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ABSTRACT 
This paper describes how on-chip network particularities could be 
used to improve coherence protocol responsiveness. In order to 
achieve this, a new coherence protocol, named LOCKE, is 
proposed. LOCKE successfully exploits large on-chip bandwidth 
availability to improve cache-coherent chip multiprocessor 
performance and energy efficiency. Provided that the 
interconnection network is designed to support multicast traffic 
and the protocol maximizes the potential advantages that direct 
coherence brings, we demonstrate that a multicast-based 
coherence protocol could reduce energy requirements in the CMP 
memory hierarchy. The key idea presented is to establish a 
suitable level of on-chip network throughput to accelerate 
synchronization by two means: avoiding the protocol serialization, 
inherent to directory-based coherence protocol, and reducing 
average access time more than in other snoop-based coherence 
protocols, when shared data is truly contended. LOCKE is 
developed on top of a Token coherence performance substrate, 
with a new set of simple proactive policies that speeds up data 
synchronization and eliminates the passive token starvation 
avoidance mechanism. Using a full-system simulator that 
faithfully models on-chip interconnection, aggressive core 
architecture and precise memory hierarchy details, while running 
a broad spectrum of workloads, our proposal can improve both 
directory-based and token-based coherence protocols both in 
terms of energy and performance, at least in systems with up to 16 
aggressive out-of-order processors in the chip.  

Categories and Subject Descriptors 
B.3.2 [Memory structures]: Design Styles – cache memories  

Keywords CMP, coherence protocol, memory hierarchy. 

1. INTRODUCTION 
Chip multiprocessors (CMPs) represent a major milestone in 
computing system evolution. Adding more processors per chip 
seems to be the most reasonable approach to keep translating the 
continuous enhancement in technological integration into 
performance improvements. Given the challenge involved in 
parallel software development, the hardware has to assist the 
programmer’s productivity [4] as much as possible. The 
consensus is that it is much easier to perform this task by 

providing all chip cores with a unified memory view. From the 
hardware point of view, in CMP systems one of the major 
challenges is the off-chip bandwidth wall. Among other solutions, 
it is essential to provide complex on-chip cache hierarchies to 
minimize off-chip interface pressure. 

If we combine the above-mentioned facts, it seems that cache 
coherent CMP will become the dominant class of systems, at least 
in general purpose computing. Today, many commercial products 
that target this market implement this approach [28][18][7]. 
However, this statement does not negate the suitability of non-
cache coherent CMPs, such as [13], in some specialized markets.  

In a CMP system, the computing elements are so intricate that 
hardware-enforced cache coherence is the easiest way to support 
the shared memory model and so, the coherence protocol has a 
fundamental role to play. Many architectural solutions used in 
CMP systems are borrowed from the off-chip realm without 
substantial alterations. In particular, many of the cache coherence 
protocols used or proposed take advantage of premises from 
System-Multiprocessors. Some of them are very cautious about 
bandwidth utilization at the expense of increasing latency. In an 
off-chip interconnection network, bandwidth is scarce because of 
the discrete nature of the communication system elements. In 
contrast, in on-chip interconnection networks bandwidth 
availability is greater. In this type of systems, communication link 
width is much greater and the delay allows much faster data rates 
with lower energy cost. 3D stacked systems [37] and utilization of 
low-swing links [20] substantially increase the excess in 
bandwidth and reduce the energy cost of moving data. 

The coherence protocol should, at all costs, use on-chip network 
bandwidth availability to avoid adding extra latency in the form of 
indirections. Currently there are a substantial number of CMP 
coherence protocol proposals that share our view [2][22][26][30]. 
Most of these ideas use broadcasting as the mechanism to 
overcome indirection at intermediate ordering points. 
Nevertheless, bandwidth demand is still a concern in most of these 
works and they allow some performance to be lost in exchange for 
saving bandwidth consumption. 

