
A First Glance at Kilo-instruction Based Multiprocessors

Marco Galluzzi
DAC, UPC

Barcelona, Spain

galluzzi@ac.upc.es

Valent́in Puente
ATC, UC

Santander, Spain

vpuente@atc.unican.es

Adrián Cristal
DAC, UPC

Barcelona, Spain

adrian@ac.upc.es

Ramón Beivide
ATC, UC

Santander, Spain

mon@atc.unican.es

José-Ángel Gregorio
ATC, UC

Santander, Spain

jagm@atc.unican.es

Mateo Valero
DAC, UPC

Barcelona, Spain

mateo@ac.upc.es

ABSTRACT
The ever increasing gap between processor and memory
speed, sometimes referred to as the Memory Wall prob-
lem [42], has a very negative impact on performance. This
mismatch will be more severe in future processor’s gener-
ation. Modern cache organizations and prefetching tech-
niques will not be able to solve this problem. A very novel
and promising technique to deal with the Memory Wall con-
sists on designing processors able to maintain thousands of
in-flight instructions. An example of this kind of processors
has been denoted as Kilo-instruction processors [8]. When
running numerical applications, Kilo-instruction processors
have demonstrated its ability to effectively maintain high
values of IPC while increasing memory latencies.

In this paper, we will study for the first time, the influ-
ence of Kilo-instruction processors on the performance of
small-scale CC-NUMA multiprocessors. Our first results,
using an ideal network, show the enormous potential of the
Kilo-instruction processors, when using them as comput-
ing nodes, not only for hiding local DRAM latencies but
also for the remote ones. A deeper analysis, using real-
istic networks, reveals the existence of heavy demands on
packet throughput required by each node, since larger re-
order buffers translate on higher density of remote accesses.
Next, we show that current interconnection networks can-
not cope with this high traffic levels, so newer and faster
networks have to be designed. In short, our results show
dramatic performance gains over multiprocessors based on
current microprocessors and dictate a possible way to build
future shared-memory multiprocessor systems.

Categories and Subject Descriptors
C.1 [Computer Systems Organization]: PROCESSOR
ARCHITECTURES

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’04, April 14–16, 2004, Ischia, Italy.
Copyright 2004 ACM 1-58113-741-9/04/0004 ...$5.00.

General Terms
Design, Measurement, Performance

Keywords
Kilo-instruction Processors, Memory Wall, Shared-Memory
Multiprocessors, CC-NUMA, ROB, Instruction Window, In-
flight Instructions

1. INTRODUCTION
The gap between processor speeds and DRAM speeds is

increasing, making the problem of the Memory Wall harder
and harder [42]. Modern processors have to wait hundreds of
cycles for data coming from main memory and the impact
in the processor performance is being studied [19]. This
problem is also present in multiprocessors and is accentuated
by the need of a memory consistency model and by one of
the two major hurdles of parallel processing: the relatively
high cost of communications between processors [16].

Many techniques have been proposed and used in the past
to reduce the negative effects due to memory latency in
uniprocessors. Cache memory [37] exploits the spatial and
temporal locality exhibited by most programs. Prefetching
fetches data from memory before it is requested, and can be
done by software [21] [24], by hardware [18] [2] or even by a
combination of both [20] [27]. Later, the concept of having
another thread analyzing more complex prefetching, bring-
ing data from memory to L2 cache, has been introduced in
[11] and continued in [5] [43] [34] [6] [38].

In multiprocessors, we can use successfully the same tech-
niques, also to hide the communication latency. However,
to reduce the memory latencies we also have to take care of
the memory consistency model, where the use of a relaxed
model can be useful [14]. In this way the use of a large re-
order buffer seems to be very helpful [13][33][15]. To reduce
communication latency new interconnection network models
and new routing algorithms and artefacts are being studied
[31].

Recently, a novel approach aimed to hide memory latency
has been proposed [10] [8]. This approach lies in multi-
checkpointing long latency instructions allowing thousands
of instruction to be in flight; in fact we can keep the pro-
cessor busy executing more instructions since we can virtu-

212

ally have a big Re-Order Buffer. This kind of processors,
called Kilo-instruction processors, has been shown to effec-
tively maintain the performance while increasing memory
latency. With this study we want to prove that the use of
Kilo-instruction processors is also beneficial for multiproces-
sor systems as we can also hide communication latency.

The results of our study come from simulations made with
RSim [28], a multiprocessor simulator coming from the Com-
puter Architect group at Rice University. This simulator
environment emulates a complete CC-NUMA machine with
out-of-order processors. We also have added a detailed net-
work simulator called SICOSYS [30] that allows us to pro-
duce detailed simulations.

The first results we obtained with an ideal network and a
memory latency of 500 cycles show us that the use of Kilo-
instruction processors can hide this latency. In later simula-
tions we use different kinds of real networks, and we can see
how the latency coming from network communication can
be also hidden. Besides, from these results we always get
the same answer: the network has contention problems due
to the pressure that the Kilo-instruction processors impose
to the multiprocessor system.

The behaviour of the multiprocessor system together with
the high contention of the interprocessor network takes us
to some statements: the Kilo-instruction processors are very
suitable to achieve sustained performance results when the
memory latency is incremented, and the increase in the net-
work contention opens a new research area in building new
and better packet routers capable to support this amount of
traffic.

The paper is organized as follows. In section 2, we summa-
rize what are the Kilo-instruction processors and how they
work. In section 3, we describe the simulator used and the
benchmarks involved in our study. We show and analyze
the results obtained in our simulations in section 4. In the
last section we give some conclusions.

2. KILO-INSTRUCTION PROCESSORS
As we have explained, the gap between processor speed

and memory latency is continuously widening. This increas-
ing difference, called the Memory Wall effect [42], affects
performance by stalling the processor pipeline while wait-
ing for memory accesses. Superscalar out-of-order proces-
sors cope with these increasing latencies by having more
in-flight instructions from where to extract ILP. At current
trends, however, processors cannot keep up with this grow-
ing disparity, and as a result, long-latency operations are
increasingly more taxing on performance.

