
packets will suffer only a tolerable delay induced by the 
time employed to perform the automatic network 
reconfiguration. Descriptions of the hardware network 
architecture and detailed synthetic and execution-driven 
simulations will demonstrate the benefits of Immunet.  

1. Introduction 
Parallel computers are being widely used nowadays in 

mission-critical, scientific, engineering and commercial 
applications. Consequently, it is becoming increasingly 
important to provide high system dependability. Hence, 
fault tolerant systems must be designed in order to support 
uninterrupted service. Recent scalable systems incorporate 
a combination of hardware and software techniques to 
provide some fault tolerance capabilities, such as the 
direction order routing used in the Cray T3E [24]. 
Furthermore, failure rates dramatically increase when using 
highly parallel computers. In certain scenarios, the MTBF 
(Mean Time Between Failures) can be lower than the 
execution time of the typical applications running on the 
system. Such is the case, among others, of the IBM 
BlueGene/L supercomputer [1]. 
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The interconnection network is a key component of a 
parallel computer whose design greatly conditions system 
reliability. The network itself can be a source of failures 
because of both, its parallelism and its distributed nature. 
Moreover, after any kind of system fault the network 
constitutes the media to provide communications among 
surviving nodes.  

In this work, we present and evaluate a complete design 
of a feasible fault-tolerant interconnection network able to 
provide unlimited system robustness. Our mechanism 
guarantees safe communications among all the surviving 
system nodes that remain connected after any number of 
faults. Our proposal assumes the use of conventional 
hardware to dynamically detect failures. After an automatic 
process of network reconfiguration, Immunet will provide 
new communication paths able to maintain the surviving 
part of the system in a degraded but optimal operation. Our 
reconfiguration mechanism is totally transparent to the 
applications running in the system and consequently, it is 
not necessary to stop them. Immunet guarantees that only 
packets in transit through the devices causing the failure 
could be lost. Obviously, this packet loss must be 
recovered and managed by the corresponding hardware 
and/or software mechanisms. In this paper, we will show 
the robustness and the graceful degradation exhibited by 
our mechanism as well as an exhaustive evaluation of its 
tolerable hardware costs.  

We will consider two different kinds of hardware 
failures: link faults and node faults. Link failures cause a 
communication loss between pairs of nodes and they can 
be associated to physical failures in the media used to 
interconnect neighboring network routers. Only 
bidirectional link failures will be considered in this work. 
When a node failure appears, that node interrupts 
communication with all its neighboring nodes. Any module 
integrating the node can cause these failures. Nevertheless, 
from the communications point of view, a node fault will 
be associated with the death of its corresponding network 
router. Hence, we will consider that the computing node or 
nodes attached to this router cannot communicate with any 
other processor in the system. In essence, a failure in any 
router introduces the loss of all the communication links 
attached to it. Our mechanism is able to deal with any 
number and any kind of temporal and spatial combination 
of network faults. In short, Immunet guarantees 
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communication between any pair of computing nodes as 
long as a physical path exists between them. 

A large number of fault-tolerant routing mechanisms 
have been previously proposed. Some of them, which are 
related to our proposal, are described in references 
[3][6][7][10][13][25][26]. None of them is comparable to 
Immunet. There also exist several works not directly 
related with fault tolerant networks but with dynamic 
reconfiguration in high-speed local area networks 
[2][5][18]. However, the majority of them require 
discarding application traffic and, in general, they are not 
able to manage any spatial or temporal fault distribution. 
Moreover, they use software approaches that are not a 
desired solution in our context. 

We do not know any other integral reconfiguration 
mechanism like the one presented in this work, exhibiting 
such a low cost and such a large coverage. In the 
previously mentioned proposals, the hardware and software 
cost for implementing the required functionality have 
important negative impacts on the performance of the 
system in absence of failures. The implementation of some 
solutions like the ones presented in [3][7][25] implies an 
important hardware cost and introduces a non-negligible 
degradation in the fault-free network performance. This is 
one of the main reasons for which real systems hardly 
incorporate efficient fault tolerance mechanisms. 
Additionally, most of these proposals introduce serious 
restrictions on the temporal and spatial combinations of 
components under failure conditions. Even considering a 
low coverage of faults, they exhibit serious restrictions. For 
example, in [6][10][13], link and node faults cannot arise 
anywhere and successive failures cannot appear anytime. 

The rest of the paper is organized as follows: In Section 
2, we describe the context where our mechanism will be 
used. Section 3 presents the basis of Immunet. Section 4 is 
devoted to describe the distributed algorithms that 
constitute the foundations of our mechanism. Section 5 
presents a sketch of a hardware implementation of 
Immunet, which demonstrates its feasibility. Section 6 is 
devoted to analyzing the performance exhibited by our 
proposal under both synthetic and real traffic workloads. 
Finally, in Section 7, the main conclusions of the work will 
be summarized. 

2.  Router Architecture and Network 
Topology  

A router in a parallel computer injects packets from one 
or more computing elements to the network. Conversely, 
each router ejects packets from the network to one or more 
computing nodes. Obviously, the router’s function is to 
convey packets towards their destination. The design of 
this hardware module has to maximize the use of the 
network resources avoiding communication anomalies 
such as packet deadlock, livelock and starvation. Although 
our fault-tolerant routing can be used in arbitrary 

topologies, we will focus our attention in this paper on 
analyzing its application to regular networks. 