With a suitable interconnection network design it could be 
possible to increase the whole system performance by improving 
the coherence protocol behavior. Following this premise, we 
introduce the LOCKE Coherence Protocol in this work. This 
protocol uses the token coherence framework [22] as its starting 
point, but enhancing responsiveness and stability in several ways. 
First, token coherence deals with concurrent requests coming from 
different processors to shared blocks using a passive approach 
called “Persistent Request”. This mechanism uses a time-out-
based triggering policy to address the aforementioned situation. 
Consequently, critical operations, such as contended 
synchronizations, could be artificially delayed. This negatively 
affects system performance. Second, the mechanism could 
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overreact when the network is heavily loaded, potentially turning 
most of the processor memory accesses into persistent requests. 
Contention is hard to manage and adds unpredictable and non-
depreciable delays in latency. On top of that, persistent request 
increases contention due to the extra traffic generated. In extreme 
situations, some applications could render the system useless due 
to the chain-reaction produced by persistent request explosion and 
contention. Neither static nor dynamic time-out estimation is 
sufficient to avoid such unstable behavior, because they cannot 
capture the diverse and complex situation that contention 
produces.  

In order to identify where each token position is, LOCKE uses 
explicit acknowledgments for each token movement. Thus, each 
memory request will locate either tokens or pending 
acknowledgments. In this way, we can quickly forward requests to 
in-flight tokens’ destinations, which would improve latency when 
accessing contended data. Applying a correct ordering between 
true racing requests, eventually any pending operation will locate 
the data and all the tokens needed to complete the transaction. No 
starvation avoidance mechanism, such as persistent request, is 
required. It might appear that acknowledgment traffic will 
increase bandwidth utilization and added contention could 
potentially increase network latency or network energy 
consumption, however, using state-of-the-art network design we 
will demonstrate that this is not the case. The effectiveness of the 
token location mechanism compensates for its extra bandwidth 
consumption, improving the energy-performance tradeoff of both 
token coherence and directory-based coherence protocols. 

We have evaluated the effectiveness of the idea using a state-of-
the-art full-system simulator which includes a very precise 
interconnection network simulator with a wide variety of 
workloads ranging from multithreaded server applications, 
through multithreaded numerical applications to multi-
programmed workloads. LOCKE outperforms, on average, a 
conventional Directory and a Token Coherence protocol by 16% 
and 28% respectively for 16-core CMP with Nehalem-like cores. 
Additionally, LOCKE exhibits lower susceptibility to workload 
characteristics, having six times less performance variance than 
Token Coherence.  

The rest of the paper is organized as follows: Section 2 explains 
the motivation for the introduction of LOCKE. Section 3 describes 
the proposal itself, explaining the foundations of the coherence 
protocol. Section 4 describes the experimental methodology 
employed. Section 5 presents performance results and provides 
insight into LOCKE responsiveness. Section 6 summarizes the 
related work and, finally, Section 7 states the main conclusions of 
the paper. 

2. MOTIVATION 
2.1 Trading Bandwidth for Latency 
Bandwidth availability is profuse in CMP environments because 
of the utilization of scalable point-to-point interconnection 
networks, scalable cache hierarchies such as NUCA, and ultra-
wide short links. In contrast, the portion of the chip reachable per 
clock cycle is shrinking as the technology advances. Under this 
scenario, it seems inadequate to maintain coherence in a CMP 
using protocols originally conceived for off-chip systems, such as 
directory-based ones [21], especially if their utilization increases 
data access latency due to the burden of multiple indirections 
across the chip. Therefore, taking advantage of bandwidth 
availability to avoid adding extra delay makes sense. As stated 

before, snoop-based protocols running on top of scalable 
interconnection networks provide the best design choice for CMP 
systems. Currently most commercial aggressive CMPs, such as 
[28][18], use this approach. Nevertheless, it is commonly accepted 
that those protocols are not free of shortcomings, namely: 1) The 
multicast traffic required for on-chip cache requests will increase 
power consumption; 2) An excessive network and cache 
bandwidth consumption could increase contention and increase 
on-chip latency, potentially ruining the rationale of snoop-based 
coherence protocols, and 3) The extra cache tag lookups produced 
in such protocols will increase cache energy consumption. 

