
Improving Coherence Protocol Reactiveness by Trading
Bandwidth for Latency

Lucía G. Menezo Valentin Puente Pablo Abad José Ángel Gregorio
University of Cantabria

Los Castros Ave. s/n 39005 Santander (Spain)

{gregoriol, vpuente, abadp, monaster}@unican.es

ABSTRACT
This paper describes how on-chip network particularities could be
used to improve coherence protocol responsiveness. In order to
achieve this, a new coherence protocol, named LOCKE, is
proposed. LOCKE successfully exploits large on-chip bandwidth
availability to improve cache-coherent chip multiprocessor
performance and energy efficiency. Provided that the
interconnection network is designed to support multicast traffic
and the protocol maximizes the potential advantages that direct
coherence brings, we demonstrate that a multicast-based
coherence protocol could reduce energy requirements in the CMP
memory hierarchy. The key idea presented is to establish a
suitable level of on-chip network throughput to accelerate
synchronization by two means: avoiding the protocol serialization,
inherent to directory-based coherence protocol, and reducing
average access time more than in other snoop-based coherence
protocols, when shared data is truly contended. LOCKE is
developed on top of a Token coherence performance substrate,
with a new set of simple proactive policies that speeds up data
synchronization and eliminates the passive token starvation
avoidance mechanism. Using a full-system simulator that
faithfully models on-chip interconnection, aggressive core
architecture and precise memory hierarchy details, while running
a broad spectrum of workloads, our proposal can improve both
directory-based and token-based coherence protocols both in
terms of energy and performance, at least in systems with up to 16
aggressive out-of-order processors in the chip.

Categories and Subject Descriptors
B.3.2 [Memory structures]: Design Styles – cache memories

Keywords CMP, coherence protocol, memory hierarchy.

1. INTRODUCTION
Chip multiprocessors (CMPs) represent a major milestone in
computing system evolution. Adding more processors per chip
seems to be the most reasonable approach to keep translating the
continuous enhancement in technological integration into
performance improvements. Given the challenge involved in
parallel software development, the hardware has to assist the
programmer’s productivity [4] as much as possible. The
consensus is that it is much easier to perform this task by

providing all chip cores with a unified memory view. From the
hardware point of view, in CMP systems one of the major
challenges is the off-chip bandwidth wall. Among other solutions,
it is essential to provide complex on-chip cache hierarchies to
minimize off-chip interface pressure.

If we combine the above-mentioned facts, it seems that cache
coherent CMP will become the dominant class of systems, at least
in general purpose computing. Today, many commercial products
that target this market implement this approach [28][18][7].
However, this statement does not negate the suitability of non-
cache coherent CMPs, such as [13], in some specialized markets.

In a CMP system, the computing elements are so intricate that
hardware-enforced cache coherence is the easiest way to support
the shared memory model and so, the coherence protocol has a
fundamental role to play. Many architectural solutions used in
CMP systems are borrowed from the off-chip realm without
substantial alterations. In particular, many of the cache coherence
protocols used or proposed take advantage of premises from
System-Multiprocessors. Some of them are very cautious about
bandwidth utilization at the expense of increasing latency. In an
off-chip interconnection network, bandwidth is scarce because of
the discrete nature of the communication system elements. In
contrast, in on-chip interconnection networks bandwidth
availability is greater. In this type of systems, communication link
width is much greater and the delay allows much faster data rates
with lower energy cost. 3D stacked systems [37] and utilization of
low-swing links [20] substantially increase the excess in
bandwidth and reduce the energy cost of moving data.

The coherence protocol should, at all costs, use on-chip network
bandwidth availability to avoid adding extra latency in the form of
indirections. Currently there are a substantial number of CMP
coherence protocol proposals that share our view [2][22][26][30].
Most of these ideas use broadcasting as the mechanism to
overcome indirection at intermediate ordering points.
Nevertheless, bandwidth demand is still a concern in most of these
works and they allow some performance to be lost in exchange for
saving bandwidth consumption.

With a suitable interconnection network design it could be
possible to increase the whole system performance by improving
the coherence protocol behavior. Following this premise, we
introduce the LOCKE Coherence Protocol in this work. This
protocol uses the token coherence framework [22] as its starting
point, but enhancing responsiveness and stability in several ways.
First, token coherence deals with concurrent requests coming from
different processors to shared blocks using a passive approach
called “Persistent Request”. This mechanism uses a time-out-
based triggering policy to address the aforementioned situation.
Consequently, critical operations, such as contended
synchronizations, could be artificially delayed. This negatively
affects system performance. Second, the mechanism could

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CF’12, May 15–17, 2012, Cagliari, Italy.
Copyright 2012 ACM 978-1-4503-1215-8/12/05...$10.00.

overreact when the network is heavily loaded, potentially turning
most of the processor memory accesses into persistent requests.
Contention is hard to manage and adds unpredictable and non-
depreciable delays in latency. On top of that, persistent request
increases contention due to the extra traffic generated. In extreme
situations, some applications could render the system useless due
to the chain-reaction produced by persistent request explosion and
contention. Neither static nor dynamic time-out estimation is
sufficient to avoid such unstable behavior, because they cannot
capture the diverse and complex situation that contention
produces.

In order to identify where each token position is, LOCKE uses
explicit acknowledgments for each token movement. Thus, each
memory request will locate either tokens or pending
acknowledgments. In this way, we can quickly forward requests to
in-flight tokens’ destinations, which would improve latency when
accessing contended data. Applying a correct ordering between
true racing requests, eventually any pending operation will locate
the data and all the tokens needed to complete the transaction. No
starvation avoidance mechanism, such as persistent request, is
required. It might appear that acknowledgment traffic will
increase bandwidth utilization and added contention could
potentially increase network latency or network energy
consumption, however, using state-of-the-art network design we
will demonstrate that this is not the case. The effectiveness of the
token location mechanism compensates for its extra bandwidth
consumption, improving the energy-performance tradeoff of both
token coherence and directory-based coherence protocols.

We have evaluated the effectiveness of the idea using a state-of-
the-art full-system simulator which includes a very precise
interconnection network simulator with a wide variety of
workloads ranging from multithreaded server applications,
through multithreaded numerical applications to multi-
programmed workloads. LOCKE outperforms, on average, a
conventional Directory and a Token Coherence protocol by 16%
and 28% respectively for 16-core CMP with Nehalem-like cores.
Additionally, LOCKE exhibits lower susceptibility to workload
characteristics, having six times less performance variance than
Token Coherence.