Figure 1 describes our basic router organization, 
showing the usual hardware modules: crossbar, buffers, 
arbitration logic, synchronization, etc. Our router has two 
virtual channels (FIFOs) per input link to support fully 
Adaptive Bubble Routing (ABR) [19], [20]. This switching 
mechanism has recently been selected for the design of the 
IBM BlueGene/L supercomputer [1]. When using ABR, a 
subset of the total virtual channels is configured as a safe 
virtual network in which packet deadlock never occurs. 
The remaining virtual channels are configured as a fully 
adaptive virtual network. As long as there are available 
adaptive FIFOs, ABR always routes packets through 
adaptive paths. Safe paths are only selected when all the 
profitable adaptive FIFOs are exhausted, which causes the 
blocking of all the adaptive routing alternatives.  

In our ABR, packets move under two different policies. 
In the adaptive virtual network, the injection and transit of 
packets are always regulated by Virtual Cut-Through flow 
control (VCT) [12]. However, in the safe virtual network 
the packets advance is also regulated by the Bubble Flow 
Control (BFC), a mechanism for avoiding packet deadlock 
in topologies based either on a single ring or on a set of 
rings. 
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Figure 1.- Basic Router Organization. 

Although arithmetic routing can be employed in regular 
topologies, most modern low-to-medium size parallel 
computers rely on the use of tables. With current hardware 
technology, the network scalability is not compromised by 
the size of the tables. The routing table’s initializations will 
be carried out at boot time as in the SGI Spider [9] or the 
21364 Alpha [16]. 

Immunet employs three tables to route packets toward 
their destination. Two of them are standard routing tables 
whose sizes depend on the number of system nodes. The 
Safe Table is used to route packets through the safe virtual 
network and the Adaptive Table governs the packet routing 
inside the adaptive virtual network. The router employs 
another Small Safe (SS) table to record the current shape of 
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the safe topology inside the node. The SS table size is 
almost negligible as it only depends on the network degree. 

As stated before, we will concentrate our attention on 
the application of Immunet to regular topologies, namely, 
k-ary n-cubes. As is known, these topologies have been 
frequently implemented in several commercial systems due 
to both their good cost/performance ratio and scalability 
[16][24]. Without loss of generality, we will only consider 
2D torus to demonstrate our methodology in the rest of the 
paper. 

A 2D torus, or k-ary 2-cube, can be seen as a collection 
of 4k unidirectional rings of length k, denoted as BFC safe 
rings. Figure 2(a) shows these 16 rings embedded on a 4x4 
torus. Our safe virtual network is composed of these 4k 
rings, which must be visited under Dimension Order 
Routing (DOR). We employ for its implementation one 
virtual channel per physical link in every router (a total of 
4k2 FIFOs). The remaining 4k2 FIFOs constitute the fully 
adaptive virtual network. Packets traveling inside any of 
the 4k BFC safe rings are regulated by VCT but no packet 
can be injected in any of these rings if it exhausts the 
buffers of that ring. Packets can be injected inside a BFC 
safe ring from three sources: from a computing node, from 
the adaptive virtual network or from another BFC safe ring 
of a previous dimension. BFC only permits a packet 
injection in a BFC safe ring if there is space in its local 
FIFO for, at least, two packets. In this way, there will 
always be at least one free buffer inside a BFC safe ring (a 
Bubble under our terminology).  

Figure 2(b) shows a SS table, which reflects the shape 
of the safe virtual network topology crossing an arbitrary 
router. The table has been updated according to the port 
labeling described in Figure 2(c). Entries set to one indicate 
an allowed routing action that connects two network ports 
belonging to the same BFC safe ring. The content of this 
SS table reflects a fault-free 4x4 torus in which the safe 
virtual network is configured as the 16 unidirectional rings 
mentioned before.  
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3. The Basis of Immunet 
A fault-free ABR 2D torus is able to support a high 

level of packet throughput Th0, as represented in Figure 3. 
It must be highlighted that our ABR switching from which 
we have developed Immunet is, up to our knowledge, the 
mechanism having the best performance/cost ratio to 
manage packets in a fault-free interconnection network 
[20]. A good fault-tolerant network must pursue the 
maximization of the Th0 value because running programs in 
a fault-free parallel computer should be the normal mode 
of operation. Imagine that, at time t0, a fault arises. If the 
system has the appropriate mechanisms to tolerate this 
fault, after a certain period tr, the parallel computer should 
recover and continue in a degraded but normal operation. 
The performance degradation, Th0-Th1, is caused by both 
the resources loss and the changes in the resulting 
topology. Our Immunet fault-tolerant mechanism will 
provide the parallel system with the necessary functions to 
reconfigure transparently the network after any number of 
failures. Due to its low hardware costs and overhead, 
Immunet maximizes Th0 and simultaneously minimizes tr 
and (Th0-Th1), as we will prove in the rest of the paper. 
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Figure 3 Throughput degradation: transitory and 

stationary phases 

One of the most complex problems inherent in handling 
any combination of link and/or node faults is that such 
faults induce topological changes affecting the deadlock 
avoidance mechanism. For example, a fault in any link of a 
torus breaks down one ring and, therefore, it is not always 
possible to use Dimensional Order Routing to route packets 
through the safe virtual network. Most of the previously 
proposed solutions add an important number of resources 
to maintain deadlock-free communications, which notably 
increases the router complexity. 

