

Immunet: A Cheap and Robust Fault-Tolerant Packet Routing Mechanism

V.Puente, J.A.Gregorio, F.Vallejo and R.Beivide
Computer Architecture Research Group

University of Cantabria, Spain
{vpuente, jagm, fernando, mon }@atc.unican.es

Abstract1

A new and efficient mechanism to tolerate failures in

interconnection networks for parallel and distributed
computers, denoted as Immunet, is presented in this work.
In the presence of failures, Immunet automatically reacts
with a hardware reconfiguration of the surviving network
resources. Immunet has four important advantages over
previous fault-tolerant switching mechanisms. Its low
hardware costs minimize the overhead that the network
must support in absence of faults. As long as the network
remains connected, Immunet can tolerate any number of
failures regardless of their spatial and temporal
combinations. The resulting communication infrastructure
provides optimized adaptive minimal routing over the
surviving topology. The system behavior under successive
failures exhibits graceful performance degradation.

Immunet reconfiguration can be totally transparent to
the applications running on the parallel system as they will
only be affected by the loss of those data packets
circulating through the broken components. The rest of the
packets will suffer only a tolerable delay induced by the
time employed to perform the automatic network
reconfiguration. Descriptions of the hardware network
architecture and detailed synthetic and execution-driven
simulations will demonstrate the benefits of Immunet.

1. Introduction
Parallel computers are being widely used nowadays in

mission-critical, scientific, engineering and commercial
applications. Consequently, it is becoming increasingly
important to provide high system dependability. Hence,
fault tolerant systems must be designed in order to support
uninterrupted service. Recent scalable systems incorporate
a combination of hardware and software techniques to
provide some fault tolerance capabilities, such as the
direction order routing used in the Cray T3E [24].
Furthermore, failure rates dramatically increase when using
highly parallel computers. In certain scenarios, the MTBF
(Mean Time Between Failures) can be lower than the
execution time of the typical applications running on the
system. Such is the case, among others, of the IBM
BlueGene/L supercomputer [1].

1 This work has been supported by the “Comisión Interministerial de

Ciencia y Tecnología” (CICYT), proyect TIC-2001-591-C02-01.

The interconnection network is a key component of a
parallel computer whose design greatly conditions system
reliability. The network itself can be a source of failures
because of both, its parallelism and its distributed nature.
Moreover, after any kind of system fault the network
constitutes the media to provide communications among
surviving nodes.

In this work, we present and evaluate a complete design
of a feasible fault-tolerant interconnection network able to
provide unlimited system robustness. Our mechanism
guarantees safe communications among all the surviving
system nodes that remain connected after any number of
faults. Our proposal assumes the use of conventional
hardware to dynamically detect failures. After an automatic
process of network reconfiguration, Immunet will provide
new communication paths able to maintain the surviving
part of the system in a degraded but optimal operation. Our
reconfiguration mechanism is totally transparent to the
applications running in the system and consequently, it is
not necessary to stop them. Immunet guarantees that only
packets in transit through the devices causing the failure
could be lost. Obviously, this packet loss must be
recovered and managed by the corresponding hardware
and/or software mechanisms. In this paper, we will show
the robustness and the graceful degradation exhibited by
our mechanism as well as an exhaustive evaluation of its
tolerable hardware costs.

We will consider two different kinds of hardware
failures: link faults and node faults. Link failures cause a
communication loss between pairs of nodes and they can
be associated to physical failures in the media used to
interconnect neighboring network routers. Only
bidirectional link failures will be considered in this work.
When a node failure appears, that node interrupts
communication with all its neighboring nodes. Any module
integrating the node can cause these failures. Nevertheless,
from the communications point of view, a node fault will
be associated with the death of its corresponding network
router. Hence, we will consider that the computing node or
nodes attached to this router cannot communicate with any
other processor in the system. In essence, a failure in any
router introduces the loss of all the communication links
attached to it. Our mechanism is able to deal with any
number and any kind of temporal and spatial combination
of network faults. In short, Immunet guarantees

1

communication between any pair of computing nodes as
long as a physical path exists between them.

A large number of fault-tolerant routing mechanisms
have been previously proposed. Some of them, which are
related to our proposal, are described in references
[3][6][7][10][13][25][26]. None of them is comparable to
Immunet. There also exist several works not directly
related with fault tolerant networks but with dynamic
reconfiguration in high-speed local area networks
[2][5][18]. However, the majority of them require
discarding application traffic and, in general, they are not
able to manage any spatial or temporal fault distribution.
Moreover, they use software approaches that are not a
desired solution in our context.

We do not know any other integral reconfiguration
mechanism like the one presented in this work, exhibiting
such a low cost and such a large coverage. In the
previously mentioned proposals, the hardware and software
cost for implementing the required functionality have
important negative impacts on the performance of the
system in absence of failures. The implementation of some
solutions like the ones presented in [3][7][25] implies an
important hardware cost and introduces a non-negligible
degradation in the fault-free network performance. This is
one of the main reasons for which real systems hardly
incorporate efficient fault tolerance mechanisms.
Additionally, most of these proposals introduce serious
restrictions on the temporal and spatial combinations of
components under failure conditions. Even considering a
low coverage of faults, they exhibit serious restrictions. For
example, in [6][10][13], link and node faults cannot arise
anywhere and successive failures cannot appear anytime.

The rest of the paper is organized as follows: In Section
2, we describe the context where our mechanism will be
used. Section 3 presents the basis of Immunet. Section 4 is
devoted to describe the distributed algorithms that
constitute the foundations of our mechanism. Section 5
presents a sketch of a hardware implementation of
Immunet, which demonstrates its feasibility. Section 6 is
devoted to analyzing the performance exhibited by our
proposal under both synthetic and real traffic workloads.
Finally, in Section 7, the main conclusions of the work will
be summarized.

2. Router Architecture and Network
Topology

A router in a parallel computer injects packets from one
or more computing elements to the network. Conversely,
each router ejects packets from the network to one or more
computing nodes. Obviously, the router’s function is to
convey packets towards their destination. The design of
this hardware module has to maximize the use of the
network resources avoiding communication anomalies
such as packet deadlock, livelock and starvation. Although
our fault-tolerant routing can be used in arbitrary

topologies, we will focus our attention in this paper on
analyzing its application to regular networks.

Figure 1 describes our basic router organization,
showing the usual hardware modules: crossbar, buffers,
arbitration logic, synchronization, etc. Our router has two
virtual channels (FIFOs) per input link to support fully
Adaptive Bubble Routing (ABR) [19], [20]. This switching
mechanism has recently been selected for the design of the
IBM BlueGene/L supercomputer [1]. When using ABR, a
subset of the total virtual channels is configured as a safe
virtual network in which packet deadlock never occurs.
The remaining virtual channels are configured as a fully
adaptive virtual network. As long as there are available
adaptive FIFOs, ABR always routes packets through
adaptive paths. Safe paths are only selected when all the
profitable adaptive FIFOs are exhausted, which causes the
blocking of all the adaptive routing alternatives.