Figure 1 is a motivating example of this problem. It shows
average IPCs attained by Spec2000 floating-point applica-
tions using a 4-way processor, and supposing different mem-
ory latencies and ROB sizes. In order to understand the
problem we have to pay attention just to the first four bars,
those resulting from having 128 in-flight instructions, the
number a modern processors can have. In this figure we can
observe how the increasing memory latency can degrade the
performance. With a 500 cycles latency we achieve around
the 50% of degradation from a baseline memory latency of
100 cycles. With a 1000 cycles latency the 66% of degrada-
tion is reached from the same baseline. These are significant
losses of performance we cannot either ignore or admit.

The explanation of what is exactly occurring in these pro-
cessors is as follows. When a load instruction misses in L2

cache, the latency of the overall operation will eventually
make this instruction the oldest in the processor. Since in-
structions commit in order, this instruction will disallow the
retirement of newer instructions, which will fill entirely the
re-order buffer (ROB) of the processor and halt the fetch-
ing of new instructions. In this case the performance drops
because the amount of independent instructions to issue is
limited due to the lack of new instructions.

The results showed in Figures 1 and 2 comes from ex-
periments carried out in [9] and they have been obtained
from a processor simulator with typical configuration, simu-
lating basically an out-of-order 4-way processor running 300
million representative instructions from the SPEC2000 fp
benchmarks. Starting from this basic configuration, other
artefacts have been added to the simulator in order to im-
plement some Kilo-instruction processor features.

0

0.5

1

1.5

2

2.5

3

3.5

4

128 256 512 1024 2048 4096

In-flight instructions

IP
C

L2 Perfect 100 500 1000

Figure 1: Effect on IPC of large memory latency for
SPEC2000 fp applications

2.1 Breaking the memory wall
The solution we can think of is obvious: increase the max-

imum amount of in-flight instructions that the processor can
handle. More instructions means that the halting will start
later, thus affecting less overall performance, or not happen
at all. Besides, increasing the availability of instructions to
issue, increases the probability of finding independent in-
structions, thus also increasing IPC [16].

Numerical applications follow this behaviour very well,
whereas integer applications have some problems due to
branch misprediction and pointer chasing references that
avoids these applications reaching a high IPC.

In order to increase the amount of in-flight instructions we
must increase the capability of several resources that directly
depend on their number, the most important ones being the
ROB, the instruction queues and the physical registers.

Re-Order Buffer (ROB) The ROB will have as many
entries as in-flight instructions we need. In the case of
a 1000 cycles memory latency and a 4-way processor,
and assuming we would like not to halt the proces-
sor, this would mean at least a four thousand entries
ROB. Unfortunately, simply up-sizing this structure is
not clear to be feasible technologically.

Instruction Queues (IQ) In-flight instructions also live

213

in the IQs. The number of entries in the IQ must be
equal to the quantity of instructions that can be wait-
ing for another instruction to finish due to some de-
pendency. This number can be huge if think of instruc-
tions waiting for several long-lasting missing loads.
Due to its complexity, having big IQs is also an im-
practicable idea.

Physical Registers The need for a renaming process [40]
point to an amount of physical registers proportional
to the number of in-flight instructions, since we must
ensure at least a free physical register for every differ-
ent destination logical register. This is, in the worst
case, so many registers as ROB entries we have. This
leads us to a big amount of physical registers, and this
is neither simple nor inexpensive.

In Figure 1 we can see why we must not disregard the
performance benefits that this increase brings. In this figure
we can observe how beneficial to the performance is having
more in-flight instructions. The results obtained with larger
ROBs indicate us that higher memory latencies can be hid-
den, resulting in having similar IPCs than nowadays pro-
cessors, those with little ROBs and small memory latencies.
Moreover, the increasing number of in-flight instructions is
capable of achieving nearly perfect memory behaviour.

2.2 Making it possible
At this point of our analysis it must be clear that simply

up-sizing critical structures to tolerate memory latency is
not a feasible solution. So we need a different approach to
this problem.

Below, we explain the techniques employed to get an af-
fordable approach. Such an approach is possible because
critical resources are underutilized in present out-of-order
processors as it has been showed in [7].

Checkpointing The main purpose of the ROB is to en-
force in-order commit. It also allows the processor to
recover the state after each specific instruction, and
fortunately, recoveries are rare: they just may happen
due to exceptions or mis-speculations. We can think of
improving the common case [16] and execute normal
instructions as if they would never except nor be part
of any mis-speculation. This motivation led to [10],
which proposes the first approach to substitute the
need for a large ROB with a small set of microarchi-
tectural checkpoints (multi-checkpointing). A different
work, previously done, exploits checkpointing just to
provide repair mechanisms [17]. The central idea of
[10] is to commit instructions in an out-of-order fash-
ion, having the possibility of freeing more resources
than in normal processors. At certain points in execu-
tion checkpointing is made, so the processor is acting
as if the state of the machine changed every group of
executed instructions, instead of after each instruction.
Returning to a precise state of the processor after an
interrupt is still available; it needs only to return to
the previous checkpoint to the error and proceed after
that.

Slow Line Instruction Queuing There are instructions
with different latency. Long latency instructions, i.e.
L2 missing loads, are those that make the IQ to fill. In

[9] is proposed a scalable and complexity-affordable so-
lution to face this problem. First, with a simple mech-
anism long latency loads are detected. Second, these
long latency instructions, and its dependent instruc-
tions, are moved into a Slow Lane Instruction Queue
(SLIQ) where they will wait until the data comes from
main memory. This mechanism allows us to keep the
IQ small and fast.