The first requirement that Immunet must guarantee is 
that, independently of the number and configuration of 
network faults, always exists a secure alternative to route 
packets among the surviving nodes. In [23] we prove that it 
is always possible to find a unidirectional ring traversing, 
once or more, all the surviving system nodes after any 
configuration of faults. Applying BFC over this single ring 
guarantees the existence of a safe path to interchange 
packets among all the nodes. A very easy method to obtain 
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such a single BFC safe ring is based on establishing a 
“tour” through a spanning tree, always embedded in any 
arbitrary topology. For example, Figure 4(b) shows a 
unidirectional ring embedded in a 4x4 torus after the fault 
of 12 links reflected in Figure 4(a). Applying BFC over 
this ring assures deadlock-free communications. The rest of 
the network resources (FIFOs not belonging to the BFC 
safe ring) can be employed as a minimal adaptive virtual 
network. Hence, by combining these two virtual networks 
we can continue using ABR inside the new topology. As 
packets can be misrouted when entering in the BFC safe 
ring, the number of movements between virtual networks 
must be limited in order to avoid packet livelock.  

One of the main advantages of our mechanism relies on 
its low hardware cost. We will employ the same router 
architecture core as the one used in a fault-free network. 
Immunet will reconfigure all the router SS tables, as shown 
in Figure 2, for dynamically recording the configuration of 
the current safe virtual network inside each node. 
Obviously, when the network achieves a new topological 
configuration Immunet must also modify the safe and the 
adaptive routing tables. 

In the following Section, we are going to prove that it is 
always possible to build automatically the BFC safe ring 
with a limited cost. Later on, we will also present a low-
cost methodology to automatically reconfigure and 
optimize the safe and adaptive routing tables in order to 
achieve graceful system performance degradation. 
 

router x 

x 

    (a)   (b)  (c) 
Figure 4 (a) A 4x4 torus with 12 faulty links. (b) Its 

tree-based BFC Safe Ring. (b) BFC Safe Ring 
topology inside router “x”. 

4. Immunet Distributed Algorithms 
We divide this section into three parts. The first one will 

be devoted to presenting a distributed algorithm to 
dynamically generate trees over which we will implement 
our BFC safe rings. The second and third subsections are 
dedicated to describe the distributed processes of updating 
the routing tables used for the safe and the adaptive virtual 
networks. 

4.1. Establishing an emergency path 
We begin our analysis starting from a healthy network, 

such as the one described in Section 2. When one or more 

failures take place, the router or routers detecting them will 
enter in an emergency state that will be propagated to the 
rest of the surviving network nodes. After stopping new 
packet injections, the first goal of Immunet is to establish 
an emergency path to guarantee that all the surviving 
connected nodes can communicate among them. During 
the emergency state, the emergency path will be the only 
secure communication medium for all the pending in-
transit packets. In addition, as we will see below, the 
emergency path will be the communication support used to 
reconfigure the routing tables. Once ended the emergency 
state, the emergency path will act as a safe virtual network. 
Remember that our safe virtual network will be a BFC 
unidirectional ring obtained from a “tour” through a 
spanning tree always embedded in the surviving topology. 

The presence of failures induces changes on the 
network topology. The 4k BFC safe rings, which visited 
under DOR guaranteed deadlock-free communications, no 
longer exists. Consequently, some packets cannot achieve 
their destination. Hence, to rebuild the new unique BFC 
safe ring we can only rely on local communications among 
the surviving neighbors.  

For the sake of clarity, we will follow an automatic 
generation of one of these trees by means of an example. 
Consider a 3x3 torus such as the one represented in Figure 
5. Now, assume that there is a fault in the link connecting 
nodes #4 and #1. Suppose, initially, that only node #4 
detects the failure. To begin with, node #4 will be the root 
of the tree. Node #4 will communicate to its neighboring 
nodes #3, #5 and #7 this emergency state by means of a 
special signal together with its emergency priority level 
(EPL), which is the ID of the root node (#4). After that, 
nodes #3, #5 and #7 will retransmit the emergency state to 
their corresponding neighbors until reaching the most 
distant nodes.  

When a node detects a failure or receives an EPL, it 
enters in a special emergency state. First, the node stops 
new packet injections. Second, it compares the incoming 
EPL with its local EPL (in a fault-free network all the local 
EPLs are initially set to zero). Then, the node analyzes, 
using a first-come-first-serve policy, the remaining input 
links searching for other emergency states with higher 
EPLs. After a bounded time, the node records the highest 
EPL and sends back a special ACK to the winner, which 
will be its parent in the tree. Now, in order to determine its 
children, the router will retransmit the emergency state to 
all its neighbors except to its parent. Again, after a 
bounded time, the router will receive the corresponding 
special ACKs coming from the nodes that accept this 
router as its parent.  

Subsequent communications of emergency states will 
compare their EPLs with the one recorded in each 
surviving router. In the same way, the local priority level 
will be changed if the received EPL is higher than the one 
recorded in the router, modifying again the shape of the 
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tree. In this way, every node will know every time who its 
parent is and who its children are. Hence, we have the 
necessary information distributed among nodes to rebuild a 
new safe virtual network in the form of a BFC ring over 
the basis of the current emergency tree. In fact, to route 
packets over the emergency path it is enough to update, in 
each router, the SS table, which records the local topology 
of the BFC safe ring.  