In our ABR, packets move under two different policies.
In the adaptive virtual network, the injection and transit of
packets are always regulated by Virtual Cut-Through flow
control (VCT) [12]. However, in the safe virtual network
the packets advance is also regulated by the Bubble Flow
Control (BFC), a mechanism for avoiding packet deadlock
in topologies based either on a single ring or on a set of
rings.

SS Table
Arbiter
R.U.

Crossbar

From local hosts

Fr
om

 ot
he

r r
ou

ter
s

To local hosts or
 other routers

ROUTER

Sy
nc

.
Sy

nc
.

Adap
Table

Safe
Table

Figure 1.- Basic Router Organization.

Although arithmetic routing can be employed in regular
topologies, most modern low-to-medium size parallel
computers rely on the use of tables. With current hardware
technology, the network scalability is not compromised by
the size of the tables. The routing table’s initializations will
be carried out at boot time as in the SGI Spider [9] or the
21364 Alpha [16].

Immunet employs three tables to route packets toward
their destination. Two of them are standard routing tables
whose sizes depend on the number of system nodes. The
Safe Table is used to route packets through the safe virtual
network and the Adaptive Table governs the packet routing
inside the adaptive virtual network. The router employs
another Small Safe (SS) table to record the current shape of

2

the safe topology inside the node. The SS table size is
almost negligible as it only depends on the network degree.

As stated before, we will concentrate our attention on
the application of Immunet to regular topologies, namely,
k-ary n-cubes. As is known, these topologies have been
frequently implemented in several commercial systems due
to both their good cost/performance ratio and scalability
[16][24]. Without loss of generality, we will only consider
2D torus to demonstrate our methodology in the rest of the
paper.

A 2D torus, or k-ary 2-cube, can be seen as a collection
of 4k unidirectional rings of length k, denoted as BFC safe
rings. Figure 2(a) shows these 16 rings embedded on a 4x4
torus. Our safe virtual network is composed of these 4k
rings, which must be visited under Dimension Order
Routing (DOR). We employ for its implementation one
virtual channel per physical link in every router (a total of
4k2 FIFOs). The remaining 4k2 FIFOs constitute the fully
adaptive virtual network. Packets traveling inside any of
the 4k BFC safe rings are regulated by VCT but no packet
can be injected in any of these rings if it exhausts the
buffers of that ring. Packets can be injected inside a BFC
safe ring from three sources: from a computing node, from
the adaptive virtual network or from another BFC safe ring
of a previous dimension. BFC only permits a packet
injection in a BFC safe ring if there is space in its local
FIFO for, at least, two packets. In this way, there will
always be at least one free buffer inside a BFC safe ring (a
Bubble under our terminology).

Figure 2(b) shows a SS table, which reflects the shape
of the safe virtual network topology crossing an arbitrary
router. The table has been updated according to the port
labeling described in Figure 2(c). Entries set to one indicate
an allowed routing action that connects two network ports
belonging to the same BFC safe ring. The content of this
SS table reflects a fault-free 4x4 torus in which the safe
virtual network is configured as the 16 unidirectional rings
mentioned before.

x router x
SS Table

2

1

0

3

port
In\out 0 1 2 3
 0 0 0 1 0
 1 0 0 0 1
 2 1 0 0 0
 3 0 1 0 0

 (a) (b) (c)
Figure 2 (a)Safe Paths on a Fault-free 4x4 Torus.
(b) Small Safe table. (c) Safe paths inside router

“x”.

3. The Basis of Immunet
A fault-free ABR 2D torus is able to support a high

level of packet throughput Th0, as represented in Figure 3.
It must be highlighted that our ABR switching from which
we have developed Immunet is, up to our knowledge, the
mechanism having the best performance/cost ratio to
manage packets in a fault-free interconnection network
[20]. A good fault-tolerant network must pursue the
maximization of the Th0 value because running programs in
a fault-free parallel computer should be the normal mode
of operation. Imagine that, at time t0, a fault arises. If the
system has the appropriate mechanisms to tolerate this
fault, after a certain period tr, the parallel computer should
recover and continue in a degraded but normal operation.
The performance degradation, Th0-Th1, is caused by both
the resources loss and the changes in the resulting
topology. Our Immunet fault-tolerant mechanism will
provide the parallel system with the necessary functions to
reconfigure transparently the network after any number of
failures. Due to its low hardware costs and overhead,
Immunet maximizes Th0 and simultaneously minimizes tr
and (Th0-Th1), as we will prove in the rest of the paper.

0
0

Time (cycles)

A
cc

ep
. L

oa
d

(f/
c)

Th0

Th1

tr

Failure (t0)

Time (Cycles)

Ac
ce

p.
Lo

ad
 (f

/c)

Figure 3 Throughput degradation: transitory and

stationary phases

One of the most complex problems inherent in handling
any combination of link and/or node faults is that such
faults induce topological changes affecting the deadlock
avoidance mechanism. For example, a fault in any link of a
torus breaks down one ring and, therefore, it is not always
possible to use Dimensional Order Routing to route packets
through the safe virtual network. Most of the previously
proposed solutions add an important number of resources
to maintain deadlock-free communications, which notably
increases the router complexity.

The first requirement that Immunet must guarantee is
that, independently of the number and configuration of
network faults, always exists a secure alternative to route
packets among the surviving nodes. In [23] we prove that it
is always possible to find a unidirectional ring traversing,
once or more, all the surviving system nodes after any
configuration of faults. Applying BFC over this single ring
guarantees the existence of a safe path to interchange
packets among all the nodes. A very easy method to obtain

3

such a single BFC safe ring is based on establishing a
“tour” through a spanning tree, always embedded in any
arbitrary topology. For example, Figure 4(b) shows a
unidirectional ring embedded in a 4x4 torus after the fault
of 12 links reflected in Figure 4(a). Applying BFC over
this ring assures deadlock-free communications. The rest of
the network resources (FIFOs not belonging to the BFC
safe ring) can be employed as a minimal adaptive virtual
network. Hence, by combining these two virtual networks
we can continue using ABR inside the new topology. As
packets can be misrouted when entering in the BFC safe
ring, the number of movements between virtual networks
must be limited in order to avoid packet livelock.

