
Evaluating Kilo-instruction Multiprocessors

Marco Galluzzi
DAC, UPC

Barcelona, Spain

galluzzi@ac.upc.es

Valentı́n Puente
ATC, UC

Santander, Spain

vpuente@atc.unican.es

Adrián Cristal
DAC, UPC

Barcelona, Spain

adrian@ac.upc.es

Ramón Beivide
ATC, UC

Santander, Spain

mon@atc.unican.es

José-Ángel Gregorio
ATC, UC

Santander, Spain

jagm@atc.unican.es

Mateo Valero
DAC, UPC

Barcelona, Spain

mateo@ac.upc.es

ABSTRACT
The ever increasing gap in processor and memory speeds has
a very negative impact on performance. One possible solu-
tion to overcome this problem is the Kilo-instruction proces-
sor. It is a recent proposed architecture able to hide large
memory latencies by having thousands of in-flight instruc-
tions. Current multiprocessor systems also have to deal with
this increasing memory latency while facing other sources of
latencies: those coming from communication among proces-
sors. What we propose, in this paper, is the use of Kilo-in-
struction processors as computing nodes for small-scale CC-
NUMA multiprocessors. We evaluate what we appropriately
call Kilo-instruction Multiprocessors. This kind of systems
appears to achieve very good performance while showing
two interesting behaviours. First, the great amount of in-
flight instructions makes the system not just to hide the
latencies coming from the memory accesses but also the in-
herent communication latencies involved in remote memory
accesses. Second, the significant pressure imposed by many
in-flight instructions translates into a very high contention
for the interconnection network, what indicates us that more
efforts need to be employed in designing routers capable of
managing high traffic levels.

Categories and Subject Descriptors
C.1 [Computer Systems Organization]: PROCESSOR
ARCHITECTURES

General Terms
Design, Measurement, Performance

Keywords
Kilo-instruction Processors, Memory Wall, Shared-Memory
Multiprocessors, CC-NUMA, ROB, Instruction Window

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WMPI ’04, Munich Germany
Copyright 2004 ACM 1-59593-040-X ...$5.00.

1. INTRODUCTION
The gap between processor speed and memory latency is

continuously widening, making the problem of the Memory
Wall harder and harder [27]. In the multiprocessor design
arena the Memory Wall reveals as an exacerbated problem,
since remote memory accesses exhibit larger latencies and
they have to share network bandwidth with coherency and
synchronization traffic.

In this paper we will study the influence of Kilo-instruc-
tion processors on the performance of small-scale CC-NUMA
multiprocessors. They are a very novel and promising pro-
cessor architecture designed to deal with long latency in-
structions and consist in maintaining thousands of in-flight
instructions [6] [4]. When running numerical applications,
these processors have demonstrated its ability to effectively
maintain high IPC values while increasing memory latency.

By using a convenient simulation framework, which com-
bines RSim [16] and SICOSYS [17], we will analyze the be-
haviour of Kilo-instruction based CC-NUMA multiproces-
sors. As we will see, our first results using an ideal network
show the enormous potential of the Kilo-instruction pro-
cessors when using them as computing nodes not only for
hiding local DRAM latencies but also for the remote ones.
A deeper analysis, using realistic networks, reveals the exis-
tence of heavy demands on packet throughput required by
each node, since larger re-order buffers translate on higher
density of remote accesses. Next, we show that current in-
terconnection networks cannot cope with this high traffic
levels, so newer and faster networks have to be designed.

In short, the analyzed behaviour of this multiprocessor
system takes us to some statements: the Kilo-instruction
processors are very suitable to achieve high sustained perfor-
mance results when the memory latency is incremented, and
its utilization increases network contention, which opens a
new research area in building new and better packet routers
capable to support this amount of traffic.

The paper is organized as follows. In section 2, we describe
related work. In section 3, we describe the simulator used
and the benchmarks involved in our study. We show and
analyze the results obtained in our simulations in section 4.
In section 5, we explain possible solutions to the problems
found in the analysis. In the last section we give the most
relevant conclusions.

72

2. RELATED WORK
Many techniques have been proposed and used in the past

to reduce the negative effects due to memory latency in
uniprocessors. Cache memory [25] [22] exploits the spatial
and temporal locality exhibited by most programs. Prefetch-
ing fetches data from memory before it is requested, and can
be done by software [12], by hardware [1] or even by a com-
bination of both [11]. Later, the concept of having another
thread analyzing more complex prefetching, bringing data
from memory to L2 cache, has been introduced in [7].