Load/Store Queue Special attention must be paid to
Load/Store Queues since the management of a great
amount of loads and stores can be a hard problem
due to the need for memory disambiguation. In [35]
[29] [1] new proposals have been presented in order to
overcome this problem. They essentially propose some
kind of load/store filtering in conjunction with the use
of two-levels structures, with the aim of storing most
or all the instructions in one big structure while main-
taining a shorter one to easily check the dependencies.

Ephemeral Registers In order to maintain thousands of
in-flight instructions we need a lot of physical registers.
A way to reduce this requirement is modifying the re-
naming strategy to limit the amount of live registers
at any moment and therefore decrease the long-term
necessities of the processor. In this way, the Ephemeral
Registers mechanism has been developed [22]. It pro-
poses an aggressive register recycling mechanism which
combines delayed register allocation and early register
recycling and, in conjunction with checkpointing, it
allows the processor to non-conservatively deallocate
resources. However, even though the amount of phys-
ical registers can be reduced, a mechanism to main-
tain the dependencies between this huge amount of
in-flight instructions is indispensable. This is exactly
what Virtual Tags [23] are used for, helping to achieve
Ephemeral Registers.

0

0.5

1

1.5

2

2.5

3

3.5

512 1024 2048 512 1024 2048 512 1024 2048

100 500 1000

Virtual Tags / Memory Latency

IP
C

256
512

Limit 4096

Baseline 128 Physical
Registers

Limit 4096

Limit 4096

Baseline 128

Baseline 128

Figure 2: IPC achieved using reasonable amount of
resources

In Figure 2 we show IPC results obtained from the com-
bination of three mechanisms, those above explained, with
respect to the amount of Virtual Tags, the memory latency
and the amount of physical registers. The figure is divided

214

into three zones, each of them comprising the results for dif-
ferent memory latencies: 100, 500 and 1000 cycles. Besides,
each zone has two lines that represent the performance ob-
tained with the baseline (with 128 ROB entries) and the
performance obtained by a Limit microarchitecture where
all the resources have been up-sized with no constraints,
the latter acting as an upper bound. Figure 2 helps us to
understand how well the proposed mechanisms are behav-
ing. First of all it allows seeing how the combination of
these three orthogonal techniques work. Another conclu-
sion that we can see is that there is still room for improve-
ment with 1000 cycles or more. We can notice how the
mechanisms nearly saturate at 500 cycles. For this latency
having 1024 Virtual tags is nearly as having 2048, while in
the 1000 latency zone we can see that the growth trend is
far from saturating. This enforces us in the belief that Kilo-
instruction processors with more in-flight instructions will
still yield benefits.

3. SIMULATION ENVIRONMENT
In this section we are going to explain the details of the

simulation environment used. First, we will describe the
tools and the benchmarks we employed, and second, we will
focus on the interconnection network models, since they are
an important parameter in the analysis we make.

3.1 Experimental Tools and Benchmarks
An execution-driven simulator has been employed to study

the impact of the processor window size in the performance
of multiprocessor systems. The integration of a detailed
network simulator, SICOSYS [30] together with the RSIM
simulation environment [28] provides a powerful tool to em-
ulate a complete CC-NUMA machine with state-of-the-art
processors. SICOSYS allows us to take into consideration
most of the VLSI network implementation details with high
precision, but with much lower computational requirements
than hardware-level simulators. The maximum error ob-
served with respect to a standard hardware simulator is less
than 4%, providing in all cases pessimistic estimations [30].

The microarchitecture modelled by RSIM is close to the
MIPS R10000 processor. In order to simulate a Kilo-
instruction processor we have simply up-sized the required
resources: ROB, Instruction Queue, Load/Store Queue,
Physical Registers, etc. Since this up-sizing lead us to rea-
sonable results in our first approach, the effort of modelling
the proposed Kilo-instruction processor as in [8] has not
been taken into account. These results are just a little op-
timistic as we can see from the difference between Figure 1
and Figure 2.

Due to the limitations imposed by the complexity of the
execution-driven simulated system, 16KB L1 cache and 128-
KB L2 cache have been used. The benchmarks employed in
this study have been tuned according to these cache sizes.
Other parameters of the simulated system are shown in Ta-
ble 1.

As Table 1 shows, the memory consistency model used
is Release Consistency. This relaxed consistency model of-
fers good performance results because it allows relaxing pro-
gram order between all operations to different locations.
This characteristic allows extensive buffering and pipelin-
ing, which can hide part of the latency of memory accesses
[14].

To carry out a realistic evaluation, we fed our simulation

platform with three applications selected from the SPLASH-
2 suite: Radix, FFT and LU, and two applications from the
SPLASH-1 suite: Mp3d, and Water. The problem size for
FFT is 256K complex data points. The problem size for
Water is 50.000 particles under the default geometry. In the
case of Mp3d, the problem size is 43 molecules using again
the default geometry. These values correspond to the prob-
lem sizes established in [36] and [41] respectively. Due to
the high demand for computational resources the problem
size of LU has been reduced from its default size of 512x512
to 256x256. The problem size for Radix has been also re-
duced from one million integer keys to a half-million using
the default radix of 1024.