The rest of the paper is organized as follows: Section 2 explains
the motivation for the introduction of LOCKE. Section 3 describes
the proposal itself, explaining the foundations of the coherence
protocol. Section 4 describes the experimental methodology
employed. Section 5 presents performance results and provides
insight into LOCKE responsiveness. Section 6 summarizes the
related work and, finally, Section 7 states the main conclusions of
the paper.

2. MOTIVATION
2.1 Trading Bandwidth for Latency
Bandwidth availability is profuse in CMP environments because
of the utilization of scalable point-to-point interconnection
networks, scalable cache hierarchies such as NUCA, and ultra-
wide short links. In contrast, the portion of the chip reachable per
clock cycle is shrinking as the technology advances. Under this
scenario, it seems inadequate to maintain coherence in a CMP
using protocols originally conceived for off-chip systems, such as
directory-based ones [21], especially if their utilization increases
data access latency due to the burden of multiple indirections
across the chip. Therefore, taking advantage of bandwidth
availability to avoid adding extra delay makes sense. As stated

before, snoop-based protocols running on top of scalable
interconnection networks provide the best design choice for CMP
systems. Currently most commercial aggressive CMPs, such as
[28][18], use this approach. Nevertheless, it is commonly accepted
that those protocols are not free of shortcomings, namely: 1) The
multicast traffic required for on-chip cache requests will increase
power consumption; 2) An excessive network and cache
bandwidth consumption could increase contention and increase
on-chip latency, potentially ruining the rationale of snoop-based
coherence protocols, and 3) The extra cache tag lookups produced
in such protocols will increase cache energy consumption.

Although these considerations are pertinent, their impact can be
much smaller than is commonly believed. First, power
consumption is affected by this multicast traffic in a different way
depending on the network characteristics. If the network has
hardware support for multicast [10], its impact is highly reduced.
In this case, each network resource is used at most once per
request instead of many times as occurs when no support is
provided. According to [1], using multicast support could save up
to 70% in the Energy Delay Square Product (ED2P)1 . Second, a
correctly dimensioned design for the cache hierarchy capable of
decoupling the number of cores and the on-chip cache bandwidth
will oblige the use of NUCAs [14], as [28][18] are already doing.
Under these circumstances, on-chip communication bandwidth
will scale in proportion to core count. Third and finally, if we take
into account the growing leakage in each technological advance
[15], the area devoted to cache, and the substantial benefit in
terms of performance obtained by snoop-based coherence,
increased tag snoop energy is quickly amortized by the reduction
in static energy.

2.2 Token Coherence Responsiveness
Conceptually the Token Coherence protocol deals with racing
requests by counting tokens. This way, data races are avoided by
forcing different ongoing memory operations to require an
incompatible number of tokens in order to be performed. For
example, performing a simultaneous read (GETS) and write
(GETX) over the same cache block requires more than the
maximum number of tokens available in the system. In starvation-
prone circumstances, each contending processor eventually issues
a persistent request, which will statically determine the winner
and force the losers to return the tokens to the frontrunner
processor. When this one finishes its operation, the next processor
obtains the tokens required to perform its pending memory
transaction. Assuming that under realistic working conditions
racing requests are not frequent, this serialization will have a
negligible impact on performance.

However, synchronization is a key operation in multithreaded
workloads [35], which in most cases will involve racing requests.
The passive approach used by token coherence to resolve that
situation, which is bounded by the time established to issue the
persistent request, could delay synchronization resolution
unnecessarily. Additionally, persistent requests not only serialize
potential data races, but also address temporary lack of knowledge
about token location. This problem situation arises when some of
the tokens required to perform a specific memory transaction are
unavailable at the end point of all multicast messages issued by
the request. For example, this happens when a block is evicted

1 ED2P is the most suitable energy-performance tradeoff for high-

performance systems [38], such as the scenario assumed in this
paper.

from the cache and the request overtakes the in-flight data block
in the interconnection network. In these circumstances, the request
will not be fulfilled because the destination of the tokens being
evicted will never be located by the original request. The outcome
of this situation is similar to a temporary racing request, denoted
as “false racing request”. By contraposition, we denote concurrent
and simultaneously incompatible operations issued over the same
block by different processors as “true racing requests”. When
interconnection network contention is considered, this situation
might not be as negligible as it was with true racing requests,
especially in highly contended situations.

2.3 Token Coherence Stability
The persistent request method is a starvation avoidance
mechanism that solves true or false request races by keeping track
of the time involved in each pending memory request. If the time
is greater than a fixed time threshold, a persistent request is sent.
In order to maintain the scalability of the hardware, structures are
required to perform persistent requests and to provide a distributed
and fair arbitration scheme. Token coherence assumes that only
one ongoing persistent request per core is supported. To minimize
performance impact in processors with multiple outstanding
memory operations, the original request is reissued one or more
times before sending a persistent request.

The timeout chosen to trigger this process can be established
statically, looking at the on-chip miss access latency, or
dynamically, averaging the average latency of recent memory
transactions. If the time of a particular ongoing memory
transaction is above this limit, it seems reasonable to suppose that
there might be another core accessing the same block. The request
is reissued and if the timeout is once again exceeded then a
persistent request is sent. Although this mechanism seems to be
very simple, contention effects are ignored. For example, when
the load applied over the network is significant, the
communication latency of each individual message increases as a
result of the unavailability of resources in use by other messages.
At medium loads the total latency could increase by a few cycles,
but when the load is higher this variation could be substantially
larger and, worst of all, highly dependent on the applied load and
on the interconnection network implementation.

In a low contention situation, network latency is closer to the base
latency and persistent requests work as expected. Nevertheless, if
a spike of traffic suddenly appears, contention increases and so
does the latency of all pending memory transactions. If the effect
of the contention is over the persistent request timeout, a chain
reaction is triggered. The positive feedback between reissues and
persistent request and network contention creates a storm of these
types of requests in which almost any memory operation is
reissued or even resolved by a persistent request. Under this
unstable situation, the system performance drops dramatically. To
illustrate this phenomenon, we will focus our interest on two
particular applications (NUMERICAL and SERVER) running in
16 aggressive cores in the CMP, described in subsection 4.1. All
of the parameters of the system, including the network, are
correctly dimensioned, i.e. they are chosen in order to obtain an
optimal cost/performance ratio over a large set of applications.
The sharing degree of the two applications is quite different, in the
SERVER it is high and in the NUMERICAL it is low. However,
for an optimal time-out threshold and one reissue before sending a
persistent request, the proportion of memory transactions resolved
by persistent request is less than 0.1% for SERVER and more than
10% for NUMERICAL.