In multiprocessors, we can also successfully use the same
techniques to hide the communication latency. However, to
reduce the memory latencies we also have to take care of the
memory consistency model, where the use of a relaxed model
can be useful [10]. In this way the use of a large re-order
buffer seems to be very helpful [9] [20]. To reduce commu-
nication latency, new interconnection network models and
new routing algorithms and artefacts are being studied [18].

A recent technique to deal with long latency memory ac-
cesses is the mentioned Kilo-instruction processor. It pro-
poses having thousands of in-flight instructions by combin-
ing different mechanisms that overcome the problem of up-
sizing the critical resources: re-order buffer [6], instruction
queue [5] and physical registers [14]. These mechanisms are
feasible since critical resources are shown to be underutilized
in present out-of-order processors [3].

3. SIMULATION ENVIRONMENT

3.1 Experimental Tools and Benchmarks
A detailed network simulator called SICOSYS [17] has

been integrated together with the RSIM multiprocessor sim-
ulator [16] providing a powerful execution-driven environ-
ment to emulate a complete CC-NUMA multiprocessor us-
ing local caches, a directory-based coherency protocol and a
switched interconnection network.

SICOSYS allows us to take into consideration most of
the VLSI network implementation details with high preci-
sion, but with much lower computational requirements than
hardware-level simulators. The maximum error observed
with respect to a standard hardware simulator is less than
4%, providing in all cases pessimistic estimations [17]. The
microarchitecture modelled by RSIM is close to the MIPS
R10000 processor, and it has been adequately configured in
order to simulate a Kilo-instruction processor able to man-
age up to 2048 in-flight instructions.

Due to the limitations imposed by the complexity of the
simulated system, 16KB L1 cache and 128KB L2 cache have
been used. The benchmarks employed in this study have
been tuned according to these cache sizes. Other parameters
of the simulated system are shown in table 1. The memory
consistency model used is Release Consistency. This relaxed
consistency model offers good performance results because
it allows relaxing program order between all operations to
different locations.

To carry out a realistic evaluation, we fed our simula-
tion platform with three representative applications selected
from the SPLASH-2 suite: Radix, FFT and LU. The prob-
lem size for FFT is 256K complex data points. This value
correspond to the problem size established in [26]. Due to
the high demand for computational resources, the problem
size of LU has been reduced from its default size of 512x512

Table 1: Computation node parameters of the sim-

ulated system

RSIM Processor Microarchitecture

Issue policy Out-of-order
Fetch/Decode/Commit width 4/4/4
Branch Predictor 2-bit agree, 2048 entries
Shadow Mappers 64
I-L1 not modeled
D-L1 size 16KB 4-way, 64B line
D-L1 latency 3 cycles
D-L2 size 128KB 4-way, 64B line
D-L2 latency 20 cycles, tag 4 cycles
Memory latency 250, 500 & 1000 cycles
Mem. & Dir. interleaving 128
Directory Buffer size 2048 entries
Coherence Protocol MSI
Consistency Protocol RC
Bus size/latency 512 bits/3 cycles
MSHR size/coalesc. 64 entries/16
Integer General Units 4 (lat/rep 1/1)
Integer Mult/Div (lat/rep 3/1 and 13/13)
FP Functional Units 2 (lat/rep 3/1)
Address Generation Units 2
IQ, LQ, Physical Registers proportional to ROB

to 256x256. The problem size for Radix has been also re-
duced from one million integer keys to a half-million using
the default radix of 1024.

Our study is based on assuming memory latencies of 250,
500 and 1000 cycles. The first value is used because is a
reasonable number for current systems, and the last two
values because we want to go a step further on and take
into account future latencies.

3.2 Interconnection Network Models
We are going to consider two types of interconnection net-

works. Firstly, an unrealistic network design will be used in
order to establish an upper bound for the maximum achiev-
able performance. This network, which we will denote as
ideal network, will consist of a two-stages pipelined crossbar
operating at the processor frequency. Secondly, a realistic
network design will be considered for establishing practica-
ble performance gains, so topology, router architecture and
wire technology have to be carefully chosen.

Due to its good performance and its extended use [15] the
selected topology is the bi-dimensional Torus in which four
input/output links are used for communicating neighbouring
network nodes.