An SS table updated according to a certain port labeling 
can be seen in Figure 5(b) for router #3. The table reflects 
the “tour” through the emergency tree described in Figure 
5(c). This SS table, directly induced from the emergency 
tree, records the valid routing actions to traverse this node 
through the emergency ring. So, for node #3, any packet 
entering from link #3 will be sent to port #2, any packet 
entering from link #2 will be sent to port #0 and any packet 
coming from link #0 will be sent to port #3. 

 

3 

2 
0 

SS Table Node #3 

2 

1 
0 

3 

#7 

#4 

#1 

#8 

#5 

#2 

#6 

#3 

#0 

Fault 

Propagation 
Acknowledge 

#4

#3 #7 #5

#2 #8#0 #6 #1

ports 

In\out   0  1   2   3 
  0        0   0   0   1 
  1        0   0   0   0 
  2        1   0   0   0 
  3        0   0   1   0 

  (a)      (b)   (c) 
Figure 5 Example of BFC safe ring rebuilding after 

a link failure. 

This methodology to generate trees avoids ambiguity 
problems related with multiple detections of emergency 
states. If there is only one node detecting a single fault, a 
router can receive from different links an emergency state 
with the same EPL. In this case, the selected parent will be 
the one corresponding to the first detected emergency state. 
Nevertheless, a more usual scenario is that two or more 
routers simultaneously detect a failure because all routers 
behave identically. For example, in Figure 5, nodes #4 and 
#1 will simultaneously detect the failure of the link that 
communicates them. Hence, both nodes try to be the roots 
of two different spanning trees. It is clear that only the root 
with higher ID will succeed and just one single tree is 
going to be generated.   

Our mechanism can also tolerate nested failures. It is 
possible that after the detection of a fault, another fault 
arises in the middle of the generation of one emergency 
path. In this case, if the node detecting the second fault had 
lower ID than the one detecting the first failure it would 
not be possible to obtain the correct tree. This undesirable 
behavior can be overcome using an EPL that depends not 
only on the ID of the node that detected the fault but also 
on the times that the node managed an emergency state. 
Therefore, in an N node network, a router x detecting a new 

fault will generate an EPL equal to tN+x, t being the 
number of emergency states experienced by this node. In 
this way, the EPL generated for a detecting node after 
every fault is always different. Therefore, we can assure 
that only one spanning tree will succeed in implementing 
the BFC safe ring regardless of the number and the 
configuration of faults. 

Figure 6 shows several tree propagations that illustrate 
the cases of multiple emergency detections and nested 
failures. Initially, nodes #1 and #4 simultaneously detect 
the fault of the link that connects them. Each of these nodes 
tries to become a root and begin the corresponding tree 
generations, propagating their emergency states. Node #7 
will receive simultaneously two emergency notifications 
but it will just consider the one with higher EPL, i.e. #4. 
Transmission of emergency states is represented by 
continuous arrows on the left tori of Figure 6 and the 
special ACKs sent back only to the winner parents are 
represented by doted lines.  
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Figure 6 Examples of multiple fault detections and 

nested faults. 

Now, consider that before ending the establishment of 
the tree rooted in node #4, a new fault arises in the link 
connecting nodes #3 and #4. Two new emergency states 
will be detected and propagated by nodes #3 and #4 
sending respectively priorities (1·9+3)=11 and (1·9+4)=12. 
In this case, the partial tree caused by the previous fault 
will be removed when the new higher emergency priority 
level is detected in each node. There will be nodes that 
receive simultaneously both notifications (nodes #5, #2 and 
#8), selecting only the higher EPL. Nevertheless, some 
nodes (#0 and #6) will first receive the emergency state 
with lower priority. Immediately afterwards, these nodes 
will receive the emergency notification of priority #12, 
corresponding to the second tree rooted on node #4, 
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canceling the previous tree. At the end, just one tree will 
progress. The definitive tree used to establish the final BFC 
safe ring is the one shown with continuous arrows in 
Figure 6. In consequence, we can build a unique BFC ring 
through which, after a finite time, any packet will 
eventually reach its destination. Our idea to rebuild the tree 
has some points similar to the technique proposed in [2] 
but, unlike it, we can successfully solve multiple link/node 
faults (simultaneous or not). 

4.2. Safe routing table rebuilding 
Once the BFC safe ring and the SS table have been 

obtained, every surviving node knows how to route packets 
in transit inside that ring. Nevertheless, the routing tables 
of the nodes are no longer valid. Consequently, no packet 
can be injected into the BFC safe ring coming from 
adaptive channels or from network interfaces. Hence, 
routing table rebuilding is compulsory before leaving the 
emergency state. 

 Two steps are employed to rebuild the safe routing 
table. In the first one, we use a secure but provisional 
routing table and in the second phase, we rebuild it in order 
to improve packet routing performance through the BFC 
safe ring.  

The provisional safe table fulfils the following routing 
rule: Every packet, regardless of its destination, trying to 
enter into the BFC safe ring at a certain node will be 
routed towards the output port that communicates this 
node with its parent. This routing rule causes that certain 
packets travel towards their destinations through paths 
longer than necessary. Although the strategy is not optimal, 
it guarantees deadlock-free communications. In addition, it 
is quite easy to build this provisional routing table using 
only local information (the port linking each router with his 
parent). Figure 7 shows the provisional routing table for 
node #5, considering again the example represented in 
Figure 6. The routing table simply indicates that every 
packet trying to be injected inside the BFC safe ring on 
node #5 must be routed towards node #4 (output port #1). 