This behavior, which is apparently contradictory according to the
sharing degree of each application, is easily explained looking at
Figure 1. It shows the network latency (a) and the applied load (b)
during 10 million processor cycles for both applications. In
contrast to the SERVER, the NUMERICAL application is very
interconnection network demanding during short intervals due to
the access to highly contended blocks. During these phases, the
latency spikes due to on-network contention effects. These effects
are exacerbated by the one-to-all traffic pattern of the application.
During these spikes, reissue and persistent request frequency
increases, not because of true racing requests but because packets
are delayed within the network. This triggers more reissues and
persistent requests, which further increases contention. Even using
dynamically predicted thresholds, we are unable to predict any
sudden variations in latency. In fact, dynamic estimations could
accelerate system instabilities even preventing the complete
execution of the workload. The described effect is not a rare
anomaly and similar behavior could also be observed if off-chip
bandwidth is saturated. All in all, without a solution for this
problem, employing this protocol in a general purpose machine
would be highly risky.

3. LOCKE COHERENCE PROTOCOL
LOCKE will use token counting to maintain coherence invariants,
but it introduces a smart mechanism to actively resolve true racing
requests, making a passive starvation avoidance mechanism
unnecessary. In order to do this, LOCKE is based on precise
knowledge of where any token is or will be located in the near
future. If the protocol is able to track all the tokens, no false racing
requests are possible. True racing requests are solved with a
starvation-free self-inhibition mechanism that serializes data
access of simultaneous incompatible memory transactions. Next,
we will detail how false racing requests are avoided and true
racing requests are dealt with. For readers interested in a more
detailed specification of the protocol, a table-based state-transition
table of cache controllers can be seen at [27].

3.1 False Racing Requests: Token location
In order to determine token location, any block movement is
monitored at the originating location, keeping a label of the
destination of the block. The label information is kept until a

(a)

(b)

Figure 1. Network dynamic evolution with a 16-processor
system (a) Average latency (includes injection queue delay), (b)

Throughput.

0

200

400

600

800

0.00E+00 2.00E+06 4.00E+06 6.00E+06 8.00E+06 1.00E+07

N
et

w
or

k
La

te
nc

y
(p

ro
ce

ss
or

 cy
cl

es
) NUMERICAL SERVER

0

2

4

6

8

10

12

0.00E+00 2.00E+06 4.00E+06 6.00E+06 8.00E+06 1.00E+07

N
et

w
or

k
Th

ro
ug

hp
ut

(fl

its
/c

yc
le

)

NUMERICAL SERVER

message reception acknowledgement is received from that
destination. Thus, when a coherence controller generates a
request, all the tokens needed or the flag of some pending
acknowledgement will be found. Note that, in contrast to
directory-based protocols, LOCKE’s acknowledgement messaging
is outside the critical data access path.

If the request corresponds to a write operation (Get Exclusive or
GETX) every token will be forwarded to the requestor. On the
contrary, if the request corresponds to a read operation (Get not
exclusive or GETS) only the controller with the owner token will
reply. If a request arrives when the tokens required are in-flight
the requestor is notified with the final destination of the tokens. In
this way, the requestor may reissue a unicast request to the one
holding the necessary tokens. The intermediate node always
notifies the requestor if the transaction is a GETX, but only
notifies that the owner token is in-flight when the request is a
GETS. Note that this is the situation depicted in the example in
Figure 2, where simultaneously, processors P0 and P2 try to
perform a GETS operation for the same block, and P1 holds only
the owner token for that block. This situation in Token Coherence
Protocol implies a false racing request. The side effect of this
mechanism is the generation of extra unicast traffic for
acknowledgement packets and reissuing the GETS. As we said
before, in contrast to directory-based coherence protocols,
acknowledgments operate outside the critical path of any memory
transaction. In this example, the hit latency of processor P2 will
not be increased because of the mechanism.

Unfortunately, the previous scheme is starvation prone. To
exemplify this, Figure 3 shows the same initial situation as in
Figure 2. This time, P0’s request is delayed long enough so that it
arrives at P1 when the acknowledgement message from P2 has
already been received. In this situation, P1 does not notify P0 that
P2 has the block and the owner token. Moreover, P2 is unaware of
P0 being interested in that block because P0’s request arrived at
P2 before this processor issued the GETS. If both of these things
happen, P0’s transaction starves.

In order to prevent this anomalous situation, we need an approach
to order both requests on the interconnection network. The most
scalable way to perform such ordering is to use the same multicast
routing tree for each set of addresses. If we force all the requests
to a specific address to follow that routing tree, then no request or
acknowledgment race is possible because the messages involved
cannot be overtaken. To balance network resource utilization we
could define different multicast trees per address. Routers should
include the mechanism to use the right routing tree according to
the address accessed. Using the least significant bits in the address
we could select which one to follow. Figure 4 shows a possible
distribution in an 8-processor CMP with non-uniform cache
architecture using a 4×4 mesh interconnection network and four
multicast trees. We will denote the multicast trees as I-trees. To
minimize base latency effects, each I-tree trunk can pass through
the last level (LLC) slice where the address could be located. Note
that one of the destinations for the request multicast will be an L2
slice. For example, addresses mapped in slice 0, 4, 8 and 12 will
use the I-tree for addresses %XXX00.

2 The shadowing in the lines reflects the block state: Inv (Invalid

state), O (Owner State), OI (Owner to Invalid), IS (Invalid to
Shared). The line in the arrows reflects the nature of the
message: dashed lines correspond to multicast, solid lines
correspond to unicast.

Any multicast-capable network requires a multicast routing tree
[11]. For example, in Figure 4, if core 0 requests data that is
located in core 1 L1 cache, it will take only one hop in the
network to reach it. In the worst case, if data is located in core 4
L1 cache using the I-tree in the figure it will take 7 network hops
to reach it when in an optimal multicast tree it will take 3 hops.
Although the average impact on on-chip latency overhead will
depend on data distribution and network contention, the average
distance increment for multicast messages is less than 10%.
Moreover, the rest of the traffic (no requests or acks) always
follows minimal paths.

Figure 2. Token location with explicit acknowledgement: P0
issues a GETS operation transitioning the block to IS2, P2 issues
another GETS operation for the same block. The request from P2
arrives first at P1, which has only the owner token. P1 sends the
data with the owner token to P2, transitioning its own block to
OI. This state will be maintained until the explicit reception
acknowledgement from P2 arrives at P1. When the block is
received at P2, the block goes to the stable state O and the
acknowledgement message is sent. In the meantime, the request
from P0 arrives at P1 which informs it that P2 has the owner
token. P0 reissues a unicast to P2 demanding a copy of the data.