Taking into account the characteristics of the current wire
technology we have set the router operation frequency at 666
MHz. In addition, links will be bi-directional supporting 32
data bits in each direction. It means in turn, that the phit
size managed by the network (number of bits transmitted
in parallel per port and network cycle) is set to 32 bits.
Coherency protocol packets have been implemented to be
16 bytes long.

Finally, the router core employed is the Bubble Adaptive
(BADA) router [19], so the realistic network will be denoted
as BADA network. BADA router uses fully adaptive rout-
ing and Bubble Flow Control for avoiding packet deadlock
[2]. It has a six-stages pipeline and two virtual channels
(implemented as FIFO queues) per input port. This rout-
ing mechanism has been recently implemented in the Torus
network used by the IBM BlueGene/L supercomputer due
to its high performance and scalability [13].

73

4. EXPERIMENTAL RESULTS

4.1 Kilo-instruction Multiprocessors
In this subsection, we are going to evaluate a Kilo-instruc-

tion Multiprocessor system. This system will be made of 16
processors. Each processor employed will be that described
in table 1 and the network will be the ideal network cited in
section 3.2.

The following results are useful in three ways. First, we
want to demonstrate that the desirable effects of a Kilo-in-
struction single processor can be extended to a multiproces-
sor system. Second, we want to know what the magnitude
of those effects is. Third, they are also useful to establish
an upper bound for possible performance enhancements.

Figure 1 give us the results for the experiment above de-
scribed, first using just one processor and then using the
mentioned 16-processors system. In this figure, we can ob-
serve, for each benchmark, how the increasing amount of
in-flight instructions, starting from 64 (the baseline), influ-
ences the resulting IPC.

0

0,5

1

1,5

2

2,5

3

3,5

FFT RADIX LU FFT RADIX LU

1 processor 16 processors

IP
C

ROB 64
ROB 128
ROB 512
ROB 1024
ROB 2048

Figure 1: IPC obtained by having different numbers

of in-flight instructions for the selected SPLASH-2

benchmarks, assuming an ideal network and a mem-

ory latency of 500 cycles

Observing the results for one processor, there are improve-
ments between 170% and 370% approximately for all the
benchmarks, using a 2048 entries ROB over the baseline.
Having a look to the results for 16 processors we can also
appreciate improvements. We have limited improvements
for the LU benchmark, about 37%, and still considerable
improvements for Radix and FFT benchmarks, 166% and
227% respectively.

The reason of having minor improvements, and better
baseline IPCs, when running on 16 processors lies in the fact
that there are less L2 cache missing loads, since we divide
the same problem size between more processors. This fact
is shown in figure 2a. This is meaningful for our analysis,
since we still observe significant improvements when using
larger ROBs, as shown in figure 1, despite the decrement of
the L2 miss rates, the important factor in Kilo-instruction
processors.

The second important fact we can draw from figure 2a is
that appears a prefetching effect when using larger ROBs
and significant L2 miss rates are found. This prefetching ef-

fect is caused by the execution of many instructions (loads
included) due to the presence of a big ROB. Although this
instructions are flushed after branch mispredictions, the spec-
ulative execution of load instructions can prefetch useful
data.

0,0

0,5

1,0

1,5

2,0

2,5

3,0

FFT RADIX LU FFT RADIX LU

1 processor 16 processors

L2
 m

is
s

ra
te

ROB 64

ROB 2048
38.47 7.37

(a) L2 miss rate

0

10

20

30

40

50

60

70

80

90

100

FFT RADIX LU FFT RADIX LU

1 processor 16 processors

T
im

e
%

 w
ith

 R
O

B
 fu

ll

ROB 64

ROB 2048

(b) Time % with rob full

Figure 2: Simulation results

Figure 2b shows the percentage of the total execution time
in which the ROB has all of its entries occupied. Note that
this not strictly means the processor is halted since, once the
ROB is full, the same number of instruction can be commit-
ted and fetched in the same cycle. These results are strongly
related to the L2 miss rate, since the higher the miss rate the
higher the percentage of the time the ROB is full. So, due
to the lower multiprocessor L2 miss rates, lower percentages
in which the ROB is full are achieved, what indicates an
underutilization of larger ROBs.

Once studied the set of proposed benchmarks, we have
demonstrated that the performance increase obtained by
Kilo-instruction processors in uniprocessor systems is also
achieved in multiprocessor systems.