One of the main advantages of our mechanism relies on
its low hardware cost. We will employ the same router
architecture core as the one used in a fault-free network.
Immunet will reconfigure all the router SS tables, as shown
in Figure 2, for dynamically recording the configuration of
the current safe virtual network inside each node.
Obviously, when the network achieves a new topological
configuration Immunet must also modify the safe and the
adaptive routing tables.

In the following Section, we are going to prove that it is
always possible to build automatically the BFC safe ring
with a limited cost. Later on, we will also present a low-
cost methodology to automatically reconfigure and
optimize the safe and adaptive routing tables in order to
achieve graceful system performance degradation.

router x

x

 (a) (b) (c)
Figure 4 (a) A 4x4 torus with 12 faulty links. (b) Its

tree-based BFC Safe Ring. (b) BFC Safe Ring
topology inside router “x”.

4. Immunet Distributed Algorithms
We divide this section into three parts. The first one will

be devoted to presenting a distributed algorithm to
dynamically generate trees over which we will implement
our BFC safe rings. The second and third subsections are
dedicated to describe the distributed processes of updating
the routing tables used for the safe and the adaptive virtual
networks.

4.1. Establishing an emergency path
We begin our analysis starting from a healthy network,

such as the one described in Section 2. When one or more

failures take place, the router or routers detecting them will
enter in an emergency state that will be propagated to the
rest of the surviving network nodes. After stopping new
packet injections, the first goal of Immunet is to establish
an emergency path to guarantee that all the surviving
connected nodes can communicate among them. During
the emergency state, the emergency path will be the only
secure communication medium for all the pending in-
transit packets. In addition, as we will see below, the
emergency path will be the communication support used to
reconfigure the routing tables. Once ended the emergency
state, the emergency path will act as a safe virtual network.
Remember that our safe virtual network will be a BFC
unidirectional ring obtained from a “tour” through a
spanning tree always embedded in the surviving topology.

The presence of failures induces changes on the
network topology. The 4k BFC safe rings, which visited
under DOR guaranteed deadlock-free communications, no
longer exists. Consequently, some packets cannot achieve
their destination. Hence, to rebuild the new unique BFC
safe ring we can only rely on local communications among
the surviving neighbors.

For the sake of clarity, we will follow an automatic
generation of one of these trees by means of an example.
Consider a 3x3 torus such as the one represented in Figure
5. Now, assume that there is a fault in the link connecting
nodes #4 and #1. Suppose, initially, that only node #4
detects the failure. To begin with, node #4 will be the root
of the tree. Node #4 will communicate to its neighboring
nodes #3, #5 and #7 this emergency state by means of a
special signal together with its emergency priority level
(EPL), which is the ID of the root node (#4). After that,
nodes #3, #5 and #7 will retransmit the emergency state to
their corresponding neighbors until reaching the most
distant nodes.

When a node detects a failure or receives an EPL, it
enters in a special emergency state. First, the node stops
new packet injections. Second, it compares the incoming
EPL with its local EPL (in a fault-free network all the local
EPLs are initially set to zero). Then, the node analyzes,
using a first-come-first-serve policy, the remaining input
links searching for other emergency states with higher
EPLs. After a bounded time, the node records the highest
EPL and sends back a special ACK to the winner, which
will be its parent in the tree. Now, in order to determine its
children, the router will retransmit the emergency state to
all its neighbors except to its parent. Again, after a
bounded time, the router will receive the corresponding
special ACKs coming from the nodes that accept this
router as its parent.

Subsequent communications of emergency states will
compare their EPLs with the one recorded in each
surviving router. In the same way, the local priority level
will be changed if the received EPL is higher than the one
recorded in the router, modifying again the shape of the

4

tree. In this way, every node will know every time who its
parent is and who its children are. Hence, we have the
necessary information distributed among nodes to rebuild a
new safe virtual network in the form of a BFC ring over
the basis of the current emergency tree. In fact, to route
packets over the emergency path it is enough to update, in
each router, the SS table, which records the local topology
of the BFC safe ring.

An SS table updated according to a certain port labeling
can be seen in Figure 5(b) for router #3. The table reflects
the “tour” through the emergency tree described in Figure
5(c). This SS table, directly induced from the emergency
tree, records the valid routing actions to traverse this node
through the emergency ring. So, for node #3, any packet
entering from link #3 will be sent to port #2, any packet
entering from link #2 will be sent to port #0 and any packet
coming from link #0 will be sent to port #3.

3

2
0

SS Table Node #3

2

1
0

3

#7

#4

#1

#8

#5

#2

#6

#3

#0

Fault

Propagation
Acknowledge

#4

#3 #7 #5

#2 #8#0 #6 #1

ports

In\out 0 1 2 3
 0 0 0 0 1
 1 0 0 0 0
 2 1 0 0 0
 3 0 0 1 0

 (a) (b) (c)
Figure 5 Example of BFC safe ring rebuilding after

a link failure.

This methodology to generate trees avoids ambiguity
problems related with multiple detections of emergency
states. If there is only one node detecting a single fault, a
router can receive from different links an emergency state
with the same EPL. In this case, the selected parent will be
the one corresponding to the first detected emergency state.
Nevertheless, a more usual scenario is that two or more
routers simultaneously detect a failure because all routers
behave identically. For example, in Figure 5, nodes #4 and
#1 will simultaneously detect the failure of the link that
communicates them. Hence, both nodes try to be the roots
of two different spanning trees. It is clear that only the root
with higher ID will succeed and just one single tree is
going to be generated.

Our mechanism can also tolerate nested failures. It is
possible that after the detection of a fault, another fault
arises in the middle of the generation of one emergency
path. In this case, if the node detecting the second fault had
lower ID than the one detecting the first failure it would
not be possible to obtain the correct tree. This undesirable
behavior can be overcome using an EPL that depends not
only on the ID of the node that detected the fault but also
on the times that the node managed an emergency state.
Therefore, in an N node network, a router x detecting a new

fault will generate an EPL equal to tN+x, t being the
number of emergency states experienced by this node. In
this way, the EPL generated for a detecting node after
every fault is always different. Therefore, we can assure
that only one spanning tree will succeed in implementing
the BFC safe ring regardless of the number and the
configuration of faults.

Figure 6 shows several tree propagations that illustrate
the cases of multiple emergency detections and nested
failures. Initially, nodes #1 and #4 simultaneously detect
the fault of the link that connects them. Each of these nodes
tries to become a root and begin the corresponding tree
generations, propagating their emergency states. Node #7
will receive simultaneously two emergency notifications
but it will just consider the one with higher EPL, i.e. #4.
Transmission of emergency states is represented by
continuous arrows on the left tori of Figure 6 and the
special ACKs sent back only to the winner parents are
represented by doted lines.