Figure 3. Starvation with request overtaking: With the same
initial state depicted previously, the P0 multicast request message
arrives at P2 before it issues its own GETS and arrives at P1 after
the acknowledgement reception from P2. Both processors P1 and
P2 ignore P0’s request.

DATA+OwnerT
oken

ReissueUnicastGETS

RetryWithP2
Ack

DATA+token Owner

GETS

GETS

Unicast

Multicast

OI

O

IS

Inv

P2P1P0

Ack

DATA+token Owner

GETS

GETS

Unicast

Multicas

OI

O

IS

Inv

P2P1P0

3.2 True Racing Requests: Arbitration
3.2.1 Self-inhibition
If the location of all tokens needed to complete a transaction is
known then only true racing requests have to be dealt with. When
two or more processors are trying to perform simultaneous but
incompatible operations, LOCKE solves the situation using scalable
self-regulated arbitration. The solution adopted is to assign a
priority order to each processor and operation and to allow the
resolution of the race without breaking the coherency invariants.
The different coherency controllers apply this policy in a fully
distributed way, so guaranteeing system scalability.

Two or more simultaneous operations over the same block are
incompatible if the total number of required tokens is greater than
the number of processors P. If one coherence controller detects the
possibility of such a situation arising, it must choose whether to
keep going with the operation or to give up. For example if it
wants to perform a write operation in a cache block and sees an
incoming write request from another processor trying to write in
the same cache block, it has to check each request priority.
Initially and for the sake of simplicity we will assume that the
priority is determined by the processor index. If the current
controller has an index smaller than the incoming request, the
controller goes ahead with its operation or, if not, it self-freezes
the operation.

If the controller decides to temporarily inhibit the outgoing
transaction, due to its inferior priority with respect to the remote
incoming request, it changes the block state to “frozen” and
annotates the winner controller for that block. When a block is
frozen, any incoming token will be forwarded to the annotated
winner controller. The block will remain in a frozen state until the
winner notifies the completion of the operation, via a complete
multicast message. If this happens, the inhibited operation is
reissued from the beginning. Figure 5 presents an example of this
situation.

3 The shadowing in the lines reflects block state: Inv (Invalid

state), M (Modified State), MI (Modified to Invalid), IM
(Invalid to Modified), Frozen (frozen memory operation).

When a block is frozen, any other write request from another
controller, no matter what its priority is, will be ignored. Thus,
according to the timing of the reception of requests an implicit
tree of pending operations is formed. This tree has a tendency to
follow the address I-tree shape. Usually, independently of the
number of controllers that are trying to perform the operation
concurrently, the ordering tree shape is deep. Therefore, the
request reissue after reordering is lazy; only one pending memory
transaction is reissued after the completion of a write in most
cases.

3.2.2 Priority Ordering with Out-of-order processors
Statically assigned priorities could provoke pathological situations
because contended blocks will be obtained most often by the same
processor. Nevertheless, assuming multiple outstanding requests
per core, there is an easy and scalable solution to deal with this if
we are capable of guaranteeing that: (a) Two different processors
cannot issue an operation to the same block with the same
priority; (b) The probability of having a different priority ordering
at two contended blocks from two different processors has to be
non zero.

The first condition guarantees that two different processors will
never simultaneously grab a subset of tokens from the same block,
i.e. avoiding starvation. The second condition guarantees that, on
average, there will not be any memory operation favored over
others. The most straightforward way to achieve this is to
construct the priority of each request as the combination of the
processor ID (LSB bits) used to achieve condition one, and a
small random number (MSB bits) to achieve condition two.
Experimentally, it is observed that this approach provides similar
performance to an age-based priority (which requires a complex
coordinated timestamp-based mechanism) at a fraction of the cost.

Figure 4. Ordering I-tree in an S-NUCA architecture.

Figure 5. Example of write serialization: P0 and P1
simultaneously issue a GETX over a block in M3 state at P2
(i.e., all the tokens are located there). Let’s assume P0 has
higher priority than P1. P1’s request arrives at P2 first, so P2
sends data and all tokens, changing its state block to transitory
state MI until the acknowledgement from P1 is received. Before
receiving the data and the tokens, P1 sees a request from
processor P0 which has more priority than its own priority, so it
self-freezes its operation and annotates P0 as the winner at the
MSHR. When data and tokens from P2 arrive, they are
immediately forwarded to the winner P0, annotating the in-
flight tokens. When P0 receives the data and tokens it sends an
acknowledgement to P1 and finalizes its operation. When P0’s
GETX operation ends, it broadcasts a complete message. P1’s
MSHR hit unfreezes the operation and reissues it.

P2P1P0

Ack

Forward DATA + All Tokens
Ack

Ack

DATA+Al
l Tokens

GETX
GETX

Complete

GETX
Unicast

Multicast

MI

Frozen

M

IM

Inv

The performance reduction observed for a four-bit random
number compared to an idealized fully age-based approach is less
than 1%.

4. EVALUATION METHODOLOGY
4.1 Target System Configuration
In order to validate the advantages of our proposal, we have used
two coherence protocols for the given system architecture with the
configuration parameters shown in Table 1. The main parameters
of the target system mimic state-of-the-art high-end CMPs such as
[6][28][18]. The baseline coherence protocol used is an optimized
directory protocol similar to the one used to compare the token
coherence protocol in [25], but adapted to NUCA. Directory
information is distributed across all slices and full mapping.
Optimistically, null storage overhead is assumed for this protocol.
Broadcast-based token coherence protocol variation [22] is
considered, as a representative counterpart to snoop-based
protocols. A fixed timeout to reissue the request is used. Only one
reissue is tolerated before triggering a persistent request. This
timeout has been selected measuring all the benchmarks with
different timeouts and choosing the one with best average
performance. Dynamically estimated time-out does not provide
performance benefits.

For the cache hierarchy we will assume NUCA [14] for the last
level cache. Although LOCKE is also applicable for a tiled system,
NUCA architecture is a better approach because it decouples the
number of LLC cache slices from the number of cores, providing
much more flexibility to scale on-chip bandwidth. This cache
architecture is currently a mainstream choice in high-end CMPs.

As far as the interconnection network is concerned, we will add
the minimum variation over a commonly used router
microarchitecture and network topology. As for the router micro-
architecture used, it will be similar to the proposal described in
[10], using on-network multicast support when required. We use
dynamic buffering allocation per virtual channel and 1-cycle
pipeline pass-through latency. In each protocol we use the
required number of virtual channels to avoid message-dependent
deadlock [31] and network deadlock [9].