RSIM Processor Microarchitecture

Issue policy Out-of-order
Fetch/Decode/Commit width 4/4/4
Branch Predictor 2-bit agree, 2048 entries
Shadow Mappers 64
I-L1 not modeled
D-L1 size 16KB 4-way, 64B line
D-L1 latency 3 cycles
D-L2 size 128KB 4-way, 64B line
D-L2 latency 20 cycles, tag 4 cycles
Memory latency 250 and 500 cycles
Mem. & Dir. interleaving 128
Directory Buffer size 2048 entries
Coherence Protocol MSI
Consistency Protocol RC
Bus size/latency 512 bits/3 cycles
MSHR size/coalesc. 32K/16
Integer General Units 4 (lat/rep 1/1)
Integer Mult/Div (lat/rep 3/1 and 13/13)
FP Functional Units 2 (lat/rep 3/1)
Address Generation Units 2
IQ, LQ, Physical Registers proportional to ROB

Table 1: Computation node parameters of the sim-
ulated system

3.2 Interconnection Network Models
In the multiprocessor design arena the Memory Wall re-

veals as an exacerbated problem. Remote memory accesses
exhibit larger latencies and they have to share network band-
width with coherency and synchronization traffic. Modern
medium-scale CC-NUMA multiprocessors use large caches,
directory-based coherency protocols and switched intercon-
nection networks. Small-scale UMA multiprocessors also use
local caches but, in contrast, snooping coherency protocols.
A common shared bus have been traditionally considered
sufficient to manage the data traffic generated by these small
systems. Nevertheless, the CC-NUMA architecture success
together with scalability and expandability issues are impos-
ing a distributed shared-memory style even in small multi-
processors [25] [12]. Thus, switched networks are nowadays
present in multiprocessor systems of any size.

We are going to consider several interconnection networks
within this research. Firstly, an unrealistic network design
will be used in order to establish an upper bound achiev-
able performance. This network, which we will denote as
ideal network, will consist of a two-stages pipelined cross-

215

bar operating at the processor frequency. Secondly, a set of
realistic network designs will be considered for establishing
practicable performance gains.

Topology, wire technology and router architecture will
define a realistic network design. Multiple interconnection
topologies have been proposed in last decades. Meshes, Tori
and Hypercubes are among the most popular. Hypercube
architectures have progressively been replaced by lower de-
gree topologies and nowadays, Tori and Meshes still com-
pete in the design of the most recent high-end multiproces-
sors [26] [3]. Although Meshes are easier to implement, at
least from a functional point of view, Tori clearly outperform
Meshes. Hence, we focus our attention on bi-dimensional
Tori in which four input/output links are used for commu-
nicating network nodes.

A quick look at wire technology will configure a first snap-
shot of the interconnection network. The physical charac-
teristics of current wire technologies establish the network
operation cycle, which is constrained by signal propagation
delays. Channel pipelining, consisting on having multiple
in-flight data units over the wire has been used for increas-
ing network throughput. Nevertheless, the actual network
frequency is dictated by the inherent physical phenomena
associated with the employed wire technology. For exam-
ple, the upper bound on network frequency operation for
Alpha 21364 based multiprocessors has been established at
800MHz [25]. These systems are physically highly-coupled
architectures because they are backplane-based designs and
their processors integrate its packet router on-chip. Other
more flexible architectures such as SGI Origin [12] or last
IBM SP series [39], suffer from heavier restrictions. The
NUMALink4 employed by SGI operates at 200 MHz and
the wire technology employed by IBM SP series imposes a
network operation of 125 MHz.

Besides topology and wire technology, router architecture
completes an interconnection network design. We will em-
ploy two realistic router architectures in this paper. Let
us to describe their most important features. The simplest
router uses deterministic Dimension Order Routing (DOR)
and Bubble Flow Control for deadlock avoidance [4]. This
router, which is denoted as BDOR, consists of a five-stages
pipeline and employs FIFO queues located at the input
ports. The second router under study also relies on Bub-
ble Flow Control for deadlock avoidance but, in contrast, it
uses adaptive routing. This router, denoted as BADA, has
a six-stages pipeline and two virtual channels (implemented
as FIFO queues) per input port [32]. It should be noticed
that this routing mechanism has been implemented in the
Torus network used by the IBM BlueGene/L supercomputer
[26].

Taking into account the above mentioned wire technology
restrictions we have set the router operation frequency at
666 MHz in all the cases. In addition, links will be bi-
directional supporting 32 data bits in each direction. It
means in turn, that the phit size managed by the network
(number of bits transmitted in parallel per port and net-
work cycle) is set to 32 bits. Coherency protocol packets
have been implemented to be 16 bytes long.

4. RESULTS AND ANALYSIS
In this section, we show and analyze the results obtained

from our simulations. The first subsection introduces the
idea of having Kilo-instruction based multiprocessors, and

the second subsection describes what is going on in this kind
of systems.

Our study is based on assuming memory latencies of 250
and 500 cycles. The former because is a reasonable number
for current systems, and the latter because we want to go
a step further on and take into account future latencies. In
each case we will indicate what latency is used.

4.1 Kilo-instruction Based Multiprocessors
At this point, we know that Kilo-instruction processors

report improvements to uniprocessor systems, but now is
the moment to analyze what Kilo-instruction processors can
contribute to the performance of a multiprocessor system.
Hence, we are going to evaluate a Kilo-instruction based
multiprocessor system. This system will be made of 16 pro-
cessors. Each processor employed will be that described in
Table 1 and the network will be the ideal network cited in
section 3.2. These first results will also put light on the suit-
ability of the benchmarks we are going to use, those taken
from the SPLASH and the SPLASH-2 suites and depicted
in section 3.1.

Figures 3a and 3b gives us the results for the experiment
above described, first using just one processor and then us-
ing the mentioned 16 processors system. The memory la-
tency involved is 500 cycles. In this figure, we can observe,
for each benchmark, how the increasing amount of in-flight
instructions, starting from 64 (the baseline), influences the
resulting IPC.

The results are clear, as in the results with one processor
we also get performance improvements by using 16 Kilo-
instruction processors. These improvements are significant
in both cases. Observing the results for one processor, there
is an improvement between the 170% and the 370% approx-
imately for all the benchmarks, using a 2048 entries ROB
over the baseline. The exceptions are the LU benchmark
that reach a 1200% of improvement, and the Water bench-
mark that reach only a 17%.