#7

#1

#8

#5

#2

#6

#3

#0

Fault

1 1

4

4

4

#4 #1

#3 #5 #2#0#7

1

#7

#4

#1

#8

#5

#2

#6

#3

#0

Fault

Propagation
Acknoledge

Prior.

#4

t=1

t=2

11 12

12

11

11 #7 #5

#3

#0

#6

#4

#6

#1 #2 #8#3

#0

Tim
e

#4

Figure 6 Examples of multiple fault detections and

nested faults.

Now, consider that before ending the establishment of
the tree rooted in node #4, a new fault arises in the link
connecting nodes #3 and #4. Two new emergency states
will be detected and propagated by nodes #3 and #4
sending respectively priorities (1·9+3)=11 and (1·9+4)=12.
In this case, the partial tree caused by the previous fault
will be removed when the new higher emergency priority
level is detected in each node. There will be nodes that
receive simultaneously both notifications (nodes #5, #2 and
#8), selecting only the higher EPL. Nevertheless, some
nodes (#0 and #6) will first receive the emergency state
with lower priority. Immediately afterwards, these nodes
will receive the emergency notification of priority #12,
corresponding to the second tree rooted on node #4,

5

canceling the previous tree. At the end, just one tree will
progress. The definitive tree used to establish the final BFC
safe ring is the one shown with continuous arrows in
Figure 6. In consequence, we can build a unique BFC ring
through which, after a finite time, any packet will
eventually reach its destination. Our idea to rebuild the tree
has some points similar to the technique proposed in [2]
but, unlike it, we can successfully solve multiple link/node
faults (simultaneous or not).

4.2. Safe routing table rebuilding
Once the BFC safe ring and the SS table have been

obtained, every surviving node knows how to route packets
in transit inside that ring. Nevertheless, the routing tables
of the nodes are no longer valid. Consequently, no packet
can be injected into the BFC safe ring coming from
adaptive channels or from network interfaces. Hence,
routing table rebuilding is compulsory before leaving the
emergency state.

 Two steps are employed to rebuild the safe routing
table. In the first one, we use a secure but provisional
routing table and in the second phase, we rebuild it in order
to improve packet routing performance through the BFC
safe ring.

The provisional safe table fulfils the following routing
rule: Every packet, regardless of its destination, trying to
enter into the BFC safe ring at a certain node will be
routed towards the output port that communicates this
node with its parent. This routing rule causes that certain
packets travel towards their destinations through paths
longer than necessary. Although the strategy is not optimal,
it guarantees deadlock-free communications. In addition, it
is quite easy to build this provisional routing table using
only local information (the port linking each router with his
parent). Figure 7 shows the provisional routing table for
node #5, considering again the example represented in
Figure 6. The routing table simply indicates that every
packet trying to be injected inside the BFC safe ring on
node #5 must be routed towards node #4 (output port #1).

 Port 0 Port 1 Port 2 Port 3
Node 0 0 1 0 0
Node 1 0 1 0 0
… 0 1 0 0
Node 8 0 1 0 0

#5

#4

#2 #3 #8

from
Adaptive or
Injection to
Escape

Figure 7 Provisional routing table for the BFC safe

ring.

Although improbable, it is possible that all the FIFOs
belonging to the resulting BFC safe ring are full. In this

case, the BFC safe ring would be deadlocked. To avoid
such a situation, several mechanisms can be employed. For
example, is possible to employ the network interfaces to
temporarily “consume” the first packets of the queues and
reincorporate them into the ring when fulfilling the rules of
our Bubble Flow Control.

Once the BFC safe ring and the provisional routing
table for this ring are obtained, the router can abandon the
emergency state because, although non-optimal, there is a
secure path between any pair of surviving nodes. From this
moment, new packet injections will be allowed and the
BFC safe ring will be shared between packets belonging to
the applications running on the machine and some control
packets employed in a second phase devoted to the
optimization of the safe routing table. At the present state
and considering again the example of Figure 7, a packet
injected in node #5 and addressed to node #2 would follow
the longest possible path instead of using the shortest one.

We will use a distributed algorithm for optimizing the
safe routing tables. At the end of the process, every node
will know who all its descendants are, for all the branches
of the tree. To do that, every node sends to its parent a
tagged control packet composed of its own ID and its EPL.
The parent will compare the received EPL with his own
EPL. If they do not match, the packet will be discarded and
the table updating will not take place. In this case, the
network is managing a new emergency state. If they match,
the parent updates its safe routing table, setting to one in
the corresponding row the column corresponding to the
port from which the control packet was received and
setting to zero the remaining columns. Next, this node will
retransmit the same packet to its corresponding parent
performing the same actions until reaching the root, when
the optimization process will finish. Now, every node can
send packets through the BFC safe ring employing the
shortest paths. The low overhead imposed by our method
must be highlighted consisting of just one control packet
emitted per node.

4.3. Adaptive routing table rebuilding
It is clear that the adaptive routing tables after an

emergency state caused by a failure do not record the
correct information to route all the packets through the
adaptive virtual network. Packets using the wrong adaptive
paths during the reconfiguration process can be misrouted
but they will find the proper routes either through the BFC
safe ring or through the adaptive one when this process
finishes.

For updating the adaptive routing table we employ a
similar distributed procedure to the one employed with the
safe routing table. Nevertheless, in this case there can be
several adaptive minimal paths to communicate two
arbitrary nodes. Our update algorithm employs the hop
count or distance among nodes to rebuild correctly the
adaptive table, in a similar way that the distance-vector

6

routing [15] employed for example in RIP [11]. Each entry
of the adaptive routing table will have an associated field
recording the distance from the node to the corresponding
destination. At the beginning, this field can be set to a
maximum value, i.e. the number of nodes.

 In parallel with the safe table updating, every node
begins with the process of rebuilding its adaptive routing
table. Each node will send to all its neighbors another
tagged control packet composed of its own ID, its EPL and
its distance. Obviously, when a node sends this control
message to its local neighbors the distance field must be set
to zero. When a node receives this control packet, it must
compare the local and transmitted EPLs. If the transmitted
EPL is lower, the packet is discarded and no action will
take place. This means that a new emergency state is in
progress and consequently, the previous tree is no longer
valid. If the EPLs match, the receiver checks if the distance
field received in the packet is higher than the one stored in
the corresponding entry of the routing table. If so, the
packet is discarded as well and no action will take place. If
the transmitted distance is lower, all the columns belonging
to this entry in the routing table will be set to zero except
the column corresponding to the output port from which
the control packet was received that will be set to one.
Finally, if the transmitted and stored distances coincide,
only the column corresponding to the output port from
which the control packet was received will be set to one.
Anyway, if the packet is not discarded, the node will
increment the distance field and it will retransmit the
packet through all the output ports except to the one from
which it received the control packet.