In order to observe the scalability of the proposal we chose two
different system sizes composed of 8 and 16 processors. The
eight-processor system layout is similar to the one shown in
Figure 4. For 16 cores, although the processor, L1 and router
remain unchanged, the LLC capacity and bandwidth are scaled up
in accordance with the larger number of processors [28].

In all configurations, instead of using in-order cores, we opted for
aggressive out-of-order processors to mimic [18][28]. Although a
large number of small cores could make sense for cloud-
computing workloads, in general purpose computing, an
aggressive processor microarchitecture still matters [12].
Additionally, medium size systems with a large number of
outstanding memory transactions per processor will be much more
demanding for the coherence protocol than many simple cores.

4.2 Simulation Stack
We work with a framework that allows us to perform full-system
evaluation, i.e. user and system level code are accurately
simulated. The main strategy of the proposal is that network
bandwidth can be used cleverly to boost system performance;
therefore, careful interconnection network modeling is essential.
In order to achieve this requirement, SICOSYS [29] replaces the
original interconnection network simulator of the full-system

simulation tool GEMS [23]. SICOSYS models router micro-
architecture very precisely. Therefore, network contention effects
induced by extra traffic will be precisely modeled in the
simulations. SICOSYS is augmented with Orion [17] in order to
estimate the network energy consumption with each protocol.
Power consumption in other components of the memory hierarchy
is computed using CACTI [36]. The energy required by the cores
will be assumed, pessimistically for performance leaders, to be
constant across the different coherence protocols. The energy of
each event is estimated assuming 32 nm technology.

4.3 Workloads
Fifteen workloads (see Table 2) are considered in this study,
including both multi-programmed and multi-threaded applications
(numerical and server) running on top of the OpenSolaris 10 OS.

Table 1. Basic system configuration, 32 nm. technology
assumed for energy estimations

Pr
oc

es
so

r
C

on
fig

.

Number of cores 8 @3GHz(config1)
16 @3GHz(config2)

Functional Units 4xI-ALU/4xFP-ALU/
4xD-MEM

IWin size/Issue Width 128, 4-way
Fetch-to-Dispatch 7 cycles

L1

C
ac

he
 Size/Associativity/

BlockSize/Access Time
128KB I/D, 4-way, 64B, 2

cycles
Max. Outstanding Mem.

Operations 16

L2
 C

ac
he

 Size/Associativity/
BlockSize

8MB, 16×512KB, 16-way,
64B (config1)

16MB, 32×512KB, 16-way,
64B (config2)

NUCA Mapping Static, interleaved across
slices

Slice Access Time 5 cycles

M
em

or
y

Capacity/Access Time/
Memory Controllers/ BW

4GB, 240 cycles,2 centered /
32GBs (config 1)

4GB, 240 cycles, 4
centered/64GBs (config 2)

N
et

w
or

k
Topology / Link Latency/

Link Width

4×4 Mesh, 1 cycle, 16B
(config 1)

6×6 Mesh,1cycle, 16B
(config 2)

Router Latency/ Flow
Control/

Buffering Size / Routing
1 cycle/ Wormhole/

5.4KB/DOR

Table 2. Evaluated workloads

M
ul

tit
hr

ea
de

d
W

or
kl

oa
ds

Wisconsin
Commercial
Workload [3]

Apache (1000 Surge
dynamic)

Zeus (1000
Surge Static)

Jbb (4000 SpecJbb) OLTP (500
TPC-C alike)

NAS Parallel
Bench. [16]

FT (Class W) CG (Class A)
LU (Class A) IS (Class A)

PARSEC [5]
blackscholes (native)

canneal (native)
fluidanimate (native)

M
ul

tip
ro

-
gr

am
m

ed

W
or

kl
oa

ds

Spec 2006 [32]
(Rate Mode)

astar (reference) hmmer
(reference)

lbm (reference) ommetpp
(reference)

The server benchmarks correspond to the whole Wisconsin
Commercial Workload suite [3], released by the authors of GEMS
in version 2.1. The remaining class corresponds to multi-
programmed workloads using part of the SPEC CPU2006 suite
[32] running in rate mode (where one core is reserved to run OS
services. Each application is simulated multiple times with
random perturbations in memory access time in order to reach
95% confidence intervals. The number of applications enables the
sweeping of a broad spectrum of usage scenarios, with diverse
sharing degree, sharing contention, working set size, etc.

5. EVALUATION
5.1 Performance and Efficiency
Figure 6 shows the performance with the basic 8-processor CMP
(config1 in Table 1). On average, DIRECTORY is outperformed by
LOCKE and TOKEN. As expected, some workloads are insensitive,
which attenuates the average performance impact of coherence
protocol. In contrast, in applications with highly contended
blocks, such as NAS benchmarks, coherence is very relevant. In
those cases, LOCKE outperforms other protocols by up to almost
30%. In applications with high sharing degree but limited
contention, such as server workloads, LOCKE outperforms the
other counterparts by a smaller but noticeable margin. Although,
on average, TOKEN performs better than DIRECTORY some
noticeable results such as IS or FT, even in a modest size system
like this one, show its performance is poor for the reasons
explained in Section 2.3. In contrast, LOCKE exhibits a consistent
performance across all the workloads.

End-point traffic comparison of different protocols may not reflect
a direct impact in performance or energy profile. First, when the
network uses capable routers, as in our case, a multicast packet
with n destinations will not use the same effective bandwidth as n
unicast packets for the same destination [10]. This issue will be
considered again later in subsection 5.4. Second, network energy

is only a part of the on-chip memory hierarchy which is
dominated by cache. Third, Energy Delay Square Product (ED2P)
is the most suitable metric to estimate energy-performance
tradeoff in high-performance systems such as ours [38].
Therefore, we provide this metric, grouped for each suite of
benchmarks and protocols in Figure 6 (b). As we can see, the
cubic influence of performance in ED2P has a major effect,
meaning that the ED2P of the network, in spite of producing more
traffic, is even smaller for broadcast-based protocols.
Additionally, for 32nm technology and a large cache footprint
(8MB in this configuration), leakage power, which is constant
across coherence protocols, causes the ED2P leakage proportion
to grow significantly when the performance is worse. Therefore,
and contrary to common belief, snoop-based broadcast coherence
protocols have lower average ED2P than the one based on
directories. Due to the more consistent LOCKE performance, on
average it requires 19% less ED2P than DIRECTORY. In contrast,
due to performance instabilities, TOKEN is only capable of saving
7%.