4.2 The Impact of the Interconnection
Network

In this subsection we analyze the behaviour of Kilo-in-
struction Multiprocessors when using a realistic intercon-
nection network: a bi-dimensional 4x4 Torus network with
BADA routers. We will also employ an ideal network in or-

74

der to establish a performance upper bound. We start our
analysis considering a high-end microprocessor running at 4
GHz with a 64 entries ROB and DRAM memory latency of
500 processor cycles. We consider three experiments: ideal
network and memory (zero latency), only ideal network and
BADA network. The results are shown in figure 3.

0

0.5

1

1.5

2

2.5

3

3.5

FFT RADIX LU

IP
C

IDEAL NET&MEM
IDEAL NET
BADA

Figure 3: How the type of network impact the per-

formance of three SPLASH-2 benchmarks, with 64

in-flight instructions and a memory latency of 500

cycles

Under these conditions, the impact on system performance
of the interconnection network is almost negligible. By using
an ideal network, it is only possible to achieve, in the most
favouring case, a performance gain under 10% in respect to a
realistic network . On the one hand, DRAM latencies domi-
nate over the remote accesses. Actually, the base-latency in
a realistic network is only around 35 processor cycles. On
the other hand, the network does not suffer from congestion
because there are few in-flight remote accesses and hence, a
low traffic volume to be managed.

The previous scenario totally changes when the number
of ROB entries is progressively incremented. Figures 4a,
4b and 4c show the performance achieved for ROB sizes
between 64 and 2048 entries and memory latency of 250,
500, and 1000 cycles for the FFT, LU and Radix benchmarks
respectively.

When analyzing the FFT benchmark, we can clearly ap-
preciate the benefits obtained when incrementing ROB sizes.
It can be also seen that there are not important differences
between 250 and 500 cycles memory latency. In both cases,
the performance of an ideal network using processors with
2048 entries ROBs is quite close to that achieved when us-
ing a combination of an ideal network and an ideal memory.
Latencies of 1000 cycles are more difficult to tolerate. There
is still a margin of improvement around 15% in respect to
the performance upper bound. When using a realistic net-
work as BADA, we can see that we are obtaining just 65%
of the maximum achievable performance (ideal memory and
network). Performance differences between ideal and BADA
networks are lower when using high memory latencies.

For the LU benchmark, maximum performance for an
ideal network can be obtained by using smaller ROBs. No
additional improvements can be appreciated by using ROBs
bigger than 1024 entries. Although an ideal network pro-

0

0,5

1

1,5

2

2,5

3

64 128 512 1024 2048 64 128 512 1024 2048 64 128 512 1024 2048

250 500 1000

ROB Size / Memory latency

IP
C

IDEAL NET
BADAIDEAL NET & MEM

(a) FFT

2

2,2

2,4

2,6

2,8

3

3,2

3,4

64 128 512 1024 2048 64 128 512 1024 2048 64 128 512 1024 2048

250 500 1000

ROB Size / Memory latency

IP
C

IDEAL NET
BADAIDEAL NET & MEM

(b) LU

0

0,5

1

1,5

2

2,5

3

3,5

64 128 512 1024 2048 64 128 512 1024 2048 64 128 512 1024 2048

250 500 1000

ROB Size / Memory latency

IP
C

IDEAL NET
BADA

IDEAL NET & MEM

(c) Radix

Figure 4: Performance of three SPLASH-2 bench-

marks running on 16 processors, using different

types of network and assuming three different mem-

ory latencies

vides a performance quite close to the upper bound for 250
cycles, it can be seen that the higher the latencies the lower
the performance gains. BADA only achieve around 80% of
the maximum performance for all the considered latencies.
As in the FFT case, the differences between ideal and BADA
networks decrease when augmenting memory latency.

75

Although performance gains are achieved with Radix when
augmenting the ROB sizes, a different behaviour can be ob-
served. The performance exhibited by an ideal network is
quite sensitive to memory latencies for a 2048 entries ROB.
For 250, 500 and 1000 cycles, an ideal network just obtain
around 80%, 72% and 53% of the maximum achievable per-
formance. In contrast, the system performance remains,
more or less, stable when varying memory latencies in the
case of realistic BADA networks. BADA only can achieve
around 50% of the benefits provided by a combination of an
ideal network and an ideal memory. This application could
clearly beneficiate from having bigger ROBs.