Although these considerations are pertinent, their impact can be 
much smaller than is commonly believed. First, power 
consumption is affected by this multicast traffic in a different way 
depending on the network characteristics. If the network has 
hardware support for multicast [10], its impact is highly reduced. 
In this case, each network resource is used at most once per 
request instead of many times as occurs when no support is 
provided. According to [1], using multicast support could save up 
to 70% in the Energy Delay Square Product (ED2P)1 . Second, a 
correctly dimensioned design for the cache hierarchy capable of 
decoupling the number of cores and the on-chip cache bandwidth 
will oblige the use of NUCAs [14], as [28][18] are already doing. 
Under these circumstances, on-chip communication bandwidth 
will scale in proportion to core count. Third and finally, if we take 
into account the growing leakage in each technological advance 
[15], the area devoted to cache, and the substantial benefit in 
terms of performance obtained by snoop-based coherence, 
increased tag snoop energy is quickly amortized by the reduction 
in static energy. 

2.2 Token Coherence Responsiveness 
Conceptually the Token Coherence protocol deals with racing 
requests by counting tokens. This way, data races are avoided by 
forcing different ongoing memory operations to require an 
incompatible number of tokens in order to be performed. For 
example, performing a simultaneous read (GETS) and write 
(GETX) over the same cache block requires more than the 
maximum number of tokens available in the system. In starvation-
prone circumstances, each contending processor eventually issues 
a persistent request, which will statically determine the winner 
and force the losers to return the tokens to the frontrunner 
processor. When this one finishes its operation, the next processor 
obtains the tokens required to perform its pending memory 
transaction. Assuming that under realistic working conditions 
racing requests are not frequent, this serialization will have a 
negligible impact on performance.  

However, synchronization is a key operation in multithreaded 
workloads [35], which in most cases will involve racing requests. 
The passive approach used by token coherence to resolve that 
situation, which is bounded by the time established to issue the 
persistent request, could delay synchronization resolution 
unnecessarily. Additionally, persistent requests not only serialize 
potential data races, but also address temporary lack of knowledge 
about token location. This problem situation arises when some of 
the tokens required to perform a specific memory transaction are 
unavailable at the end point of all multicast messages issued by 
the request. For example, this happens when a block is evicted 
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from the cache and the request overtakes the in-flight data block 
in the interconnection network. In these circumstances, the request 
will not be fulfilled because the destination of the tokens being 
evicted will never be located by the original request. The outcome 
of this situation is similar to a temporary racing request, denoted 
as “false racing request”. By contraposition, we denote concurrent 
and simultaneously incompatible operations issued over the same 
block by different processors as “true racing requests”. When 
interconnection network contention is considered, this situation 
might not be as negligible as it was with true racing requests, 
especially in highly contended situations.  

2.3 Token Coherence Stability 
The persistent request method is a starvation avoidance 
mechanism that solves true or false request races by keeping track 
of the time involved in each pending memory request. If the time 
is greater than a fixed time threshold, a persistent request is sent. 
In order to maintain the scalability of the hardware, structures are 
required to perform persistent requests and to provide a distributed 
and fair arbitration scheme. Token coherence assumes that only 
one ongoing persistent request per core is supported. To minimize 
performance impact in processors with multiple outstanding 
memory operations, the original request is reissued one or more 
times before sending a persistent request. 

The timeout chosen to trigger this process can be established 
statically, looking at the on-chip miss access latency, or 
dynamically, averaging the average latency of recent memory 
transactions. If the time of a particular ongoing memory 
transaction is above this limit, it seems reasonable to suppose that 
there might be another core accessing the same block. The request 
is reissued and if the timeout is once again exceeded then a 
persistent request is sent. Although this mechanism seems to be 
very simple, contention effects are ignored. For example, when 
the load applied over the network is significant, the 
communication latency of each individual message increases as a 
result of the unavailability of resources in use by other messages. 
At medium loads the total latency could increase by a few cycles, 
but when the load is higher this variation could be substantially 
larger and, worst of all, highly dependent on the applied load and 
on the interconnection network implementation.  