 

 
 

 Port 0 Port 1 Port 2 Port 3 
Node 0 0 1 0 0 
Node 1 0 1 0 0 
… 0 1 0 0 
Node 8 0 1 0 0 
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Figure 7 Provisional routing table for the BFC safe 

ring.  

Although improbable, it is possible that all the FIFOs 
belonging to the resulting BFC safe ring are full. In this 

case, the BFC safe ring would be deadlocked. To avoid 
such a situation, several mechanisms can be employed. For 
example, is possible to employ the network interfaces to 
temporarily “consume” the first packets of the queues and 
reincorporate them into the ring when fulfilling the rules of 
our Bubble Flow Control. 

Once the BFC safe ring and the provisional routing 
table for this ring are obtained, the router can abandon the 
emergency state because, although non-optimal, there is a 
secure path between any pair of surviving nodes. From this 
moment, new packet injections will be allowed and the 
BFC safe ring will be shared between packets belonging to 
the applications running on the machine and some control 
packets employed in a second phase devoted to the 
optimization of the safe routing table. At the present state 
and considering again the example of Figure 7, a packet 
injected in node #5 and addressed to node #2 would follow 
the longest possible path instead of using the shortest one. 

We will use a distributed algorithm for optimizing the 
safe routing tables. At the end of the process, every node 
will know who all its descendants are, for all the branches 
of the tree. To do that, every node sends to its parent a 
tagged control packet composed of its own ID and its EPL. 
The parent will compare the received EPL with his own 
EPL. If they do not match, the packet will be discarded and 
the table updating will not take place. In this case, the 
network is managing a new emergency state. If they match, 
the parent updates its safe routing table, setting to one in 
the corresponding row the column corresponding to the 
port from which the control packet was received and 
setting to zero the remaining columns. Next, this node will 
retransmit the same packet to its corresponding parent 
performing the same actions until reaching the root, when 
the optimization process will finish. Now, every node can 
send packets through the BFC safe ring employing the 
shortest paths. The low overhead imposed by our method 
must be highlighted consisting of just one control packet 
emitted per node. 

4.3. Adaptive routing table rebuilding  
It is clear that the adaptive routing tables after an 

emergency state caused by a failure do not record the 
correct information to route all the packets through the 
adaptive virtual network. Packets using the wrong adaptive 
paths during the reconfiguration process can be misrouted 
but they will find the proper routes either through the BFC 
safe ring or through the adaptive one when this process 
finishes. 

For updating the adaptive routing table we employ a 
similar distributed procedure to the one employed with the 
safe routing table. Nevertheless, in this case there can be 
several adaptive minimal paths to communicate two 
arbitrary nodes. Our update algorithm employs the hop 
count or distance among nodes to rebuild correctly the 
adaptive table, in a similar way that the distance-vector 
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routing [15] employed for example in RIP [11]. Each entry 
of the adaptive routing table will have an associated field 
recording the distance from the node to the corresponding 
destination. At the beginning, this field can be set to a 
maximum value, i.e. the number of nodes. 

 In parallel with the safe table updating, every node 
begins with the process of rebuilding its adaptive routing 
table. Each node will send to all its neighbors another 
tagged control packet composed of its own ID, its EPL and 
its distance. Obviously, when a node sends this control 
message to its local neighbors the distance field must be set 
to zero. When a node receives this control packet, it must 
compare the local and transmitted EPLs. If the transmitted 
EPL is lower, the packet is discarded and no action will 
take place. This means that a new emergency state is in 
progress and consequently, the previous tree is no longer 
valid. If the EPLs match, the receiver checks if the distance 
field received in the packet is higher than the one stored in 
the corresponding entry of the routing table. If so, the 
packet is discarded as well and no action will take place. If 
the transmitted distance is lower, all the columns belonging 
to this entry in the routing table will be set to zero except 
the column corresponding to the output port from which 
the control packet was received that will be set to one.  
Finally, if the transmitted and stored distances coincide, 
only the column corresponding to the output port from 
which the control packet was received will be set to one. 
Anyway, if the packet is not discarded, the node will 
increment the distance field and it will retransmit the 
packet through all the output ports except to the one from 
which it received the control packet. 

At the end of this process, all the adaptive routing tables 
will record a map of minimal distances reflecting the new 
topology resulting from the last emergency state. Those 
nodes, whose distances in the adaptive tables maintain their 
initial value N, correspond to lost nodes. Nodes can be lost 
for two reasons: the node has died or the network has been 
disconnected into two or more regions. In both cases, the 
final values of the adaptive routing tables will be valid for 
each surviving region. The corresponding layers of the 
system software must manage this situation. 

The simplicity of the above algorithm guarantees an 
efficient distributed implementation. Other solutions based 
on centralized algorithms would add higher overheads. 
Moreover, our method has a number of advantages. All the 
resulting routes are minimal. The number of generated 
control packets is similar to the number of minimal paths 
between every pair of nodes. The algorithm is invulnerable 
to nested failures. It is impossible to reach a deadlocked 
situation caused by flooding in the consumption queues 
because the protocol is not reactive. In short, the complete 
methodology can be directly implemented in the router 
hardware, broadening its applicability to indirect networks 
in which some switching nodes do not have an associated 
network interface.  