We can see that, under a realistic scenario, the ability to
achieve higher values of IPC by using big ROBs will depend
on the interconnection network effectiveness. As stated be-
fore, the use of standard instruction windows generates a
relatively low traffic volume and the interconnection net-
work can cope with it. Nevertheless, bigger instruction win-
dows implies higher rates of remote accesses which in turn,
brings a higher pressure over the network. In such situ-
ations, contention among packets arises and consequently,
remote accesses exhibit longer latencies. During some ex-
ecution phases, computing nodes inject such a volume of
traffic that the network enters on a saturated state being it
unable to drain packets at the same rate as they are gen-
erated. In this degraded scenario, remote access latencies
exponentially grow up. In consequence, although there are
more in-flight remote accesses they suffer from enormous la-
tencies. In short, we can see that augmenting the instruction
window size beneficiates local memory accesses but can be
tremendously dangerous for the remote ones.

In order to obtain a better understanding of these phe-
nomena, figures 5a and 5b show how the execution time is
expended among different system activities for a FFT ex-
ecution and 500 cycles memory latencies. The execution
time has been divided in four different parts: ”busy” for
processing instructions, ”local mem” for intra-node mem-
ory accesses, ”remote mem” for inter-node memory accesses
and ”sync” for synchronization primitives. Figure 5a plots
relative values for each analyzed run and figure 5b shows
the same results when they are normalized in respect to the
slowest run. It can be seen how an ideal network with 2048
entries ROBs can nearly behave the same that a system
having also an ideal memory. Consequently, their execution
times are the same. It is also clear the ability of big ROBs to
hide local memory latencies when using both an ideal net-
work and a BADA network. Nevertheless, it is easy to see
the performance degradation caused by the latency increase
of the remote memory accesses. These long latencies are
clearly caused by contention among packets in a saturated
network, which constitutes the system bottleneck. This bad
operation causes that, in the best of the realistic cases, pro-
cessors are stopped almost half of the execution time waiting
for data.

In order to have a better insight about this congestion
we are going to analyze two snapshots of the network be-
haviour. Set of figures 6 shows the traffic throughput and
packet latencies supported by the network when executing
the benchmark. In some execution phases, which corre-
spond to all-to-all collective communications, the network
throughput is around 14 phits consumed every network cy-
cle, close to the maximum of 16 phits. Hence, in such execu-
tion phases the network is saturated regardless the window

0

10

20

30

40

50

60

70

80

90

100

2048 64 128 512 1024 2048 64 128 512 1024 2048

IM&N Ideal Network BADA

R
un

tim
e

REMOTE MEM
LOCAL MEM
SYNC
BUSY

(a) Relative values

0

10

20

30

40

50

60

70

80

90

100

2048 64 128 512 1024 2048 64 128 512 1024 2048

IM&N Ideal Network BADA

N
or

m
al

iz
ed

 r
un

tim
e

REMOTE MEM
LOCAL MEM
SYNC
BUSY

(b) Normalized values

Figure 5: Distribution of the execution time among

different tasks, for the FFT assuming a memory la-

tency of 500 cycles

size. Although in such phases the network is able to manage
a slightly higher load by using big ROBs, it is not translated
into a superior performance when consider the whole appli-
cation. In contrast, intensive computing phases in which no
remote accesses exist can beneficiate from the ability of big
ROBs for hiding more local latencies.

Having a look to figure 6b we can observe how the net-
work contention negatively impacts on the remote access
latencies. As we increment the number of in-flight instruc-
tions, remote accesses are also incremented but the network
is unable to cope with them. In such cases, an important
part of the traffic generated by the computing nodes cannot
be injected in the network causing a clear increment of the
latency experienced by packets. As the system is saturated,
the latency provoked by the network itself remains nearly
the same regardless the ROB size. Nevertheless, the waiting
times at the interface injection queues experience a notable
increase leading to higher overall latencies. In general, the
bigger the window size the higher the number of in-flight
instructions and hence, a superior tolerance of the memory
accesses. Nevertheless, this effect is counterbalanced by a
high packet population count, which saturates the network
avoiding the achievement of performance gains close to the
ideal case. Fortunately, using big ROBs can hide local laten-

76

0

2

4

6

8

10

12

14

16

8.0E+05 1.8E+06 2.8E+06 3.8E+06 4.8E+06 5.8E+06 6.8E+06

Execution Cycles

P
hi

ts
/n

et
w

or
k

cy
cl

es
512
1024
2048

(a) Throughput

0

200

400

600

800

1000

1200

1400

8.0E+05 1.8E+06 2.8E+06 3.8E+06 4.8E+06 5.8E+06 6.8E+06

Execution Cycles

P
ro

ce
ss

or
 c

yc
le

s

512
1024
2048

(b) Network latency

Figure 6: Network throughput and latency when

running FFT and using different ROB sizes and 500

cycles memory latencies

cies and, in some cases, compensates the degradation caused
by network congestion. It is very illustrative to compare the
bars corresponding to BADA routers for 1024 and 2048 en-
tries ROBs.