In a low contention situation, network latency is closer to the base 
latency and persistent requests work as expected. Nevertheless, if 
a spike of traffic suddenly appears, contention increases and so 
does the latency of all pending memory transactions. If the effect 
of the contention is over the persistent request timeout, a chain 
reaction is triggered. The positive feedback between reissues and 
persistent request and network contention creates a storm of these 
types of requests in which almost any memory operation is 
reissued or even resolved by a persistent request. Under this 
unstable situation, the system performance drops dramatically. To 
illustrate this phenomenon, we will focus our interest on two 
particular applications (NUMERICAL and SERVER) running in 
16 aggressive cores in the CMP, described in subsection 4.1. All 
of the parameters of the system, including the network, are 
correctly dimensioned, i.e. they are chosen in order to obtain an 
optimal cost/performance ratio over a large set of applications. 
The sharing degree of the two applications is quite different, in the 
SERVER it is high and in the NUMERICAL it is low. However, 
for an optimal time-out threshold and one reissue before sending a 
persistent request, the proportion of memory transactions resolved 
by persistent request is less than 0.1% for SERVER and more than 
10% for NUMERICAL. 

This behavior, which is apparently contradictory according to the 
sharing degree of each application, is easily explained looking at 
Figure 1. It shows the network latency (a) and the applied load (b) 
during 10 million processor cycles for both applications. In 
contrast to the SERVER, the NUMERICAL application is very 
interconnection network demanding during short intervals due to 
the access to highly contended blocks. During these phases, the 
latency spikes due to on-network contention effects. These effects 
are exacerbated by the one-to-all traffic pattern of the application. 
During these spikes, reissue and persistent request frequency 
increases, not because of true racing requests but because packets 
are delayed within the network. This triggers more reissues and 
persistent requests, which further increases contention. Even using 
dynamically predicted thresholds, we are unable to predict any 
sudden variations in latency. In fact, dynamic estimations could 
accelerate system instabilities even preventing the complete 
execution of the workload. The described effect is not a rare 
anomaly and similar behavior could also be observed if off-chip 
bandwidth is saturated. All in all, without a solution for this 
problem, employing this protocol in a general purpose machine 
would be highly risky. 

3. LOCKE COHERENCE PROTOCOL 
LOCKE will use token counting to maintain coherence invariants, 
but it introduces a smart mechanism to actively resolve true racing 
requests, making a passive starvation avoidance mechanism 
unnecessary. In order to do this, LOCKE is based on precise 
knowledge of where any token is or will be located in the near 
future. If the protocol is able to track all the tokens, no false racing 
requests are possible. True racing requests are solved with a 
starvation-free self-inhibition mechanism that serializes data 
access of simultaneous incompatible memory transactions. Next, 
we will detail how false racing requests are avoided and true 
racing requests are dealt with. For readers interested in a more 
detailed specification of the protocol, a table-based state-transition 
table of cache controllers can be seen at [27]. 

3.1 False Racing Requests: Token location  
In order to determine token location, any block movement is 
monitored at the originating location, keeping a label of the 
destination of the block. The label information is kept until a 

 
(a) 

 
(b) 

Figure 1. Network dynamic evolution with a 16-processor 
system (a) Average latency (includes injection queue delay), (b) 
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message reception acknowledgement is received from that 
destination. Thus, when a coherence controller generates a 
request, all the tokens needed or the flag of some pending 
acknowledgement will be found. Note that, in contrast to 
directory-based protocols, LOCKE’s acknowledgement messaging 
is outside the critical data access path. 