At the end of this process, all the adaptive routing tables
will record a map of minimal distances reflecting the new
topology resulting from the last emergency state. Those
nodes, whose distances in the adaptive tables maintain their
initial value N, correspond to lost nodes. Nodes can be lost
for two reasons: the node has died or the network has been
disconnected into two or more regions. In both cases, the
final values of the adaptive routing tables will be valid for
each surviving region. The corresponding layers of the
system software must manage this situation.

The simplicity of the above algorithm guarantees an
efficient distributed implementation. Other solutions based
on centralized algorithms would add higher overheads.
Moreover, our method has a number of advantages. All the
resulting routes are minimal. The number of generated
control packets is similar to the number of minimal paths
between every pair of nodes. The algorithm is invulnerable
to nested failures. It is impossible to reach a deadlocked
situation caused by flooding in the consumption queues
because the protocol is not reactive. In short, the complete
methodology can be directly implemented in the router
hardware, broadening its applicability to indirect networks
in which some switching nodes do not have an associated
network interface.

5. A Router Implementation for Immunet
In order to show the feasibility of our fault-tolerant

routing, we describe here a sketch of a possible hardware
implementation that incorporates all the above-mentioned
algorithms and features.

In the presence of faults, only surviving local
communications are reliable. Our Immunet implementation
employs only local communications to generate the
required embedded spanning tree to route packets through
the BFC safe ring. When a node detects a failure, it enters
in an emergency mode. The router stops all incoming
traffic except the packets on flight and begins the
propagation of the emergency state. Such a propagation
can be implemented asserting simultaneously the two
“request” protocol lines existing for each physical link. It
should be noticed that this combination of the “request”
lines is impossible in normal operation. The EPL can be
transmitted using the data lines of the communication
channels. Once all the active emergency notifications are
tested the router selects the one with the highest EPL and if
it is higher than the local EPL, the router will send back a
special ACK to the parent node. We implement this special
ACK asserting again the two “request” protocol lines and a
special EPL (all ones) to distinguish it from a conventional
emergency propagation. Then, the router will propagate the
winning emergency state to all its neighbors except to its
parent. Before finishing the emergency state, which can be
easily bounded, the router will receive several special
ACKs to determine its children. Then the node will
generate the provisional safe routing table and ends its
emergency state. From this moment, the router will
continue in normal operation but sharing the safe network
resources for a period among applications traffic and
control traffic for updating the routing tables. At the end of
the process, the communication subsystem will work in a
degraded but optimized manner.

Figure 8 shows the basic hardware building blocks of
our fault-tolerant router. We add four new modules to the
router core of Figure 1. The Input Block will accept both
emergency requests and special ACKs from its children.
The Reconfiguration Module will process them updating
the SS table. The Output Block will propagate emergency
states and will send special ACKs to its selected parent.
Obviously, the Table Updated Module will reconfigure the
routing tables, as described before. The added buffers
associated to the Table Updated Module are employed both
for delivering control packets and for performing a
temporary drain of the first packet in the queues of BFC
safe ring to avoid deadlocked initial states.

Although the Input and Output Blocks are in the router’s
critical path, their effect on the elapsed time is extremely
small because its only purpose is to detect and propagate
emergency states. As can be seen in Figure 9, both the
Input and Output Blocks need only a single level of logic
gates per physical link to detect the simultaneous assertion

7

of the “request” protocol lines. When the emergency state
is detected, all the conventional transmissions are stopped
by activating the STOP lines in all the input channels.
Packets in transit will be stored in the local buffers and the
router will stop their retransmission to the output ports.

Datan

Reqnvc1

Router Core

Input
Block

Reconfiguration Module

Req0vc2

Stop0vc2

Data0

Req0vc1

Stop0vc1

Reqnvc2

Stopnvc2

Datan

Reqnvc1

Stopnvc1

Req0vc2

Stop0vc2

Data0

Req0vc1

Stop0vc1

Reqnvc2

Stopnvc2

Stopnvc1

Output
Block

Table Updating
Module

NIC

Protocol or
Reinyection

Tables

Figure 8 Router Building Blocks.

The Reconfiguration Module (RM) must select just one
of the inputs, which have activated their two “request”
protocol lines during an emergency state. Following a first-
come first-serve policy, the RM compares each incoming
EPL with the local EPL. Such EPLs travel through the
input data lines and they are properly multiplexed to be
compared with the local EPL, stored in the EPL latch. If
the incoming EPL is higher than the local one, the RM will
update the EPL latch and the input port from which the
router received that higher EPL will be recorded as the link
to communicate this node with its parent.

Having determined over which link a reconfiguration is
required, the RM sends back a special ACK asserting both
“request” lines and all data lines. Then, the RM will
propagate the emergency state with its corresponding EPL
through the remaining output ports. The neighbors sending
back the corresponding ACK before a time-out, will be
written in an additional small table that records the children
of this node. The time-out required to validate special
ACKs can be easily determined taking into account the RM
pipeline length and maximum wire delay between two
adjacent routers. From this moment, the router knows
which port links it with its parent and the ports connecting
it with its children. Such information is enough to route
packets in a secure way through our BFC safe ring and to
build the provisional safe routing table.

The root node, i.e. the node detecting a fault, constitutes
a singular case in the propagation of emergency states

through the network. Its “Local fault Detector” will stop
the incoming traffic after detecting the failure. Its parent
latch will be set to zero and its EPL latch will store its own
ID. After that, it will propagate the emergency state until
reaching the leaf nodes that having no children will stop
the emergency state propagation.

Router Core

Req0vc2

Stop0vc2

Data0

Req0vc1

Stop0vc1

Reqnvc2

Stopnvc2

Datan

Reqnvc1

Stopnvc1

FC
FS

Mux

EPL
Comparator

Parent

Set to 0 or
prop. priority

Local Fault Detector

Ac
k

De
tec

tor

Child 0
….

Child n

Se
nd

 A
ck

. T
o s

ele
cte

c
fat

he
r o

r p
ro

pa
ga

te
Ind

ex

Figure 9 Hardware Detail for the BFC Safe Ring

Reconfiguration.

It should be noted that the complexity of this
mechanism only has impact in terms of the required silicon
area. The RM and the Table Updated Module are not in the
router critical path and they are used only to manage
emergency states as well as to rebuild all the routing tables:
the SS table recording the shape of the BFC safe ring in
this node and the safe and adaptive routing tables. In a
normal mode of operation, the overhead added by the Input
and Output Blocks is just one level of logical gates.