Having a look to the results for 16 processors we can
also appreciate improvements. We have limited improve-
ments for LU, Mp3d and Water benchmarks, between 10%
and 37%, and still considerable improvements for Radix and
FFT benchmarks, 166% and 227% respectively. The reason
of having minor improvements when running on 16 proces-
sors lies in the fact that there are less L2 cache missing
loads, since we divide the same problem size between more
processors. Another consequence is that we obtain higher
IPCs running the benchmarks on 16 processors than running
them on one processor.

Furthermore, in Figures 3a and 3b we can observe that two
benchmarks behave in a different way. The Mp3d bench-
mark shows poor improvements running on 16 processors
and using big ROBs. This happens due to an unfortu-
nate implementation of the application. Mp3d uses a sim-
ple block to access the global counter of particle collisions,
and employs many synchronization barriers, so the poten-
tial performance is degradated by waits. On the other hand,
the Water benchmark have little improvements running on
1 processor and running on 16 processors, due to the high
branch misprediction rate (more than 10%) and to the size
of its basic block (20 instructions). In some way Water is
acting as an integer application, and this is not what we
expected.

Once studied the set of proposed benchmarks, we have

216

0

0.5

1

1.5

2

2.5

3

3.5

FFT RADIX LU MP3D WATER

Benchmark

IP
C

ROB 64
ROB 128
ROB 512
ROB 1024
ROB 2048

(a) 1 processor

0

0.5

1

1.5

2

2.5

3

3.5

FFT RADIX LU MP3D WATER

Benchmark

IP
C

ROB 64
ROB 128
ROB 512
ROB 1024
ROB 2048

(b) 16 processors

Figure 3: IPC obtained by having different num-
ber of in-flight instructions for some SPLASH and
SPLASH-2 programs, assuming an ideal network
and a memory latency of 500 cycles

demonstrated that the performance increase obtained by
Kilo-instruction processors in uniprocessor systems is also
achieved in multiprocessor systems, which is the expected
result. Besides, we have demonstrated that the benchmarks
Mp3d and Water are not useful to the purposes of our study.

4.2 The Impact of the Interconnection
Network

In this subsection we analyze the behaviour of Kilo-in-
struction based multiprocessors when using realistic inter-
connection networks. In particular, we will consider BDOR
and BADA routers arranged as bi-dimensional 4x4 Torus
networks. We will focus only on Radix, FFT and LU appli-
cations as they exhibit natural characteristics to be conve-
niently exploited by a parallel computer. In order to further
illustrate our analysis, we will also run these applications on
a multiprocessor having and ideal network. In this way, we
can clearly establish a performance upper bound.

We start our analysis considering a high-end microproces-
sor running at 4 GHz with a state-of-the-art 64 entries ROB
and DRAM memory latency of 500 processor cycles. We
consider four experiments: ideal network and memory (zero
latency), only ideal network, BADA and BDOR networks.

The different performance results obtained are shown in Fig-
ure 4.

Under these conditions, the impact on system performance
of the interconnection network is almost negligible. By us-
ing an ideal network, it is only possible to achieve a per-
formance gain under 10% in the most favouring case. This
is an expected behaviour. On the one hand, the DRAM
latency dominates over the remote accesses. Actually, the
base-latency in a realistic network is only around 35 proces-
sor cycles. On the other hand, the network does not suffer
from congestion because there are few in-flight remote ac-
cess instructions and hence, there is a low volume of traffic
to be managed.

0

0.5

1

1.5

2

2.5

3

3.5

FFT 16p RADIX 16p LU 16p

Benchmark

IP
C

IDEAL NET&MEM
IDEAL NET
BADA
BDOR

Figure 4: How the type of network impact the per-
formance with 64 in-flight instructions and a mem-
ory latency of 500 cycles

The previous scenario totally changes when the number
of ROB entries is progressively incremented. Figures 5a,
5b and 5c show the performance achieved for ROB sizes
of 128, 512, 1024 and 2048 entries and memory latency of
250 processor cycles. Figures 6a, 6b and 6c show the same
experiment using a memory latency of 500 processor cycles,
so we can compare later the utilization of different latencies.

Although the results are quite similar, we will pay atten-
tion just to Figures 6a, 6b and 6c, those with 500 cycles of
memory latency, for the following analysis.

We can see that the system performance for a 2048 entries
ROB with an ideal network is quite close to that achieved
when using a combination of an ideal network and an ideal
memory. At first glance, this observation proves two facts.
First, the suitability of big instruction windows for toler-
ating memory latencies. Second, the interconnection net-
work becomes in the system bottleneck when augmenting
the ROB size.

Under a realistic scenario, the ability to achieve higher val-
ues of IPC by using big ROBs will depend on the intercon-
nection network effectiveness. With medium ROB sizes the
performance gains provided by BDOR and BADA networks,
although noticeable, are clearly below of those obtained by
using an ideal network. Augmenting the ROB size above
512 entries returns nearly negligible profits. When using
a 2048 entries ROB, the gap between BADA and BDOR
networks is around 15%, which shows how adaptive routing
translates into better performance. Nevertheless, the gap

217

0

0.5

1

1.5

2

2.5

3

3.5

64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

70
4

76
8

83
2

89
6

96
0

10
24

10
88

11
52

12
16

12
80

13
44

14
08

14
72

15
36

16
00

16
64

17
28

17
92

18
56

19
20

19
84

20
48

ROB size

IP
C

IDEAL NET&MEM
IDEAL NET
BADA
BDOR

(a) FFT

0

0.5

1

1.5

2

2.5

3

3.5

64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

70
4

76
8

83
2

89
6

96
0

10
24

10
88

11
52

12
16

12
80

13
44

14
08

14
72

15
36

16
00

16
64

17
28

17
92

18
56

19
20

19
84

20
48

ROB size

IP
C

IDEAL NET&MEM
IDEAL NET
BADA
BDOR

(b) LU

0

0.5

1

1.5

2

2.5

3

3.5

64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

70
4

76
8

83
2

89
6

96
0

10
24

10
88

11
52

12
16

12
80

13
44

14
08

14
72

15
36

16
00

16
64

17
28

17
92

18
56

19
20

19
84

20
48

ROB size

IP
C

IDEAL NET&MEM
IDEAL NET
BADA
BDOR

(c) Radix

Figure 5: Performance of three SPLASH-2 bench-
marks using different types of network, assuming a
memory latency of 250 cycles

between BADA and an ideal network is still around 40%,
which tell us that, by using more evolved interconnection
networks, there are opportunities for important performance
gains.