If the request corresponds to a write operation (Get Exclusive or 
GETX) every token will be forwarded to the requestor. On the 
contrary, if the request corresponds to a read operation (Get not 
exclusive or GETS) only the controller with the owner token will 
reply. If a request arrives when the tokens required are in-flight 
the requestor is notified with the final destination of the tokens. In 
this way, the requestor may reissue a unicast request to the one 
holding the necessary tokens. The intermediate node always 
notifies the requestor if the transaction is a GETX, but only 
notifies that the owner token is in-flight when the request is a 
GETS. Note that this is the situation depicted in the example in 
Figure 2, where simultaneously, processors P0 and P2 try to 
perform a GETS operation for the same block, and P1 holds only 
the owner token for that block. This situation in Token Coherence 
Protocol implies a false racing request. The side effect of this 
mechanism is the generation of extra unicast traffic for 
acknowledgement packets and reissuing the GETS. As we said 
before, in contrast to directory-based coherence protocols, 
acknowledgments operate outside the critical path of any memory 
transaction. In this example, the hit latency of processor P2 will 
not be increased because of the mechanism. 

Unfortunately, the previous scheme is starvation prone. To 
exemplify this, Figure 3 shows the same initial situation as in 
Figure 2. This time, P0’s request is delayed long enough so that it 
arrives at P1 when the acknowledgement message from P2 has 
already been received. In this situation, P1 does not notify P0 that 
P2 has the block and the owner token. Moreover, P2 is unaware of 
P0 being interested in that block because P0’s request arrived at 
P2 before this processor issued the GETS. If both of these things 
happen, P0’s transaction starves. 

In order to prevent this anomalous situation, we need an approach 
to order both requests on the interconnection network. The most 
scalable way to perform such ordering is to use the same multicast 
routing tree for each set of addresses. If we force all the requests 
to a specific address to follow that routing tree, then no request or 
acknowledgment race is possible because the messages involved 
cannot be overtaken. To balance network resource utilization we 
could define different multicast trees per address. Routers should 
include the mechanism to use the right routing tree according to 
the address accessed. Using the least significant bits in the address 
we could select which one to follow. Figure 4 shows a possible 
distribution in an 8-processor CMP with non-uniform cache 
architecture using a 4×4 mesh interconnection network and four 
multicast trees. We will denote the multicast trees as I-trees. To 
minimize base latency effects, each I-tree trunk can pass through 
the last level (LLC) slice where the address could be located. Note 
that one of the destinations for the request multicast will be an L2 
slice. For example, addresses mapped in slice 0, 4, 8 and 12 will 
use the I-tree for addresses %XXX00.  
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state), O (Owner State), OI (Owner to Invalid), IS (Invalid to 
Shared). The line in the arrows reflects the nature of the 
message: dashed lines correspond to multicast, solid lines 
correspond to unicast. 

Any multicast-capable network requires a multicast routing tree 
[11]. For example, in Figure 4, if core 0 requests data that is 
located in core 1 L1 cache, it will take only one hop in the 
network to reach it. In the worst case, if data is located in core 4 
L1 cache using the I-tree in the figure it will take 7 network hops 
to reach it when in an optimal multicast tree it will take 3 hops. 
Although the average impact on on-chip latency overhead will 
depend on data distribution and network contention, the average 
distance increment for multicast messages is less than 10%. 
Moreover, the rest of the traffic (no requests or acks) always 
follows minimal paths. 

 
Figure 2. Token location with explicit acknowledgement: P0 
issues a GETS operation transitioning the block to IS2, P2 issues 
another GETS operation for the same block. The request from P2 
arrives first at P1, which has only the owner token. P1 sends the 
data with the owner token to P2, transitioning its own block to 
OI. This state will be maintained until the explicit reception 
acknowledgement from P2 arrives at P1. When the block is 
received at P2, the block goes to the stable state O and the 
acknowledgement message is sent. In the meantime, the request 
from P0 arrives at P1 which informs it that P2 has the owner 
token. P0 reissues a unicast to P2 demanding a copy of the data. 

 

 

Figure 3. Starvation with request overtaking: With the same 
initial state depicted previously, the P0 multicast request message 
arrives at P2 before it issues its own GETS and arrives at P1 after 
the acknowledgement reception from P2. Both processors P1 and 
P2 ignore P0’s request. 
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3.2 True Racing Requests: Arbitration 
3.2.1 Self-inhibition 
If the location of all tokens needed to complete a transaction is 
known then only true racing requests have to be dealt with. When 
two or more processors are trying to perform simultaneous but 
incompatible operations, LOCKE solves the situation using scalable 
self-regulated arbitration. The solution adopted is to assign a 
priority order to each processor and operation and to allow the 
resolution of the race without breaking the coherency invariants. 
The different coherency controllers apply this policy in a fully 
distributed way, so guaranteeing system scalability. 