Resetting of the parent latch is not considered, which
means that there is a limited number of nodes that can be
supported by our fault-tolerant routing. This number is
bounded by the data line width of the communication
channels used to transmit EPL values. Assuming 32 bits for
data lines as in [16], the maximum number of tolerable
consecutive faults in a network having N nodes is
approximately 232/N. For example, Immunet can manage
three-dimensional torus networks having around 100000
nodes without problems. As the torus has 3N links, we can
cope with up to 150000 links in failure, a situation in
which the network would probably be disconnected. This
scenario indicates that there is no need to reset the parent
latch avoiding the subsequent problems derived from this
action.

As we have demonstrated in this Section, our complete
fault-tolerant Immunet system can be directly implemented
in the router hardware although software implementations
that use the network interface are also possible. In this
paper, we have selected a hardware implementation
approach but depending on the failure probabilities and on

8

cost issues, Immunet can admit different cost/performance
implementations.

6. Immunet Evaluation
In this section, we will analyze the performance loss

experienced by Immunet under faulty conditions and the
effectiveness of the table rebuilding processes in terms of
both packet overhead and required time to carry out the
reconfiguration procedure. In addition, we will measure the
behavior of Immunet under synthetic and real loads.

The simulation environment employed in this study is
based on the SICOSYS (Simulator of Communication
Systems) interconnection network simulator [22]. This
simulator allows us to take into consideration most of the
VLSI implementation details with high precision but with
much lower computational cost than hardware-level
simulators. SYCOSIS has been integrated into the RSIM
simulator [17], replacing RSIM’s original network
simulator. The combination of both simulators provides a
powerful tool to emulate a complete CC-NUMA machine
when running real parallel applications.

To carry out the evaluation process we firstly need to
establish some initial parameters. We will assume that a
node employs 100 clock cycles to locally manage and
retransmit an emergency state. In addition, we will assume
that a node employs 1000 clock cycles to manage and
retransmit a control packet employed to rebuild the routing
tables Although both times have been arbitrarily
established, there is no problem for adequately setting them
when dealing with a real implementation. Anyway, it
seems realistic for the hardware approach previously
described.
6.1. Synthetic Workloads

First of all, we will analyze the time required to finish a
reconfiguration process assuming only a single fault in the
network for different network sizes under random traffic.
We will inject a fault in an arbitrary link for two network
sizes: 8x8 and 16x16 tori. Our analysis assumes that the
networks are beyond the saturation point (worst case)
managing a uniform traffic pattern. Figure 10 shows the
network throughput degradation during the reconfiguration
process and the performance exhibited once this process is
finished. In order to clearly assess the Immunet
performance, the curves in this figure and in the following
ones only record the application traffic. The critical data
associated to both reconfiguration processes are shown in
Table 1. It can be seen that the number of control messages
for updating the safe routing tables increases linearly with
the number of nodes. Nevertheless, the number of control
messages for updating the adaptive tables grows as n-
squared.

During a reconfiguration process, the existence of
reconfiguration control messages affects the application
traffic reducing the effective network throughput.
Typically, parallel applications consume a considerable

number of billions of cycles. Taking this into account, the
effect of the reconfiguration process will be almost
negligible. Then, even in the case of a 256-node network,
the reconfiguration gap will be, in most cases, transparent
to the parallel application.

0

10

20

30

40

50

0 20000 40000 60000
Time (cycles)

Ac
ce

p.
Lo

ad
 (f

/c)

(a)

0

20

40

60

80

100

120

0 20000 40000 60000 80000 100000

Time (cycles)

Ac
ce

p.
 L

oa
d

(f/
c)

(b
)

Figure 10 Time required for doing online
reconfiguration on (a) 8x8 torus, and (b) 16x16

torus.

 8x8 Torus 16x16
Torus

Number of control messages required
for updating safe routing tables

64 256

Number of control messages required
for updating adaptive routing tables

12240 244908

Time required to finish the network
reconfiguration (cycles)

9945 36125

Table 1. Main values for network reconfiguration

0

1

2

3

4

5

6

0 20000 40000 60000

Time (cycles)

Av
er

ag
e

Di
sta

nc
e

(h
op

s

(a)

0

4

8

12

16

20

0 20000 40000 60000 80000 100000

Time (cycles)
Av

er
ag

e
Di

sta
nc

e
(h

op
s

(b)

Figure 11. Average distance impact: (a) 8x8 torus,
and (b) 16x16 torus.

Some performance degradation can be observed in the
network when a reconfiguration process ends. This
degradation is caused for two reasons. The obvious one is
the resource loss associated to the missing link. The second
reason originates from the topological change experienced
by the network. Before the failure, we were using a routing
algorithm optimized for the selected topology. After the
failure, an enlargement in the safe virtual network appears,
increasing the packet average distance as can be seen in
Figure 11. Although, at the end of the reconfiguration
process the increment of the packet average distance is
reasonably low, its effect on network throughput can be
more noticeable. When the number of network nodes
increases, this negative effect is higher and consequently
the performance degradation. In this experiment, the
throughput degradation is nearly 5% for the 64-node
network and 15% for the 256-node network.

9

To assess the viability of Immunet in a more demanding
scenario we will proceed to inject incrementally a higher
number of faults under different conditions. Figure 12 and
Figure 13 show the effect of injecting a growing number of
faults in both networks. The failures considered are either
link faults or node faults. The failures are uniformly
distributed and the only required restriction is that the
surviving network nodes must remain connected. The
robustness of Immunet can be clearly observed, always
converges to a steady state. The behavior exhibited by
Immunet is more than acceptable even in the hardest
scenario in which almost all faults are simultaneously
injected. When the faults are sufficiently distant the
reconfiguration process ends before the arrival of the next
failure. When the network performance dramatically falls
as a consequence of a high resource loss, nested fault
detections can appear and the time required for
reconfiguring the tables increases. In any case, the good
behavior of Immunet is clear. Even in extremely adverse
scenarios under a very high number and frequency of
failures, the network recovers itself and converges to a
steady state.

37 Link/Node Faults Distributed each 1,000 cycles

0

10

20

30

40

50

0 100000 200000 300000 400000 500000
Time (cycles)

Ac
ce

p.
 L

oa
d

(p
/c)

Link
Node

37 Link/Node Faults Distributed each 10,000 cycles

0

10

20

30

40

50

0 100000 200000 300000 400000 500000
Time (cycles)

Ac
ce

p.
 L

oa
d

(p
/c)

Link
Node

19 Link/Node Faults Distributed each 20,000 cycles

0

10

20

30

40

50

0 100000 200000 300000 400000 500000
Time (cycles)

Ac
ce

p.
 L

oa
d

(p
/c)

Link
Node

10 Link/Node Faults Distributed each 40,000 cycles

0

10

20

30

40

50

0 100000 200000 300000 400000 500000
Time (cycles)

Ac
ce

p.
 L

oa
d

(p
/c)

Link
Node

Figure 12. Throughput degradation for different

numbers of link/node faults in an 8x8-torus
network under uniform traffic.