To end this section, we are going to have a quick look
at the performance behaviour when scaling up the system
size. Figure 7 shows a FFT running on an 8x8 BADA Torus
when using memory latency of 250, 500 y 1000 processor cy-
cles. When comparing a realistic network with an ideal one
there is a noticeable degradation even when using standard
ROBs of 64 entries. This gap grows up when increasing the
ROB because when we scale the system up the maximum
achievable throughput decreases and the average latency in-
creases. This decreasing in throughput is not manifested in
terms of phits managed by network cycle but in terms of a
lower rate of phits injected by individual computing nodes.

5. REDUCING THE INTERCONNECTION
NETWORK BOTTLENECK

Two approaches can be considered for improving the net-
work, which has been proved to be a bottleneck in Kilo-in-
struction Multiprocessors. They are based on providing the
network with either technological or architectural enhance-

0

0,5

1

1,5

2

2,5

3

64 128 512 1024 2048 64 128 512 1024 2048 64 128 512 1024 2048

250 500 1000

ROB Size / Memory latency

IP
C

IDEAL NET
BADA

IDEAL NET & MEM

Figure 7: The network impact with 64 processors

and running FFT, assuming a varying memory la-

tency

ments. Although both solutions are not mutually exclusive,
we are going to analyze them separately.

On the one hand, employing technological approaches,
network performance can be clearly improved by using wider
communication links or making them work at higher fre-
quencies. By augmenting frequency, the network load will
decrease because of the reduction of the ratio between pro-
cessor and network cycles. All the previous analysis was
done using 32-bits parallel links operating at 666 MHz, which
can be considered a high value for current off-chip wire tech-
nologies. Nevertheless, that frequency can be increased in
the future by using either new wire technology or higher inte-
gration levels. A similar effect could be achieved by widening
the network links. The designer may have to choose between
both approaches depending on design and cost constrains.
In order to simulate a practicable design we are going to em-
ploy a simpler router which facilitates the implementation
of links operating at higher frequencies. For this purpose,
we will use a router with deterministic Dimension Order
Routing (DOR) and Bubble Flow Control for packet dead-
lock avoidance [2]. This router, which is denoted as BDOR,
consists of a five-stages pipeline and employs FIFO queues
located at the input ports.

On the other hand, employing architectural approaches,
network performance can be improved by using more aggres-
sive router architectures. For this purpose, we will consider
an evolved router architecture denoted as HPAR (High-Per-
formance Adaptive Router) [18] with 32-bits parallel links
operating at 666 MHz. HPAR inherits most of the charac-
teristics of BADA routers but it employs multiport output
memories in order to reduce the negative effects of the so-
called Head-of-Line (HOL) blocking.

In order to evaluate the performance improvements pro-
vided by each one of the previous enhancements, we are go-
ing to analyze the FFT benchmark for a 2048 entries ROB
when varying the router clock cycle, the links width and
when employing HPAR routers.

Figures 8a and 8b show the obtained IPC values when
consider BDOR and HPAR routers for different memory la-
tencies. In most cases, we can observe that long memory
latencies are worst tolerated. Nevertheless, there are some

77

0

0.5

1

1.5

2

2.5

3

÷1 ÷1 ÷1,5 ÷3 ÷4 ÷5 ÷6 HPAR
Clock speed ratio and high-end router

IP
C

250 500 1000
IDEAL
NET&MEM

IDEAL NET

(a) Impact of the frequency

0

0.5

1

1.5

2

2.5

3

32 32 16 32 64 HPAR
Link width and high-end router

IP
C

250 500 1000
IDEAL
NET&MEM

IDEAL NET

(b) Impact of the link width

Figure 8: How the network frequency and link width

impact the performance running FFT and using dif-

ferent memory latencies

cases (slow BDORs and HPAR) in which slower memories
can return higher benefits, since fast memories can easily
flood the network, which causes higher contention.