5.2 System Scalability
To explore the scalability of each protocol, system size has been
increased to 16 cores (config2 in Table 1). Using a higher number
of processors, given their architectural complexity, would imply
an unattainable computational cost for the simulations.
Additionally, most of the benchmarks do not scale well beyond
sixteen cores. In any case, given that each processor can have up
to 16 pending memory transactions, the system could have up to
512 simultaneous coherence actions, including L1 misses and
write-backs. This could be four times more demanding for the
coherence protocol than having 64 in-order cores.

The performance observed in Figure 7 (a) indicates that LOCKE is
able to increase its advantage in comparison to DIRECTORY.
Scaling up the network size to accommodate NUCA slices would
increase the cost of DIRECTORY indirections. Nevertheless, the

(a)

(b)

Figure 6. Directory normalized 8-processor CMP.
 (a) Execution Time. (b) Memory Hierarchy ED2P.

(a)

 (b)

Figure 7. Directory Normalized 16-Processor CMP.
(a) Execution Time. (b) Memory Hierarchy ED2P.

0.6

0.7

0.8

0.9

1

1.1

As
ta

r

Hm
m

er

Lb
m

O
m

ne
tp

p

CG

FT

IS

LU

Ap
ac

he

Jb
b

O
LT

P

Ze
us

Bl
ac

ks
ch

ol
es

Ca
nn

ea
l

Fl
ui

da
ni

m
at

e

Av
er

aa
ge

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e Directory TokenB Locke

0
0.2
0.4
0.6
0.8

1
1.2

Di
re

ct
or

y

To
ke

nB

Lo
ck

e

SPEC 2006 NPB SERVER PARSEC AVERAGE N
or

m
al

iz
ed

 M
em

. H
ie

ra
r.

ED
2P

Leakage Caches Network

0.6

0.8

1

1.2

1.4

1.6

As
ta

r

Hm
m

er

Lb
m

O
m

ne
tp

p

CG

FT

IS

LU

Ap
ac

he

Jb
b

O
LT

P

Ze
us

Bl
ac

ks
ch

ol
es

Ca
nn

ea
l

Fl
ui

da
ni

m
at

e

Av
er

aa
ge

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Directory TokenB Locke

0
0.5

1
1.5

2
2.5

Di
re

ct
or

y

To
ke

nB

Lo
ck

e

SPEC 2006 NPB SERVER PARSEC AVERAGE

N
or

m
al

iz
ed

 M
em

.
Hi

er
ar

. E
D2

P

Leakage Caches Network

increased contention due to larger numbers of multicast
destinations seems not to increase the latency in the network
significantly for LOCKE. Therefore, the performance advantage of
LOCKE over the directory is now greater than in 8-core CMP
(16%). In contrast, TOKEN performs poorly, being noticeably
slower than DIRECTORY.

5.3 Coherence Protocol Responsiveness
In order to provide insight into protocol effectiveness, Figure 8
shows the average latency perceived by the processor with each
protocol for an 8-processor system.

As can be appreciated in both systems, the DIRECTORY-based
protocol has a larger memory contribution in some applications.
This is a direct consequence of inclusiveness. Whereas snoop-
based protocols do not need inclusiveness to track on-chip block
sharers, DIRECTORY requires an entry in LLC for all L1 cached
blocks. Consequently, the effective cache capacity is larger in the
former protocols, raising LLC miss rate. This problem is
acknowledged as a serious drawback of directory coherence
protocols [7]. Serialization with directory reduces on-chip hit
latency in applications where network contention is not
significant. TOKEN coherence introduces pressure on the network
in some applications and the starvation avoidance mechanism
increases the on-chip hit latency significantly, making the average
access time up to 40% slower in applications such as IS. In
contrast, LOCKE seems to consistently outperform other protocols
in most applications.

Although, on-chip hit latency provides a good idea about protocol
efficiency, it might be interesting to isolate how the protocol
reacts when multiple coherence events arise simultaneously for
the same block. In these situations, the effectiveness of the
protocol is the key to prompt resolution of the situation. Figure 9
shows how effective each protocol is when dealing with true
racing requests in eight processor systems. As we can see, in most
cases LOCKE is the fastest one, being on average 10% faster than

DIRECTORY and 60% faster than TOKEN. Token’s persistent
mechanism to resolve those situations makes it the slowest one,
being on average 40% slower than DIRECTORY. Although not
shown, for sixteen-core systems the advantage of LOCKE is even
greater. With non-conflicting coherence events broadcast-based
coherence protocols are faster than directory due to inclusiveness,
which increases on-chip miss rate, as can be appreciated in the
memory contribution in Figure 8.

5.4 Network Energy Impact of Multicast
Traffic
As stated before, it is commonly assumed that multicast traffic has
a large impact on network power consumption. This assumption is
based on the large increment in control traffic observed at the end-
point, i.e. consumers. Nevertheless, when a network has multicast
support, i.e. on-network packet replication, this is completely
wrong because multicast packets use network resources only once
before replication [10][1]. Therefore, unlike unicast-only
networks, energy consumption is not proportional to end-point
traffic, but to average link utilization. For example, Figure 10
shows the directory normalized network link utilization for LOCKE
and TOKEN for eight- and sixteen-processor CMPs. All the links in
the interconnection networks have been considered, including the
connections from routers to L1 caches, L2 slices and memory
controllers.

As we can appreciate, and contrary to common belief, network
activity in snoop-based protocols is not much higher than
directory protocols. Multicast capable routers have an identical
data-path to conventional ones [10][1], so normalized link
utilization differences will be translated into energy consumption
(and negligible implementation cost). In all cases, LOCKE has
lower link activity because the multicast tree used is much deeper
than the one used in TOKEN, which tries to reach all the
destinations as soon as possible. As indicated in Section 3.1

Figure 8. Directory Normalized Average Latency for 8-Processor system.

Figure 9. Normalized time to resolve conflicting memory

accesses for an 8-processor CMP.

Figure 10. Directory Normalized Average Network link

utilization.

0

0.5

1

1.5
N

or
m

al
iz

ed
 A

ve
ra

ge

La
te

nc
y

Memory

L2

Remote L1

Local L1

0
0.5

1
1.5

2
2.5

3
3.5

4

N
or

m
al

iz
ed

 L
at

en
cy

 o
f

Co
nf

lic
tin

g
M

em
or

y
Tr

an
s.