37 Link/Node Faults Distributed each 10,000 cycles

0

20

40

60

80

100

120

0 100000 200000 300000 400000 500000
Time (cycles)

Ac
ce

p.
 L

oa
d

(p
/c)

Link
Node

10 Link/Node Faults Distributed each 40,000 cycles

0

20

40

60

80

100

120

0 100000 200000 300000 400000 500000
Time (cycles)

Ac
ce

p.
 L

oa
d

(p
/c)

Node
Link

 Figure 15 shows the evolution of the main network
parameters when executing the central phase of Radix. We
can see how the maximum accepted load drops from 40
phits per network cycle to 35 phits when 17 faults are
considered. The Immunet behavior is quite similar to the
one observed under synthetic workload conditions. During
small lapses of time with respect to the total execution
time, the effective network throughput drops to values near

Figure 13. Throughput degradation for different
numbers of link/node faults in a 16x16-torus

network under uniform traffic.

6.2. Real Workloads
To assess the network behavior under realistic workload

conditions, the impact of an increasing number of faults on

the execution time of different parallel applications has
been analyzed. To assure the ending of the programs we
have considered only link faults that do not isolate any
computing node. We will emulate a multiprocessor system
with 64 nodes assuming that each network router has a
single-processor computing node attached.

The parameters of the nodes employed in the CC-
NUMA multiprocessor emulated in this paper (cache
coherence protocol, processor architecture, memory
hierarchy, etc.) are similar to those of an Alpha 21364 [16].
Cache line size is 64 bytes and command packet size is 12
bytes long. The processor speed has been established at 1.2
GHz. As the physical channel width or phit size is 4 bytes,
a data packet containing 76 bytes will be 19 phits long.
Consequently, command packets (request or invalidation),
will be three phits long. The router clock has been set to
0.8GHz.

To carry out this realistic evaluation, we fed our
simulation platform with three applications selected from
the SPLASH-2 suite: Radix, FFT and LU, which had
already been ported into RSIM by researchers at Rice
University [17]. These three applications were selected
because they have significant communication demands,
and each one represents a different case of network load.
The problem sizes are 64K double complexes for FFT, half
a million keys for Radix, and a 256x256 matrix for LU.

To assess the effectiveness of Immunet under this
realistic scenario, we will inject a different number of
faults when running each application and analyze their
impact on the execution times. We will also show the
evolution of the network behavior in some of the analyzed
applications. As stated before, we only consider link
failures because the higher levels of the simulated system
do not allow the dynamic loss of processors along the
application execution. The number of faults considered for
each case is 3, 9 and 17. In addition, the network faults are
injected using a non-periodic pattern, once a pre-
established number of packets are consumed. This reflects,
in a way, a worst-case scenario because the faults tend to
be injected during high network load phases.

The degradation observed on the execution times of the
parallel phases of each application is shown in Table 2.
These data are normalized in Figure 14. Even in the most
adverse situation, the impact of our reconfiguration
mechanism is close to 30%, which includes the effect of
the application running on an arbitrary irregular topology
with a single long BFC safe ring.

10

to zero and packet latencies rise, in some cases, more than
one order of magnitude. Nevertheless, when the
reconfiguration processes ends, latencies return to values
close to those corresponding to the fault-free network.
Therefore, the main cause of the observed performance
degradation is the reduction of the maximum achievable
throughput. When the application enters in an intensive
communication phase, the amount of traffic tends to be
high and constant. Hence, a reduction in throughput will
imply a proportional increase in execution time. It must be
remembered that throughput reductions are not only due to
the routing algorithm employed in the presence of failures
but also due to the resources loss.

 Fault Free 3 Links 9 Links 17 Links
FFT 3.13E5 3.33E5 3.75E5 4.21E5
RADIX 1.33E6 1.36E6 1.43E6 1.50E6
LU 1.37E6 1.40E6 1.42E6 1.46E6

Table 2. Absolute execution times (processor
cycles).

0

20

40

60

80

100

120

140

No
Faults

FFT 3
Links

FFT 9
Links

FFT 17
Links

Radix 3
Links

 Radix 9
Links

Radix
17 Links

LU 3
Links

LU 9
Links

LU 17
Links

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

SYNC

MEM

BUSY

Figure 14. Normalized execution times.

Among the three applications, FFT is the one exhibiting
higher performance degradation for two underlying
reasons. First, FFT employs an “all-to-all” communication
pattern and hence, the resources in failure cause a higher
impact. The second, and more important reason is that the
execution time of this application is much shorter than
Radix or LU as can be seen in Table 2 and consequently,
the impact is comparatively more important. Note that in
realistic scenarios, it is not usual to have such short
applications. Due to the extreme complexity of our
simulated system, we have reduced the size of the input set
in order to achieve results in manageable amounts of time.

When executing LU, the performance degradation is
even lower than with Radix. Its execution time is slightly
longer than Radix and the traffic pressure on the network is
much lower than in the other applications analyzed here.
Consequently, neither the reconfiguration processes nor the
maximum throughput degradation have a significant
impact on its execution. In the worst case, the observed
performance degradation is close to 7%.

)

0
5

10
15
20
25
30
35
40
45

190000 690000 1190000 1690000
Time (cycles)

Ac
ce

p.
 L

oa
d

(p
hit

s/r
ou

te
r c

yc
le)

No faults

17 Faulty
Links

)

(a)

0

50

100

150

200

250

190000 690000 1190000 1690000
Time (cycles)

 L
at

en
cy

 (p
ro

ce
ss

or
 cy

cle
s)

No faults

17 Faulty
Links

e

(b)
Figure 15. Radix execution trace: (a) Throughput,

(b) Latency (zoom).

7. Conclusions
A new methodology able to tolerate any combination of

faults inside a typical interconnection network has been
presented in this work. The unique limitation of Immunet is
the network connectivity. Our proposal exhibits a set of
characteristics that makes it extremely effective. Firstly,
Immunet hardly affects the interconnection network
performance when running under fault-free conditions.
Secondly, Immunet tolerates any spatial and/or temporal
combination of faults. Only packets on flight through
faulty links will be affected and in consequence, they can
be recovered with little effort. In addition, Immunet
exhibits graceful performance degradation when it is
integrated in a parallel computer. In such a scenario, our
network is able to carry out an automatic reconfiguration
without intervening in the upper levels of system software.
Reconfiguration times are short enough to be supported by
almost any real application.