The previous analysis clearly shows how the interconnec-
tion network constitutes, in our case, the system bottleneck,
which avoids achieving higher performance. As stated be-

0

0.5

1

1.5

2

2.5

3

3.5

64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

70
4

76
8

83
2

89
6

96
0

10
24

10
88

11
52

12
16

12
80

13
44

14
08

14
72

15
36

16
00

16
64

17
28

17
92

18
56

19
20

19
84

20
48

ROB size

IP
C

IDEAL NET&MEM
IDEAL NET
BADA
BDOR

(a) FFT

0

0.5

1

1.5

2

2.5

3

3.5

64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

70
4

76
8

83
2

89
6

96
0

10
24

10
88

11
52

12
16

12
80

13
44

14
08

14
72

15
36

16
00

16
64

17
28

17
92

18
56

19
20

19
84

20
48

ROB size

IP
C

IDEAL NET&MEM
IDEAL NET
BADA
BDOR

(b) LU

0

0.5

1

1.5

2

2.5

3

3.5

64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

70
4

76
8

83
2

89
6

96
0

10
24

10
88

11
52

12
16

12
80

13
44

14
08

14
72

15
36

16
00

16
64

17
28

17
92

18
56

19
20

19
84

20
48

ROB size

IP
C

IDEAL NET&MEM
IDEAL NET
BADA
BDOR

(c) Radix

Figure 6: Performance of three SPLASH-2 bench-
marks using different types of network, assuming a
memory latency of 500 cycles

fore, the use of standard instruction windows generates a
relatively low traffic volume and the interconnection net-
work can cope with it. Nevertheless, bigger instruction win-
dows implies higher rates of remote accesses which in turn,
brings a higher pressure over the network. In such situ-
ations, contention among packets arises and consequently,
remote accesses exhibit longer latencies. During some ex-

218

ecution phases, computing nodes inject such a volume of
traffic that the network enters on a saturated state being it
unable to drain packets at the same rate as they are gen-
erated. In this degraded scenario, remote access latencies
exponentially grow up. In consequence, although there are
more in-flight remote accesses they suffer from enormous
latencies. In short, we can see that augmenting the instruc-
tion window size can beneficiate local memory accesses but
is tremendously dangerous for the remote ones. This is the
reason why BADA and BDOR show different behaviour al-
though they have similar base latencies. BADA clearly out-
performs BDOR because adaptive routing is able to mit-
igate, up to some extent, the negative effects of network
contention.

Now, comparing set of Figures 5 with Figures 6 we can
clearly deduce that with our Kilo-instruction based multipro-
cessor we can see more defined IPC increments when using
a latency of 500 cycles. In most cases, with 500 cycles and
little ROBs the IPC is lower than using 250 cycles, and that
is logical. With bigger ROBs the IPC is practically the same
for both latencies using realistic interconnection networks,
and that is a good result if we think that memory latency
has been doubled. Only with ideal network the IPC for big-
ger ROBs is greater for 250 cycles than 500 cycles, but the
difference is little so the results are fairly reasonable.

In the rest of the section, from Figure 7 to Figure 9, the
memory latency of 250 cycles is used despite of losing some
benefit from having a higher latency as we have seen above.

In order to have a better insight of this phenomenon we
focus on the network behaviour when a Radix application is
executed for ROB sizes of 512, 1024 and 2048 entries. Fig-
ure 7 dynamically shows the traffic load and packet laten-
cies supported by the network. In some execution phases, as
the first and third ones, which correspond to random com-
munication patterns, the network throughput is around 14
phits consumed every network cycle. It must be noticed that
the maximum achievable throughput corresponds to 16 phits
per network cycle. In such execution phases the network is
clearly saturated regardless the window size. Nevertheless,
in the central phase which employs an all-to-one commu-
nication pattern, the network is able to manage a slightly
higher load when using a 1024 entries ROB instead of a 512
entries ROB which translates into a superior performance
when consider the whole application. Notwithstanding, no
further gains are observed by using a bigger ROB.

Having a look to Figure 7b we can observe how the net-
work contention negatively impacts on the remote access
latencies. As we increment the number of in-flight instruc-
tions, remote accesses are also incremented but the network
is unable to cope with them. In such cases, some part of
the traffic generated by the computing nodes cannot be in-
jected in the network provoking a clear increment of the
latency experienced by packets. For a best observation of
this effect, Figure 8 records the average packet latency at the
beginning of the application execution. The bigger the win-
dow size the higher the number of in-flight instructions and
hence, a superior tolerance of the slower memory accesses.
Nevertheless, this effect is counterbalanced by a high packet
population count, which saturates the network avoiding the
achievement of the expected performance gains.

To end this section, we are going to have a quick look
at the performance behaviour when scaling up the system
size. Figure 9 shows a FFT running on an 8x8 BADA Torus.