Two or more simultaneous operations over the same block are 
incompatible if the total number of required tokens is greater than 
the number of processors P. If one coherence controller detects the 
possibility of such a situation arising, it must choose whether to 
keep going with the operation or to give up. For example if it 
wants to perform a write operation in a cache block and sees an 
incoming write request from another processor trying to write in 
the same cache block, it has to check each request priority. 
Initially and for the sake of simplicity we will assume that the 
priority is determined by the processor index. If the current 
controller has an index smaller than the incoming request, the 
controller goes ahead with its operation or, if not, it self-freezes 
the operation. 

If the controller decides to temporarily inhibit the outgoing 
transaction, due to its inferior priority with respect to the remote 
incoming request, it changes the block state to “frozen” and 
annotates the winner controller for that block. When a block is 
frozen, any incoming token will be forwarded to the annotated 
winner controller. The block will remain in a frozen state until the 
winner notifies the completion of the operation, via a complete 
multicast message. If this happens, the inhibited operation is 
reissued from the beginning. Figure 5 presents an example of this 
situation. 
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state), M (Modified State), MI (Modified to Invalid), IM 
(Invalid to Modified), Frozen (frozen memory operation). 

When a block is frozen, any other write request from another 
controller, no matter what its priority is, will be ignored. Thus, 
according to the timing of the reception of requests an implicit 
tree of pending operations is formed. This tree has a tendency to 
follow the address I-tree shape. Usually, independently of the 
number of controllers that are trying to perform the operation 
concurrently, the ordering tree shape is deep. Therefore, the 
request reissue after reordering is lazy; only one pending memory 
transaction is reissued after the completion of a write in most 
cases.  

3.2.2 Priority Ordering with Out-of-order processors 
Statically assigned priorities could provoke pathological situations 
because contended blocks will be obtained most often by the same 
processor. Nevertheless, assuming multiple outstanding requests 
per core, there is an easy and scalable solution to deal with this if 
we are capable of guaranteeing that: (a) Two different processors 
cannot issue an operation to the same block with the same 
priority; (b) The probability of having a different priority ordering 
at two contended blocks from two different processors has to be 
non zero. 

The first condition guarantees that two different processors will 
never simultaneously grab a subset of tokens from the same block, 
i.e. avoiding starvation. The second condition guarantees that, on 
average, there will not be any memory operation favored over 
others. The most straightforward way to achieve this is to 
construct the priority of each request as the combination of the 
processor ID (LSB bits) used to achieve condition one, and a 
small random number (MSB bits) to achieve condition two. 
Experimentally, it is observed that this approach provides similar 
performance to an age-based priority (which requires a complex 
coordinated timestamp-based mechanism) at a fraction of the cost. 

 
Figure 4. Ordering I-tree in an S-NUCA architecture. 

 
Figure 5. Example of write serialization: P0 and P1 
simultaneously issue a GETX over a block in M3 state at P2 
(i.e., all the tokens are located there). Let’s assume P0 has 
higher priority than P1. P1’s request arrives at P2 first, so P2 
sends data and all tokens, changing its state block to transitory 
state MI until the acknowledgement from P1 is received. Before 
receiving the data and the tokens, P1 sees a request from 
processor P0 which has more priority than its own priority, so it 
self-freezes its operation and annotates P0 as the winner at the 
MSHR. When data and tokens from P2 arrive, they are 
immediately forwarded to the winner P0, annotating the in-
flight tokens. When P0 receives the data and tokens it sends an 
acknowledgement to P1 and finalizes its operation. When P0’s 
GETX operation ends, it broadcasts a complete message. P1’s 
MSHR hit unfreezes the operation and reissues it. 