Analyzing the general behaviour, we can see that perfor-
mance gains are noticeable but even using network links op-
erating at one third of the processor frequency (1.33 GHz),
the network contention still provokes a performance degra-
dation around 25% in respect to the ideal case. Moreover,
the cost of having 32 parallel data wires clocked at such fre-
quencies can be prohibitively high if not impracticable. Fur-
thermore, the flexibility required by medium to high scale
multiprocessors able to accommodate a considerable number
of nodes makes that frequency simply unreachable. Never-
theless, integrating all the network nodes together with the
network itself in the same die should make possible the at-
tainment of such a clock cycle. This is a clear indication for
exploring On-Chip Kilo-instruction Multiprocessors.

In addition, it is possible that on-chip multiprocessor de-
signs allow the use of wider data links. We have done some
experiments varying the link width as reflected in figure 8b.
We can conclude that the effect of widening the links is
quite similar to augmenting their frequencies. In this way,
doubling the link width (from 32 bits to 64) returns the
same benefits that doubling their frequencies (from 666 MHz

to 1.33 GHz). It should be mentioned here that widening
the network links can provoke an undesirable added net-
work contention. This phenomenon is related to the fact
that smaller packets originate a higher number of collisions
among their headers requiring more arbitration cycles in
which bubbles can appear in the router pipeline.

As stated before, an alternative solution for improving
network performance relies on architectural enhancements.
Some proposals consist in improving the router local memo-
ries [21] and avoiding HOL blocking [24][23][8], among oth-
ers. In order to have a clue about the effectiveness of such
solutions, both figures 8a and 8b show the system perfor-
mance when using HPAR networks. When comparing its
performance against the one obtained by BDOR we can
see that by using HPAR we can obtain benefits which have
nearly the same effect that either doubling the network fre-
quency or doubling the link width. It must be noticed that
these gains come in HPAR with a nearly negligible cost as
they only need an additional small amount of router silicon
area.

6. CONCLUSIONS
From previous works done on Kilo-instruction processors

we can conclude that a clear way to tolerate increasing mem-
ory latencies is to maintain a large number of in-flight in-
structions. With this paper, a first evaluation of what we
call Kilo-instruction Multiprocessors, we have demonstrated
that this is also true for multiprocessor systems.

Therefore, employing Kilo-instruction processors as com-
puting nodes in CC-NUMA multiprocessors can provide sig-
nificant performance improvements. The reason is that not
only the memory latency is tolerated but also the com-
munication latency, what appears when performing remote
memory accesses and sending coherence and synchronization
messages.

An other conclusion from our work is that the increase
of communication traffic, due to the aggressive speculation
imposed by Kilo-instruction processors, make the intercon-
nection network a relevant factor. The ability of the multi-
processor system to achieve high IPC rates will depend on
the effectiveness of the interconnection network.

In short, Kilo-instruction Multiprocessors are a novelty in
the multiprocessor design arena that open new directions
where more research can be useful. These directions in-
clude new multiprocessor models and new interconnection
networks.

7. ACKNOWLEDGMENTS
This work was supported by the Ministry of Science and

Technology of Spain under contracts TIC-2001-0995-C02-01,
TIC-2001-0591-C02-01, and grant AP2003-0539 (M. Gal-
luzzi). This work has been also supported by the HiPEAC
European Network of Excellence. The authors would like to
thank Francisco J. Cazorla and Oliverio J. Santana for their
valuable comments.

8. REFERENCES
[1] J.-L. Baer and T.-F. Chen. An Effective On-chip

Preloading Scheme to Reduce Data Access Penalty. In
Proceedings of Supercomputing ’91, pages 176–186,
November 1991.

78

[2] C. Carrion, R. Beivide, J. Gregorio, and F. Vallejo. A
Flow Control Mechanism to Avoid Message Deadlock
in K-ary N-cube Networks. Fourth International
Conference on High Performance Computing, pages
322–329, December 1997.

[3] A. Cristal, J. F. Martinez, J. Llosa, and M. Valero. A
Case for Resource-conscious Out-of-order Processors.
In IEEE TCCA Computer Architecture Letters, 2,
October 2003.

[4] A. Cristal, D. Ortega, J. Llosa, and M. Valero.
Kilo-instruction Processors. Proceedings of the 5th
International Symposium on High Performance
Computing (invited paper), pages 10–25, October 2003.

[5] A. Cristal, D. Ortega, J. Llosa, and M. Valero.
Out-of-Order Commit Processors. Proceedings of the
10th Intl. Conference on High Performance Computer
Architecture, February 2004.