0

2

4

6

8

10

12

14

3.0E+05 8.0E+05 1.3E+06 1.8E+06 2.3E+06 2.8E+06 3.3E+06

Execution cycles

P
hi

ts
 /

N
et

w
or

k
cy

cl
es

2048
1024
512

(a) Throughput

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

3.0E+05 8.0E+05 1.3E+06 1.8E+06 2.3E+06 2.8E+06 3.3E+06

Execution cycles

P
ro

ce
ss

or
 c

yc
le

s
2048
1024
512

q

(b) Network latency

Figure 7: Load and latency caused by messages run-
ning Radix and using different ROB sizes and a
memory latency of 250 cycles

0

500

1000

1500

2000

2500

3000

3.0E+05 4.0E+05 5.0E+05 6.0E+05 7.0E+05 8.0E+05

Execution cycles

P
ro

ce
ss

or
 c

yc
le

s

2048
1024
512

Figure 8: Detailed network latency of the initial ex-
ecution phase of Radix

When comparing a realistic network with an ideal one there
is a noticeable 50% degradation even when using standard
ROBs of 64 entries. This gap grows up when increasing the
ROB because when we scale the system size the maximum

219

0

0.5

1

1.5

2

2.5

3

3.5

64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

70
4

76
8

83
2

89
6

96
0

10
24

10
88

11
52

12
16

12
80

13
44

14
08

14
72

15
36

16
00

16
64

17
28

17
92

18
56

19
20

19
84

20
48

ROB size

IP
C

IDEAL NET&MEM
IDEAL NET
BADA

Figure 9: The network impact with 64 processors
and running FFT, assuming a memory latency of
250 cycles

achievable throughput decreases and the average latency in-
creases. This decreasing in throughput is not manifested in
terms of phits managed by network cycle but in terms of a
lower rate of phits injected by individual computing nodes.
In this case, the use of ROBs having more than 512 entries
does not provide further performance gains due to the higher
network contention.

5. CONCLUSIONS
In order to tolerate increasing memory latencies, a large

number of in-flight instructions must be maintained. This
is also true for multiprocessors, where, besides, we can en-
counter more sources of latency: those coming from memory
accesses and those coming from network communication.

This paper provides another evidence of the potential of
the Kilo-instruction processors, added to those provided in
previous works that we have already cited along this paper.
Its application in the multiprocessors environment is not just
viable but also beneficial in two ways. On the one hand, we
have demonstrated that Kilo-instruction processors are an
appropriate mechanism to hide the latencies coming from
different sources. On the other hand, we show the relevance
of the interconnection network and, therefore, that we have
to put more effort in creating packet routers oriented to
support high traffic levels.

This work is a first evaluation of what we call Kilo-in-
struction based multiprocessors. We provide evident results
of how beneficial can be combining knowledge coming from
Kilo-instruction processors and Multiprocessors. This way,
we are opening a new direction where more research is
needed and known and new ideas can be applied both at
the processor and interconnection network levels.

6. ACKNOWLEDGMENTS
This work was supported by the Ministry of Science and

Technology of Spain under contracts TIC-2001-0995-C02-
01 and TIC-2001-0591-C02-01. The authors would like to
thank Francisco J. Cazorla and Ayose Falcón for their valu-
able comments.

7. REFERENCES
[1] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint

Processing and Recovery: Towards Scalable Large
Instruction Window Processors. Proceedings of the
36th Annual ACM/IEEE Intl. Symposium on
Microarchitecture, pages 423–434, December 2003.

[2] J.-L. Baer and T.-F. Chen. An Effective On-chip
Preloading Scheme to Reduce Data Access Penalty. In
Proceedings of Supercomputing ’91, pages 176–186,
November 1991.

[3] W. Camp and J. Tomkins. The Red Storm Computer
Architecture and its Implementation. Conference on
High-Speed Computing, April 2003.

[4] C. Carrion, R. Beivide, J. Gregorio, and F. Vallejo. A
Flow Control Mechanism to Avoid Message Deadlock
in K-ary N-cube Networks. Fourth International
Conference on High Performance Computing, pages
322–329, December 1997.

[5] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and
Y. Patt. Simultaneous Subordinate Microthreading
(SSMT). Proceedings of the 26th Annual Intl.
Symposium on Computer Architecture, pages 186–195,
May 1999.

[6] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen.
Dynamic Speculative Precomputation. Proceedings of
the 34th Annual ACM/IEEE Intl. Symposium on
Microarchitecture, pages 306–317, December 2001.

[7] A. Cristal, J. F. Martinez, J. Llosa, and M. Valero. A
Case for Resource-conscious Out-of-order Processors.
In IEEE TCCA Computer Architecture Letters, 2,
October 2003.

[8] A. Cristal, D. Ortega, J. Llosa, and M. Valero.
Kilo-instruction Processors. Proceedings of the 5th
International Symposium on High Performance
Computing (invited paper), pages 10–25, October 2003.

[9] A. Cristal, D. Ortega, J. Llosa, and M. Valero.
Out-of-Order Commit Processors. Proceedings of the
10th Intl. Conference on High Performance Computer
Architecture, February 2004.

[10] A. Cristal, M. Valero, A. Gonzalez, and J. Llosa.
Large Virtual ROBs by Processor Checkpointing.
Technical Report UPC-DAC-2002-39, Universidad
Politécnica de Cataluña, July 2002.

[11] M. Dubois and Y. Song. Assisted Execution. Technical
Report CENG 98-25, Department of EE-Systems,
University of Southern California, October 1998.

[12] M. Galles. Spider: A High-Speed Network
Interconnect. IEEE Micro, 17(1):34–39, Jan.-Feb.
1997.

[13] K. Gharachorloo, A. Gupta, and H. Hennessy. Hiding
Memory Latency Using Dynamic Scheduling in
Shared-memory Multiprocessors. Proceedings of the
19th Annual Intl. Symposium on Computer
Architecture, pages 22–33, May 1992.

[14] K. Gharachorloo, A. Gupta, and J. Hennessy.
Performance Evaluation of Memory Consistency
Models for Shared-memory Multiprocessors.
Proceedings of the 4th Intl. Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 245–257, April 1991.

[15] C. Gniady, B. Falsafi, and T. Vijaykumar. Is SC +
ILP = RC? Proceedings of the 26th Annual Intl.

220

Symposium on Computer Architecture, pages 162–171,
May 1999.