P2P1P0

Ack

Forward DATA + All Tokens
Ack

Ack

DATA+Al
l Tokens

GETX
GETX

Complete

GETX
Unicast

Multicast

MI

Frozen

M

IM

Inv



The performance reduction observed for a four-bit random 
number compared to an idealized fully age-based approach is less 
than 1%.   

4. EVALUATION METHODOLOGY 
4.1 Target System Configuration 
In order to validate the advantages of our proposal, we have used 
two coherence protocols for the given system architecture with the 
configuration parameters shown in Table 1. The main parameters 
of the target system mimic state-of-the-art high-end CMPs such as 
[6][28][18]. The baseline coherence protocol used is an optimized 
directory protocol similar to the one used to compare the token 
coherence protocol in [25], but adapted to NUCA. Directory 
information is distributed across all slices and full mapping. 
Optimistically, null storage overhead is assumed for this protocol. 
Broadcast-based token coherence protocol variation [22] is 
considered, as a representative counterpart to snoop-based 
protocols. A fixed timeout to reissue the request is used. Only one 
reissue is tolerated before triggering a persistent request. This 
timeout has been selected measuring all the benchmarks with 
different timeouts and choosing the one with best average 
performance. Dynamically estimated time-out does not provide 
performance benefits. 

For the cache hierarchy we will assume NUCA [14] for the last 
level cache. Although LOCKE is also applicable for a tiled system, 
NUCA architecture is a better approach because it decouples the 
number of LLC cache slices from the number of cores, providing 
much more flexibility to scale on-chip bandwidth. This cache 
architecture is currently a mainstream choice in high-end CMPs. 

As far as the interconnection network is concerned, we will add 
the minimum variation over a commonly used router 
microarchitecture and network topology. As for the router micro-
architecture used, it will be similar to the proposal described in 
[10], using on-network multicast support when required. We use 
dynamic buffering allocation per virtual channel and 1-cycle 
pipeline pass-through latency. In each protocol we use the 
required number of virtual channels to avoid message-dependent 
deadlock [31] and network deadlock [9].  

In order to observe the scalability of the proposal we chose two 
different system sizes composed of 8 and 16 processors. The 
eight-processor system layout is similar to the one shown in 
Figure 4. For 16 cores, although the processor, L1 and router 
remain unchanged, the LLC capacity and bandwidth are scaled up 
in accordance with the larger number of processors [28]. 

In all configurations, instead of using in-order cores, we opted for 
aggressive out-of-order processors to mimic [18][28]. Although a 
large number of small cores could make sense for cloud-
computing workloads, in general purpose computing, an 
aggressive processor microarchitecture still matters [12]. 
Additionally, medium size systems with a large number of 
outstanding memory transactions per processor will be much more 
demanding for the coherence protocol than many simple cores. 

4.2 Simulation Stack 
We work with a framework that allows us to perform full-system 
evaluation, i.e. user and system level code are accurately 
simulated. The main strategy of the proposal is that network 
bandwidth can be used cleverly to boost system performance; 
therefore, careful interconnection network modeling is essential. 
In order to achieve this requirement, SICOSYS [29] replaces the 
original interconnection network simulator of the full-system 

simulation tool GEMS [23]. SICOSYS models router micro-
architecture very precisely. Therefore, network contention effects 
induced by extra traffic will be precisely modeled in the 
simulations. SICOSYS is augmented with Orion [17] in order to 
estimate the network energy consumption with each protocol. 
Power consumption in other components of the memory hierarchy 
is computed using CACTI [36]. The energy required by the cores 
will be assumed, pessimistically for performance leaders, to be 
constant across the different coherence protocols. The energy of 
each event is estimated assuming 32 nm technology. 

4.3 Workloads  
Fifteen workloads (see Table 2) are considered in this study, 
including both multi-programmed and multi-threaded applications 
(numerical and server) running on top of the OpenSolaris 10 OS. 

Table 1. Basic system configuration, 32 nm. technology 
assumed for energy estimations 

Pr
oc

es
so

r 
C

on
fig

. 