All these features have been verified by means of an
exhaustive simulation process of k-ary n-cube networks for

11

[13] D. Linder and J. Harden, “An Adaptive and Fault-Tolerant
Wormhole Routing Strategy for k-ary n-cubes", IEEE Trans.
Computers, vol. 40, no1, pp. 2-12, Jan. 1991.

which their main performance figures were obtained.
Notwithstanding, Immunet can be used in any regular or
irregular topologies. In fact, using a routing algorithm for
irregular networks like that presented in [21], the
application of our proposal is straightforward.

 Measurements of reconfiguration times and
performance degradation are both excellent. For example,
in a 16x16 torus network managing random traffic beyond
its saturation point, a link fault is solved in less than 30,000
processor cycles only degrading the performance around
17%. On the other hand, 35 randomly distributed link
failures cause a performance degradation of about 90%.
Nevertheless, after 400,000 cycles, although heavily
degraded, the network will recover its normal operation
mode. Furthermore, detailed application-driven simulations
of FFT, Radix and LU parallel codes not only corroborate
the results obtained using synthetic traffic but also the
robustness of the methodology.

[14] O. Lysne and J. Duato. “Fast Dynamic Reconfiguration in
Irregular Networks”, International Conference of Parallel
Processing (ICPP), 2000.

[15] G. S. Malkin and M. E. Steenstrup. “Distance-vector
routing”, In M. E. Steenstrup, ed., Routing in
Communications Networks, pp. 83–98. Prentice Hall, 1995.

[16] S. Mukherjee, P. Bannon, S. Lang, A. Spink, D. Webb, “The
Alpha 21364 Network Architecture“, IEEE Micro, vol. 22,
no. 1, pp 26-35, Jan-Feb 2002.

[17] V.S.Pai, P. Ranganathan, and S.V.Adve, "RSIM: An
Execution-Driven Simulator for ILP-Based Shared-Memory
Multiprocessors and Uniprocessors". IEEE TCCA
Newsletter, October 1997.

[18] R.Pang, T.Pinkston, “The Double Scheme: Deadlock-free
reconfiguration of Cut-through Networks”, International
Conference of Parallel Processing (ICPP) August 2000.

[19] V. Puente, C. Izu, R. Beivide, J.A. Gregorio, F. Vallejo and
J.M. Prellezo, “The Adaptive Bubble Router”, Journal of
Parallel and Distributed Computing. vol 61, no. 9, September
2001.

8. References
[1] NR Adiga, GS Almasi, Y Aridor, M Bae, Rajkishore Barik,

et al., “An Overview of the BlueGene/L Supercomputer”,
Supercomputing 2002. [20] V. Puente, J.A. Gregorio, J. M. Prellezo, R.Beivide, J.

Duato, and C. Izu, “Adaptive Bubble Router: a Design to
Improve Performance in Torus Networks”, International
Conference of Parallel Processing (ICPP) 1999.

[2] D. Avresky, N. Natchev, V. Shurbanov, “Dynamic
Reconfiguration in High-Speed Computer Clusters”, 3rd
IEEE International Conference on Cluster Computing
(CLUSTER'01), October 2001 [21] V.Puente, J.A. Gregorio, R. Beivide, F.Vallejo, A.Ibañez, "A

New Routing Mechanism for Networks with Irregular
Topology", Supercomputing, 2001. [3] R.V. Boppana and S. Chalasani. “Fault-tolerant wormhole

routing algorithms for mesh networks”. IEEE Trans. on
Computers, vol. 44, no.7, pp. 848-864, July 1995. [22] V.Puente, J.A. Gregorio, R.Beivide, “SICOSYS: An

Integrated Framework for studying Interconnection Network
in Multiprocessor Systems”, Euromicro Workshop on
Parallel and Distributed Processing, 2002.

[4] J. Bruck, R. Cypher, and C. Ho. “Fault-tolerant meshes with
small degree”. SIAM Journal of Computing, vol. 26, no. 6,
pp. 1764-1784, December 1997. [23] V. Puente, J.A. Gregorio, R. Beivide and F. Vallejo, “A Low

Cost Fault Tolerant Packet Routing for Parallel Computers”,
International Parallel and Distributed Processing Symposium
(IPDPS), 2003.

[5] R. Casado, A. Bermudez, F. J. Quiles, J. L. Sanches, and J.
Duato, “Performance evaluation of dynamic reconfiguration
in high-speed local area networks”. International Symposium
on High-Performance Computer Architecture (HPCA),
January 2000. [24] S. L. Scott, “Synchronization and Communication in the

T3E Multiprocessor, ASPLOS VII, 1996. [6] S. Chalasani and R V. Boppana, “Communication in
Multicomputers with Nonconvex Faults”. IEEE Trans. on
Computers, vol. 46, no.5, pp. 616-622, 1997.

[25] J.Shih, “Wormhole routing for torus networks with faults”.
Parallel Computing, 27 (2001), 1817-1829.

[26] L.Ziang, “Fault Tolerant Networks with Small Degree”,
Symposium on Parallel Algorithms and Architectures
(SPAA), 2000.

[7] M.S. Chen and K.G. Shin, "Adaptive Fault-Tolerant Routing
in Hypercube Multicomputers", IEEE Trans. on Computers",
vol. 39, no.12, pp. 1406-1416, December 1990.

[8] D. Avresky, “Embedding and Reconfiguration of Spanning
Trees in Faulty Hypercubes”, IEEE Transactions on Parallel
and Distributed Systems vol. 10 no.3, pp. 211-222, March
1999.

[9] M. Galles, "Spider: a high-speed network interconnect,"
IEEE Micro, vol. 17, no.1, pp. 34-39, Jan-Feb. 1997.

[10] P.T. Gaughan and S. Yalamanchili, "A Family of Fault-
Tolerant Routing Protocols for Direct Multiprocessor
Networks", IEEE Trans. on Parallel and Distributed Systems,
vol. 6, no.5, pp. 482-497, May 1995.

[11] C. Hedrick, “Routing Information Protocol”, June 1988.
Internet RFC 1058.

[12] P. Kermani and L. Kleinrock, “Virtual Cut-Through: A New
Computer Communication Switching Technique”. Computer
Networks, Vol. 3, pp. 267-286, 1979.

12

13

	Introduction
	Router Architecture and Network Topology
	The Basis of Immunet
	Immunet Distributed Algorithms
	4.1. Establishing an emergency path
	4.3. Adaptive routing table rebuilding

	A Router Implementation for Immunet
	Immunet Evaluation
	6.1. Synthetic Workloads
	6.2. Real Workloads

	Conclusions
	References