[16] J. Hennessy and D. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, San
Mateo, California, 3rd edition, 2003.

[17] W. Hwu and Y. Patt. Checkpoint Repair for
Out-of-Order Execution Machines. pages 18–26,
December 1987.

[18] D. Joseph and D. Grunwald. Prefetching Using
Markov Predictors. Proceedings of the 24th Annual
Intl. Symposium on Computer Architecture, pages
252–263, June 1997.

[19] T. Karkhanis and J. Smith. A Day in the Life of a
Cache Miss. 2nd Annual Workshop on Memory
Performance Issues (WMPI), June 2002.

[20] M. Karlsson, F. Dahlgren, and P. Stenstrom. A
Prefetching Technique for Irregular Accesses to Linked
Data Structures. Proceedings of the 6th Intl.
Conference on High Performance Computer
Architecture, pages 206–217, January 2000.

[21] A. Klaiber and H. Levy. An Architecture for
Software-Controlled Data Prefetching. Proceedings of
the 18th Annual Intl. Symposium on Computer
Architecture, pages 43–53, May 1991.

[22] J. Martinez, A. Cristal, M. Valero, and J. Llosa.
Ephemeral Registers. Technical Report
CSL-TR-2003-1035, Cornell Computer Systems Lab,
2003.

[23] T. Monreal, A. Gonzalez, M. Valero, J. Gonzalez, and
V. Vinals. Delaying Physical Register Allocation
Through Virtual-Physical Registers. Proceedings of the
32nd Annual ACM/IEEE Intl. Symposium on
Microarchitecture, pages 186–192, November 1999.

[24] T. Mowry, M. Lam, and A. Gupta. Design and
Evaluation of a Compiler Algorithm for Prefetching.
Proceedings of the 5th Intl. Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 62–73, October 1992.

[25] S. Mukherjee, P. Bannon, S. Lang, A. Spink, and
D. Webb. The Alpha 21364 Network Architecture. In
Proceedings of Hot Interconnects 9, August 2001.

[26] N.R. Adiga et al. An Overview of the BlueGene/L
Supercomputer. In Proceedings of Supercomputing ’02,
November 2002.

[27] D. Ortega, E. Ayguade, J.-L. Baer, and M. Valero.
Cost-Effective Compiler Directed Memory Prefetching
and Bypassing. Proceedings of the 11th Intl.
Conference on Parallel Architectures and Compilation
Techniques, pages 189–198, September 2002.

[28] V. Pai, P. Ranganathan, and S. Adve. RSIM: An
execution-Driven Simulator for ILP-Based
Shared-Memory Multiprocessors and Uniprocessors.
IEEE TCCA Newsletter, 35(11):37–48, October 1997.

[29] I. Park, C. Ooi, and T. Vijaykumar. Reducing Design
Complexity of the Load/Store Queue. Proceedings of
the 36th Annual ACM/IEEE Intl. Symposium on
Microarchitecture, pages 411–422, December 2003.

[30] V. Puente, J. Gregorio, and R. Beivide. SICOSYS: An
Integrated Framework for Studying Interconnection
Networks in Multiprocessor Systems. Proceedings of
the 10th Euromicro Workshop on Parallel and
Distributed Processing, pages 360–368, January 2002.

[31] V. Puente, J. Gregorio, R. Beivide, and C. Izu. On the
Design of a High-Performance Adaptive Router for
CC-NUMA Multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, 14(5), May 2003.

[32] V. Puente, C. Izu, J. Gregorio, R. Beivide, and
F. Vallejo. The Adaptive Bubble Router. Journal on
Parallel and Distributed Computing, 61(9):1180–1208,
September 2001.

[33] P. Ranganathan, V. Pai, and S. Adve. Using
Speculative Retirement and Larger Instruction
Windows to Narrow the Performance Gap between
Memory Consistency Models. In Proceedings of the
9th Symposium on Parallel Algorithms and
Architectures, June 1997.

[34] A. Roth and G. S. Sohi. Speculative Data-Driven
Multithreading. Proceedings of the 7th Intl.
Conference on High Performance Computer
Architecture, pages 37–50, January 2001.

[35] S. Sethumadhavan, R. Desikan, D. Burger, C. Moore,
and S. Keckler. Scalable Hardware Memory
Disambiguation for High ILP Processors. Proceedings
of the 36th Annual ACM/IEEE Intl. Symposium on
Microarchitecture, pages 399–410, December 2003.

[36] J. Singh, W. Weber, , and A. Gupta. SPLASH:
Stanford Parallel Applications for Shared-Memory.
Computer Architecture News, 20(1):5–44, March 1992.

[37] A. Smith. Cache Memories. Computing surveys,
14(3):473–530, September 1982.

[38] Y. Sohilin, J. Lee, and J. Torrellas. Using a User-Level
Memory Thread for Correlation Prefetching.
Proceedings of the 29th Annual Intl. Symposium on
Computer Architecture, pages 171–182, May 2002.

[39] C. Stunkel, J. Herring, B. Abali, and R. Sivaram. A
New Switch Chip for IBM RS/6000 SP Systems. In
Proceedings of Supercomputing ’99, November 1999.

[40] R. Tomasulo. An Efficient Algorithm for Exploiting
Multiple Arithmetic Units. IBM Journal of Research
and Development, (11):25–33, January 1967.

[41] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and
Methodological Considerations. Proceedings of the
22nd Annual Intl. Symposium on Computer
Architecture, pages 24–36, June 1995.

[42] W. Wulf and S. McKee. Hitting the Memory Wall:
Implications of the Obvious. Computer Architecture
News, 23(1):20–24, March 1995.

[43] C. Zilles and G. Sohi. Execution-based Prediction
using Speculative Slices. Proceedings of the 28th
Annual Intl. Symposium on Computer Architecture,
pages 2–13, July 2001.

221