[6] A. Cristal, M. Valero, A. Gonzalez, and J. Llosa.
Large Virtual ROBs by Processor Checkpointing.
Technical Report UPC-DAC-2002-39, Universidad
Politécnica de Cataluña, July 2002.

[7] M. Dubois and Y. Song. Assisted Execution. Technical
Report CENG 98-25, Department of EE-Systems,
University of Southern California, October 1998.

[8] M. Galles. Spider: A High-Speed Network
Interconnect. IEEE Micro, 17(1):34–39, Jan.-Feb.
1997.

[9] K. Gharachorloo, A. Gupta, and H. Hennessy. Hiding
Memory Latency Using Dynamic Scheduling in
Shared-memory Multiprocessors. Proceedings of the
19th Annual Intl. Symposium on Computer
Architecture, pages 22–33, May 1992.

[10] K. Gharachorloo, A. Gupta, and J. Hennessy.
Performance Evaluation of Memory Consistency
Models for Shared-memory Multiprocessors.
Proceedings of the 4th Intl. Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 245–257, April 1991.

[11] M. Karlsson, F. Dahlgren, and P. Stenstrom. A
Prefetching Technique for Irregular Accesses to Linked
Data Structures. Proceedings of the 6th Intl.
Conference on High Performance Computer
Architecture, pages 206–217, January 2000.

[12] A. Klaiber and H. Levy. An Architecture for
Software-Controlled Data Prefetching. Proceedings of
the 18th Annual Intl. Symposium on Computer
Architecture, pages 43–53, May 1991.

[13] M. Blumrich et al. Design and Analysis of the
BlueGene/L Torus Interconnection Network.
Technical Report RC23025 (W0312-022), IBM
Thomas J. Watson Research Center, December 2003.

[14] J. Martinez, A. Cristal, M. Valero, and J. Llosa.
Ephemeral Registers. Technical Report
CSL-TR-2003-1035, Cornell Computer Systems Lab,
2003.

[15] N.R. Adiga et al. An Overview of the BlueGene/L
Supercomputer. In Proceedings of Supercomputing ’02,
November 2002.

[16] V. Pai, P. Ranganathan, and S. Adve. RSIM: An
execution-Driven Simulator for ILP-Based
Shared-Memory Multiprocessors and Uniprocessors.
IEEE TCCA Newsletter, 35(11):37–48, October 1997.

[17] V. Puente, J. Gregorio, and R. Beivide. SICOSYS: An
Integrated Framework for Studying Interconnection
Networks in Multiprocessor Systems. Proceedings of
the 10th Euromicro Workshop on Parallel and
Distributed Processing, pages 360–368, January 2002.

[18] V. Puente, J. Gregorio, R. Beivide, and C. Izu. On the
Design of a High-Performance Adaptive Router for
CC-NUMA Multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, 14(5), May 2003.

[19] V. Puente, C. Izu, J. Gregorio, R. Beivide, and
F. Vallejo. The Adaptive Bubble Router. Journal on
Parallel and Distributed Computing, 61(9):1180–1208,
September 2001.

[20] P. Ranganathan, V. Pai, and S. Adve. Using
Speculative Retirement and Larger Instruction
Windows to Narrow the Performance Gap between
Memory Consistency Models. In Proceedings of the
9th Symposium on Parallel Algorithms and
Architectures, June 1997.

[21] R. Sivaram, C. Stunkel, and D. Panda. HIPQS: a
High-Performance Switch Architecture Using Input
Queuing. IEEE Transactions on Parallel and
Distributed Systems, 13(3):275–289, March 2002.

[22] A. Smith. Cache Memories. Computing surveys,
14(3):473–530, September 1982.

[23] C. Stunkel, J. Herring, B. Abali, and R. Sivaram. A
New Switch Chip for IBM RS/6000 SP Systems. In
Proceedings of Supercomputing ’99, November 1999.

[24] Y. Tamir and G. Frazier. Dynamically-allocated
Multiqueue Buffers for VLSI Communication
Switches. IEEE Transactions on Computers,
41(2):725–737, June 1992.

[25] M. Wilkes. Slave Memories and Dynamic Storage
Allocation. IEEE Transactions on Computers,
14(2):270–271, April 1965.

[26] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and
Methodological Considerations. Proceedings of the
22nd Annual Intl. Symposium on Computer
Architecture, pages 24–36, June 1995.

[27] W. Wulf and S. McKee. Hitting the Memory Wall:
Implications of the Obvious. Computer Architecture
News, 23(1):20–24, March 1995.

79