 Directory Token Locke

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 L
in

k
U

til
iz

at
io

n

Token 8P Token 16P Locke 8P Locke 16P

1.DIRECTORY 2.TOKEN 3.LOCKE

LOCKE ordering I-trees delay packet replication, which increases
request base latency, but reduces network activity. With
particularly demanding applications, such as most NPB
benchmarks, or bigger system sizes, TOKEN starvation avoidance
increases the amount of activity. Even in the largest system,
network system activity is only 15% greater in LOCKE than in
DIRECTORY. Performance benefits offset this, making LOCKE the
most efficient coherence protocol. With small size, the system
DIRECTORY generates more network activity than snoop-based
protocols due to protocol indirections and the larger number of
on-cache misses.

6. RELATED WORK
There are numerous proposals for snoop-based on-chip coherence
protocols over unordered networks in both academic
[2][22][30][33] and commercial architectures [28][19]. In our
proposal, two main characteristics can be seen. On the one hand,
our method fulfills its main aim: to maintain all the advantages of
token counting while eliminating the drawbacks of the persistent
request method. Working in the same direction, the authors of the
original token coherence protocol proposed PATCH [30]. This
work extends a standard directory protocol to track tokens and
uses token counting rules for enforcing coherence permissions.
Token counting allows PATCH to support direct requests on an
unordered interconnect, while a mechanism called “token tenure”
uses local processor timeouts and the directory’s per-block point
of ordering at the home node to guarantee forward progress
without relying on broadcasting. Nevertheless, this solution still
depends on a suitable choice of the timeout used. Our proposal,
offers the advantage of not needing fixed delays in order to take
coherence decisions, which improves protocol responsiveness and
stability. We believe that no quantitative performance comparison
with PATCH is strictly necessary, because according to its authors,
PATCH performance is between TOKEN and DIRECTORY, and
LOCKE is better than both. It should be noted that the main
motivation of PATCH is to reduce end-point traffic, which it
successfully achieves. Nevertheless, as background motivation
and according to the results presented in this paper, for on-chip
systems it does not seem to be a fundamental issue.

On the other hand, to maintain system scalability, unordered
networks are essential, but coherence protocols should provide a
method to offer some kind of ordering of requests. There are
many proposals where different solutions are provided. One of the
possibilities is to establish this order by adding information to the
requests sent to facilitate their ordering at their destination. In
Timestamp Snooping [24], a coherence protocol is proposed in
which a logical timestamp is added to all requests. These requests
are sent out-of-order and put back into order at their destination.

Ordered requests may also be accomplished by using a physical
structure through which requests may travel. One of the most
simple and low-cost approaches is to embed a ring in the network
and use it to transfer snoop messages. In order to address possible
long response latencies or too many snoop operations, adaptive
snooping algorithms are proposed in Flexible Snooping [34]. In
these algorithms, depending on the chance of providing the line, a
node receiving a snoop request will snoop first and then forward
the request, or forward first and then snoop the operation.
Moreover, if the node can prove that it will not be able to provide
the line, it will skip the snoop operation, forwarding the request
directly to the next node in the ring. However, any protocol using
a ring as an interconnection network (either logical or physical)
needs to send its snoop requests through it, forcing all requests to
visit every node, which obviously means the loss of any

possibility of parallelism with the snoop requests, thus increasing
transaction latency. Trying to solve this problem, Unconstrained
Snoop Request Delivery (UNCORQ) was proposed [33]. While
requests are delivered using any network path, responses use the
logical ring. A similar ring-approach, but inspired by token
coherence, was used in [26].

Similarly to LOCKE, Virtual Tree Coherence [11] uses a tree to
maintain ordering. This coherence protocol keeps track of sharers
of a coarse-grained region, and multicasts them through a virtual
tree to enforce ordering. Virtual trees are embedded inside a
physical network of the topology. The root of the virtual tree
provides an ordering point needed to order requests. Note that
other works, such as [8], use trees with Token coherence,
however, not for ordering but to avoid deactivations in persistent
requests. Therefore, the lack of responsiveness and potential
instabilities that persistent requests incur are still present.

7. CONCLUSIONS
This work presents a new coherence protocol suitable for CMP
on-chip interconnection network characteristics. The protocol
augments token coherence protocol, avoiding potential
instabilities induced by workloads or system configuration. The
increased robustness is accompanied by a performance benefit.
LOCKE can proactively separate true data sharing and
synchronization among cores from spurious data movements.
Clearly LOCKE’s benefits compensate its shortcomings, achieving
a great scalability with aggressive out-of-order processors. In
conclusion, LOCKE is competitive in terms of performance and
energy footprint, not only with token but also with directory.
LOCKE clearly demonstrates that the utilization of snoop-based
coherence protocols is a suitable choice for managing CMP
coherence, at least in systems with up to 16 aggressive out-of-
order processors in the chip.

8. ACKNOWLEDGMENTS
The authors would like to thank José Ángel Herrero for his
invaluable assistance with the computing environment, and the
anonymous reviewers for many useful suggestions. This work has
been supported by the MICCIN (Spain) under contract TIN2010-
18159 and the HiPEAC European Network of Excellence.

9. REFERENCES
[1] P. Abad, V. Puente, and J.-A. Gregorio. MRR: Enabling

fully adaptive multicast routing for CMP interconnection
networks. In 15th Int S High Perf Comp (HPCA), 355-366,
2009.

[2] N. Agarwal, L.-S. Peh, and N. K. Jha. In-Network Snoop
Ordering (INSO): Snoopy coherence on unordered
interconnects. In 15th Int S High Perf Comp (HPCA), 67-78,
2009.

[3] A. R. Alameldeen et al. Simulating a $2M Commercial
Server on a $2K PC. Computer, vol. 36, 50-57, 2003.

[4] K. Asanovic et al. The Landscape of Parallel Computing
Research: A View from Berkeley. Technical Report. EECS
Dept. U. of California Berkeley, vol. 18, no. UCB/EECS-
2006-183, 2006.

[5] C. Bienia and K. Li. PARSEC 2.0: A New Benchmark Suite
for Chip-Multiprocessors. In MoBS, 2009.

[6] M. Butler. AMD ‘Bulldozer’ Core - a new approach to
multithreaded compute. In HOT Chips 22, 2010.

[7] P. Conway et al. Cache Hierarchy and Memory Subsystem
of the AMD Opteron Processor. IEEE Micro, vol. 30, no. 2,
16-29, 2010.

[8] B. Cuesta, A. Robles, and J. Duato. An effective starvation
avoidance mechanism to enhance the token coherence
protocol. In 15th Euromicro Conf Proc, 47-54, 2007.