5. A Router Implementation for Immunet  
In order to show the feasibility of our fault-tolerant 

routing, we describe here a sketch of a possible hardware 
implementation that incorporates all the above-mentioned 
algorithms and features. 

In the presence of faults, only surviving local 
communications are reliable. Our Immunet implementation 
employs only local communications to generate the 
required embedded spanning tree to route packets through 
the BFC safe ring. When a node detects a failure, it enters 
in an emergency mode. The router stops all incoming 
traffic except the packets on flight and begins the 
propagation of the emergency state. Such a propagation 
can be implemented asserting simultaneously the two 
“request” protocol lines existing for each physical link. It 
should be noticed that this combination of the “request” 
lines is impossible in normal operation. The EPL can be 
transmitted using the data lines of the communication 
channels. Once all the active emergency notifications are 
tested the router selects the one with the highest EPL and if 
it is higher than the local EPL, the router will send back a 
special ACK to the parent node. We implement this special 
ACK asserting again the two “request” protocol lines and a 
special EPL (all ones) to distinguish it from a conventional 
emergency propagation. Then, the router will propagate the 
winning emergency state to all its neighbors except to its 
parent. Before finishing the emergency state, which can be 
easily bounded, the router will receive several special 
ACKs to determine its children. Then the node will 
generate the provisional safe routing table and ends its 
emergency state. From this moment, the router will 
continue in normal operation but sharing the safe network 
resources for a period among applications traffic and 
control traffic for updating the routing tables. At the end of 
the process, the communication subsystem will work in a 
degraded but optimized manner. 

Figure 8 shows the basic hardware building blocks of 
our fault-tolerant router. We add four new modules to the 
router core of Figure 1. The Input Block will accept both 
emergency requests and special ACKs from its children. 
The Reconfiguration Module will process them updating 
the SS table. The Output Block will propagate emergency 
states and will send special ACKs to its selected parent. 
Obviously, the Table Updated Module will reconfigure the 
routing tables, as described before. The added buffers 
associated to the Table Updated Module are employed both 
for delivering control packets and for performing a 
temporary drain of the first packet in the queues of BFC 
safe ring to avoid deadlocked initial states.  

Although the Input and Output Blocks are in the router’s 
critical path, their effect on the elapsed time is extremely 
small because its only purpose is to detect and propagate 
emergency states. As can be seen in Figure 9, both the 
Input and Output Blocks need only a single level of logic 
gates per physical link to detect the simultaneous assertion 
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of the “request” protocol lines. When the emergency state 
is detected, all the conventional transmissions are stopped 
by activating the STOP lines in all the input channels. 
Packets in transit will be stored in the local buffers and the 
router will stop their retransmission to the output ports. 
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Figure 8 Router Building Blocks.   

The Reconfiguration Module (RM) must select just one 
of the inputs, which have activated their two “request” 
protocol lines during an emergency state. Following a first-
come first-serve policy, the RM compares each incoming 
EPL with the local EPL. Such EPLs travel through the 
input data lines and they are properly multiplexed to be 
compared with the local EPL, stored in the EPL latch. If 
the incoming EPL is higher than the local one, the RM will 
update the EPL latch and the input port from which the 
router received that higher EPL will be recorded as the link 
to communicate this node with its parent. 

Having determined over which link a reconfiguration is 
required, the RM sends back a special ACK asserting both 
“request” lines and all data lines. Then, the RM will 
propagate the emergency state with its corresponding EPL 
through the remaining output ports. The neighbors sending 
back the corresponding ACK before a time-out, will be 
written in an additional small table that records the children 
of this node. The time-out required to validate special 
ACKs can be easily determined taking into account the RM 
pipeline length and maximum wire delay between two 
adjacent routers. From this moment, the router knows 
which port links it with its parent and the ports connecting 
it with its children. Such information is enough to route 
packets in a secure way through our BFC safe ring and to 
build the provisional safe routing table. 

The root node, i.e. the node detecting a fault, constitutes 
a singular case in the propagation of emergency states 

through the network. Its “Local fault Detector” will stop 
the incoming traffic after detecting the failure. Its parent 
latch will be set to zero and its EPL latch will store its own 
ID. After that, it will propagate the emergency state until 
reaching the leaf nodes that having no children will stop 
the emergency state propagation. 
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Figure 9 Hardware Detail for the BFC Safe Ring 

Reconfiguration. 

It should be noted that the complexity of this 
mechanism only has impact in terms of the required silicon 
area. The RM and the Table Updated Module are not in the 
router critical path and they are used only to manage 
emergency states as well as to rebuild all the routing tables: 
the SS table recording the shape of the BFC safe ring in 
this node and the safe and adaptive routing tables. In a 
normal mode of operation, the overhead added by the Input 
and Output Blocks is just one level of logical gates. 

Resetting of the parent latch is not considered, which 
means that there is a limited number of nodes that can be 
supported by our fault-tolerant routing. This number is 
bounded by the data line width of the communication 
channels used to transmit EPL values. Assuming 32 bits for 
data lines as in [16], the maximum number of tolerable 
consecutive faults in a network having N nodes is 
approximately 232/N. For example, Immunet can manage 
three-dimensional torus networks having around 100000 
nodes without problems. As the torus has 3N links, we can 
cope with up to 150000 links in failure, a situation in 
which the network would probably be disconnected. This 
scenario indicates that there is no need to reset the parent 
latch avoiding the subsequent problems derived from this 
action. 

As we have demonstrated in this Section, our complete 
fault-tolerant Immunet system can be directly implemented 
in the router hardware although software implementations 
that use the network interface are also possible. In this 
paper, we have selected a hardware implementation 
approach but depending on the failure probabilities and on 
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cost issues, Immunet can admit different cost/performance 
implementations. 

6. Immunet Evaluation 
In this section, we will analyze the performance loss 

experienced by Immunet under faulty conditions and the 
effectiveness of the table rebuilding processes in terms of 
both packet overhead and required time to carry out the 
reconfiguration procedure. In addition, we will measure the 
behavior of Immunet under synthetic and real loads. 

The simulation environment employed in this study is 
based on the SICOSYS (Simulator of Communication 
Systems) interconnection network simulator [22]. This 
simulator allows us to take into consideration most of the 
VLSI implementation details with high precision but with 
much lower computational cost than hardware-level 
simulators. SYCOSIS has been integrated into the RSIM 
simulator [17], replacing RSIM’s original network 
simulator. The combination of both simulators provides a 
powerful tool to emulate a complete CC-NUMA machine 
when running real parallel applications.   

To carry out the evaluation process we firstly need to 
establish some initial parameters. We will assume that a 
node employs 100 clock cycles to locally manage and 
retransmit an emergency state.  In addition, we will assume 
that a node employs 1000 clock cycles to manage and 
retransmit a control packet employed to rebuild the routing 
tables Although both times have been arbitrarily 
established, there is no problem for adequately setting them 
when dealing with a real implementation. Anyway, it 
seems realistic for the hardware approach previously 
described. 
6.1. Synthetic Workloads 

First of all, we will analyze the time required to finish a 
reconfiguration process assuming only a single fault in the 
network for different network sizes under random traffic. 
We will inject a fault in an arbitrary link for two network 
sizes: 8x8 and 16x16 tori. Our analysis assumes that the 
networks are beyond the saturation point (worst case) 
managing a uniform traffic pattern. Figure 10 shows the 
network throughput degradation during the reconfiguration 
process and the performance exhibited once this process is 
finished. In order to clearly assess the Immunet 
performance, the curves in this figure and in the following 
ones only record the application traffic. The critical data 
associated to both reconfiguration processes are shown in 
Table 1. It can be seen that the number of control messages 
for updating the safe routing tables increases linearly with 
the number of nodes. Nevertheless, the number of control 
messages for updating the adaptive tables grows as n-
squared.  

During a reconfiguration process, the existence of 
reconfiguration control messages affects the application 
traffic reducing the effective network throughput. 
Typically, parallel applications consume a considerable 

number of billions of cycles. Taking this into account, the 
effect of the reconfiguration process will be almost 
negligible. Then, even in the case of a 256-node network, 
the reconfiguration gap will be, in most cases, transparent 
to the parallel application. 
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Figure 10 Time required for doing online 
reconfiguration on  (a) 8x8 torus, and (b) 16x16 

torus. 

 8x8 Torus 16x16 
Torus 

Number of control messages required 
for updating safe routing tables  

64 256 

Number of control messages required 
for updating adaptive routing tables 

12240 244908 

Time required to finish the network 
reconfiguration (cycles) 

9945 36125 

Table 1. Main values for network reconfiguration   
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Figure 11. Average distance impact: (a) 8x8 torus, 
and (b) 16x16 torus.  

Some performance degradation can be observed in the 
network when a reconfiguration process ends. This 
degradation is caused for two reasons. The obvious one is 
the resource loss associated to the missing link. The second 
reason originates from the topological change experienced 
by the network. Before the failure, we were using a routing 
algorithm optimized for the selected topology. After the 
failure, an enlargement in the safe virtual network appears, 
increasing the packet average distance as can be seen in 
Figure 11. Although, at the end of the reconfiguration 
process the increment of the packet average distance is 
reasonably low, its effect on network throughput can be 
more noticeable. When the number of network nodes 
increases, this negative effect is higher and consequently 
the performance degradation. In this experiment, the 
throughput degradation is nearly 5% for the 64-node 
network and 15% for the 256-node network.  
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To assess the viability of Immunet in a more demanding 
scenario we will proceed to inject incrementally a higher 
number of faults under different conditions. Figure 12 and 
Figure 13 show the effect of injecting a growing number of 
faults in both networks. The failures considered are either 
link faults or node faults. The failures are uniformly 
distributed and the only required restriction is that the 
surviving network nodes must remain connected. The 
robustness of Immunet can be clearly observed, always 
converges to a steady state. The behavior exhibited by 
Immunet is more than acceptable even in the hardest 
scenario in which almost all faults are simultaneously 
injected. When the faults are sufficiently distant the 
reconfiguration process ends before the arrival of the next 
failure. When the network performance dramatically falls 
as a consequence of a high resource loss, nested fault 
detections can appear and the time required for 
reconfiguring the tables increases. In any case, the good 
behavior of Immunet is clear. Even in extremely adverse 
scenarios under a very high number and frequency of 
failures, the network recovers itself and converges to a 
steady state. 
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Figure 12. Throughput degradation for different 

numbers of link/node faults in an 8x8-torus 
network under uniform traffic. 
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 Figure 15 shows the evolution of the main network 
parameters when executing the central phase of Radix. We 
can see how the maximum accepted load drops from 40 
phits per network cycle to 35 phits when 17 faults are 
considered. The Immunet behavior is quite similar to the 
one observed under synthetic workload conditions. During 
small lapses of time with respect to the total execution 
time, the effective network throughput drops to values near 

Figure 13. Throughput degradation for different 
numbers of link/node faults in a 16x16-torus 

network under uniform traffic.  