[9] J. Duato. A theory of deadlock-free adaptive multicast
routing in wormhole networks. IEEE Transactions on
Parallel and Distributed Systems, vol. 6, no. 9, 976-987,
1995.

[10] N. D. Enright Jerger, L.-S. Peh, and M. Lipasti. Virtual
Circuit Tree Multicasting: A Case for On-Chip Hardware
Multicast Support. In Int S Comp Arch (ISCA), 229-240,
2008.

[11] N. D. Enright Jerger, L.-S. Peh, and M. H. Lipasti. Virtual
tree coherence: Leveraging regions and in-network multicast
trees for scalable cache coherence. In 41st Int Symp
Microarch, 35-46, Nov. 2008.

[12] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore
Era. Computer, vol. 41, no. 7, 33-38, Jul. 2008.

[13] H. P. Hofstee. Power Efficient Processor Architecture and
The Cell Processor. In Int S High Perf Comp (HPCA), 258-
262, 2005.

[14] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W.
Keckler. A NUCA substrate for flexible CMP cache sharing.
In 19th Int Conf Supercomputing (ICS), 31-40, 2005.

[15] ITRS. Roadmap 2010.
[16] H. Jin, M. Frumkin, and J. Yan. The OpenMP

Implementation of NAS Parallel Benchmarks and its
Performance. NAS Technical Report NAS-99-011, NASA
Ames Research Center, Moffett Field, CA, 1999.

[17] A. B. Kahng et al. ORION 2.0: A Fast and Accurate NoC
Power and Area Model for Early-Stage Design Space
Exploration. In Design, Automation & Test, 423-428, 2009.

[18] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd. Power7:
IBM’s Next-Generation Server Processor. IEEE Micro, vol.
30, no. 2, 7-15, 2010.

[19] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway.
The AMD Opteron processor for multiprocessor servers.
IEEE Micro, vol. 23, no. 2, 66-76, 2003.

[20] K. Lee, S.-joong Lee, and H.-jun Yoo. Low-power network-
on-chip for high-performance SoC design. In IEEE Trans. on
Very Large Scale Int. (VLSI) Systems, vol. 14, no. 2, 148-
160, 2006.

[21] D. Lenoski et al. The Stanford Dash multiprocessor.
Computer, vol. 25, no. 3, 63-79, Mar. 1992.

[22] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token
Coherence: a new framework for shared-memory
multiprocessors. IEEE Micro, vol. 23, no. 6, 108-116, 2003.

[23] M. M. K. Martin et al. Multifacet’s General Execution-driven
Multiprocessor Simulator (GEMS) Toolset. Computer
Architecture News, vol. 33, 4, Nov. 2005.

[24] M. M. K. Martin et al. Timestamp Snooping: An Approach
for Extending SMPs. In Architectural Support for Prog.
Lang. and O. Systems (ASPLOS), vol. 1, no. 212, 1-12, 2000.

[25] M. R. Marty, J. D. Bingham, M. D. Hill, A. J. Hu, M. M. K.
Martin, and D. A. Wood. Improving Multiple-CMP Systems
Using Token Coherence. In 11th Int S High Perf Comp
(HPCA), 328-339, Feb 2005.

[26] M. Marty and M. Hill. Coherence Ordering for Ring-based
Chip Multiprocessors. In 39th Int Symp Microarch (MICRO),
309-320, 2006.

[27] L.G. Menezo, V. Puente, JA. Gregorio. Locke Formal
Specification Tables. Technical Report. Available online:
http://sg.sg/GPGFef. 2011.

[28] C. Park et al. A 1.2 TB/s on-chip ring interconnect for 45nm
8-core enterprise Xeon® processor. In 2010 IEEE
International SolidState Circuits Conference(ISSCC), 180-
181, 2010.

[29] V. Puente, J. A. Gregorio, and R. Beivide. SICOSYS: An
Integrated Framework for Studying Interconnection Network
Performance in Multiprocessor Systems. IEEE Comput. Soc,
pp. 15-22, 2002.

[30] A. Raghavan, C. Blundell, and M. M. K. Martin. Token
tenure: PATCHing token counting using directory-based
cache coherence. In 41st Intl S Microarch, 47–58, Nov. 2008.

[31] Y. H. Song and T. M. Pinkston. Efficient handling of
message-dependent deadlock. In 15th Int Parallel &
Distributed Proc Symp (IPDPS), 2001.

[32] SPEC Standard Performance Evaluation Corporation. SPEC
2006. [Online]. Available: http://www.spec.org.

[33] K. Strauss, X. Shen, and J. Torrellas. Uncorq: Unconstrained
Snoop Request Delivery in Embedded-Ring Multiprocessors.
In 40th Int S Microarch (MICRO), 327-342. 2007.

[34] K. Strauss, X. Shen, and J. Torrellas. Flexible Snooping:
Adaptive Forwarding and Filtering of Snoops in Embedded-
Ring Multiprocessors. In 33rd Int S Comp Arch (ISCA), 327-
338, 2006.

[35] M. Suleman, O. Mutlu, M. Qureshi, and Y. N. Patt.
Accelerating critical section execution with asymmetric
multi-core architectures. In 14th Intl. Conf. on Architectural
Support for Progr. Lang. and OS (ASPLOS), 253–264, 2009.

[36] D. Tarjan, S. Thoziyoor, and N. P. Jouppi, CACTI 4.0. 2006.
[37] A. W. Topol et al. Three-dimensional integrated circuits.

IBM J. of Research and Development, vol. 50, no. 4, 491-
506, Jul. 2006.

[38] V. Zyuban, and P. Kogge. Optimization of high-performance
superscalar architectures for energy efficiency. In Intl S on
Low Power Electronics & Design, 84-89, 2000.

	1. INTRODUCTION
	2. MOTIVATION
	2.1 Trading Bandwidth for Latency
	2.2 Token Coherence Responsiveness
	2.3 Token Coherence Stability

	3. LOCKE COHERENCE PROTOCOL
	3.1 False Racing Requests: Token location
	3.2 True Racing Requests: Arbitration
	3.2.1 Self-inhibition
	3.2.2 Priority Ordering with Out-of-order processors

	4. EVALUATION METHODOLOGY
	4.1 Target System Configuration
	4.2 Simulation Stack
	4.3 Workloads

	5. EVALUATION
	5.1 Performance and Efficiency
	5.2 System Scalability
	5.3 Coherence Protocol Responsiveness
	5.4 Network Energy Impact of Multicast Traffic

	6. RELATED WORK
	7. CONCLUSIONS
	8. ACKNOWLEDGMENTS
	9. REFERENCES