6.2. Real Workloads 
To assess the network behavior under realistic workload 

conditions, the impact of an increasing number of faults on 

the execution time of different parallel applications has 
been analyzed. To assure the ending of the programs we 
have considered only link faults that do not isolate any 
computing node. We will emulate a multiprocessor system 
with 64 nodes assuming that each network router has a 
single-processor computing node attached.  

The parameters of the nodes employed in the CC-
NUMA multiprocessor emulated in this paper (cache 
coherence protocol, processor architecture, memory 
hierarchy, etc.) are similar to those of an Alpha 21364 [16].  
Cache line size is 64 bytes and command packet size is 12 
bytes long. The processor speed has been established at 1.2 
GHz. As the physical channel width or phit size is 4 bytes, 
a data packet containing 76 bytes will be 19 phits long. 
Consequently, command packets (request or invalidation), 
will be three phits long.  The router clock has been set to 
0.8GHz. 

To carry out this realistic evaluation, we fed our 
simulation platform with three applications selected from 
the SPLASH-2 suite: Radix, FFT and LU, which had 
already been ported into RSIM by researchers at Rice 
University [17]. These three applications were selected 
because they have significant communication demands, 
and each one represents a different case of network load. 
The problem sizes are 64K double complexes for FFT, half 
a million keys for Radix, and a 256x256 matrix for LU.  

To assess the effectiveness of Immunet under this 
realistic scenario, we will inject a different number of 
faults when running each application and analyze their 
impact on the execution times. We will also show the 
evolution of the network behavior in some of the analyzed 
applications. As stated before, we only consider link 
failures because the higher levels of the simulated system 
do not allow the dynamic loss of processors along the 
application execution. The number of faults considered for 
each case is 3, 9 and 17. In addition, the network faults are 
injected using a non-periodic pattern, once a pre-
established number of packets are consumed. This reflects, 
in a way, a worst-case scenario because the faults tend to 
be injected during high network load phases.  

The degradation observed on the execution times of the 
parallel phases of each application is shown in Table 2. 
These data are normalized in Figure 14. Even in the most 
adverse situation, the impact of our reconfiguration 
mechanism is close to 30%, which includes the effect of 
the application running on an arbitrary irregular topology 
with a single long BFC safe ring.  
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to zero and packet latencies rise, in some cases, more than 
one order of magnitude. Nevertheless, when the 
reconfiguration processes ends, latencies return to values 
close to those corresponding to the fault-free network. 
Therefore, the main cause of the observed performance 
degradation is the reduction of the maximum achievable 
throughput. When the application enters in an intensive 
communication phase, the amount of traffic tends to be 
high and constant. Hence, a reduction in throughput will 
imply a proportional increase in execution time. It must be 
remembered that throughput reductions are not only due to 
the routing algorithm employed in the presence of failures 
but also due to the resources loss. 

 Fault Free 3 Links 9 Links 17 Links 
FFT 3.13E5 3.33E5 3.75E5 4.21E5 
RADIX 1.33E6 1.36E6 1.43E6 1.50E6 
LU 1.37E6 1.40E6 1.42E6 1.46E6 

Table 2. Absolute execution times (processor 
cycles). 
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Figure 14. Normalized execution times. 

Among the three applications, FFT is the one exhibiting 
higher performance degradation for two underlying 
reasons. First, FFT employs an “all-to-all” communication 
pattern and hence, the resources in failure cause a higher 
impact. The second, and more important reason is that the 
execution time of this application is much shorter than 
Radix or LU as can be seen in Table 2 and consequently, 
the impact is comparatively more important. Note that in 
realistic scenarios, it is not usual to have such short 
applications. Due to the extreme complexity of our 
simulated system, we have reduced the size of the input set 
in order to achieve results in manageable amounts of time.  

When executing LU, the performance degradation is 
even lower than with Radix. Its execution time is slightly 
longer than Radix and the traffic pressure on the network is 
much lower than in the other applications analyzed here. 
Consequently, neither the reconfiguration processes nor the 
maximum throughput degradation have a significant 
impact on its execution. In the worst case, the observed 
performance degradation is close to 7%. 
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Figure 15. Radix execution trace: (a) Throughput, 

(b) Latency (zoom).  

 

7. Conclusions 
A new methodology able to tolerate any combination of 

faults inside a typical interconnection network has been 
presented in this work. The unique limitation of Immunet is 
the network connectivity. Our proposal exhibits a set of 
characteristics that makes it extremely effective. Firstly, 
Immunet hardly affects the interconnection network 
performance when running under fault-free conditions. 
Secondly, Immunet tolerates any spatial and/or temporal 
combination of faults. Only packets on flight through 
faulty links will be affected and in consequence, they can 
be recovered with little effort. In addition, Immunet 
exhibits graceful performance degradation when it is 
integrated in a parallel computer. In such a scenario, our 
network is able to carry out an automatic reconfiguration 
without intervening in the upper levels of system software. 
Reconfiguration times are short enough to be supported by 
almost any real application. 

All these features have been verified by means of an 
exhaustive simulation process of k-ary n-cube networks for 
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