Number of cores 8 @3GHz(config1) 
16 @3GHz(config2) 

Functional Units 4xI-ALU/4xFP-ALU/ 
4xD-MEM 

IWin size/Issue Width 128, 4-way 
Fetch-to-Dispatch 7 cycles 

L1
 

C
ac

he
 Size/Associativity/ 

BlockSize/Access Time 
128KB I/D, 4-way, 64B, 2 

cycles 
Max. Outstanding Mem. 

Operations 16 

L2
 C

ac
he

 Size/Associativity/ 
BlockSize 

8MB, 16×512KB, 16-way, 
64B (config1) 

16MB, 32×512KB, 16-way, 
64B (config2) 

NUCA Mapping Static, interleaved across 
slices 

Slice Access Time 5 cycles 

M
em

or
y 

Capacity/Access Time/ 
Memory Controllers/ BW 

4GB, 240 cycles,2 centered / 
32GBs (config 1) 

4GB, 240 cycles, 4 
centered/64GBs (config 2) 

N
et

w
or

k 
Topology / Link Latency/ 

Link Width 

4×4 Mesh, 1 cycle, 16B 
(config 1) 

6×6 Mesh,1cycle, 16B 
(config 2) 

Router Latency/ Flow 
Control/ 

Buffering Size / Routing 
1 cycle/ Wormhole/ 

5.4KB/DOR 

Table 2. Evaluated workloads 
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Apache (1000 Surge 
dynamic) 

Zeus (1000 
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Jbb (4000 SpecJbb) OLTP (500 
TPC-C alike) 

NAS Parallel 
Bench. [16] 

FT (Class W) CG (Class A) 
LU (Class A) IS (Class A) 

PARSEC [5] 
blackscholes (native) 

canneal (native) 
fluidanimate (native) 
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Spec 2006  [32] 
(Rate Mode)  

astar (reference) hmmer 
(reference) 

lbm (reference) ommetpp 
(reference) 



The server benchmarks correspond to the whole Wisconsin 
Commercial Workload suite [3], released by the authors of GEMS 
in version 2.1. The remaining class corresponds to multi-
programmed workloads using part of the SPEC CPU2006 suite 
[32] running in rate mode (where one core is reserved to run OS 
services. Each application is simulated multiple times with 
random perturbations in memory access time in order to reach 
95% confidence intervals. The number of applications enables the 
sweeping of a broad spectrum of usage scenarios, with diverse 
sharing degree, sharing contention, working set size, etc. 

5. EVALUATION 
5.1 Performance and Efficiency 
Figure 6 shows the performance with the basic 8-processor CMP 
(config1 in Table 1). On average, DIRECTORY is outperformed by 
LOCKE and TOKEN. As expected, some workloads are insensitive, 
which attenuates the average performance impact of coherence 
protocol. In contrast, in applications with highly contended 
blocks, such as NAS benchmarks, coherence is very relevant. In 
those cases, LOCKE outperforms other protocols by up to almost 
30%. In applications with high sharing degree but limited 
contention, such as server workloads, LOCKE outperforms the 
other counterparts by a smaller but noticeable margin. Although, 
on average, TOKEN performs better than DIRECTORY some 
noticeable results such as IS or FT, even in a modest size system 
like this one, show its performance is poor for the reasons 
explained in Section 2.3. In contrast, LOCKE exhibits a consistent 
performance across all the workloads. 

End-point traffic comparison of different protocols may not reflect 
a direct impact in performance or energy profile. First, when the 
network uses capable routers, as in our case, a multicast packet 
with n destinations will not use the same effective bandwidth as n 
unicast packets for the same destination [10]. This issue will be 
considered again later in subsection 5.4. Second, network energy 

is only a part of the on-chip memory hierarchy which is 
dominated by cache. Third, Energy Delay Square Product (ED2P) 
is the most suitable metric to estimate energy-performance 
tradeoff in high-performance systems such as ours [38]. 
Therefore, we provide this metric, grouped for each suite of 
benchmarks and protocols in Figure 6 (b). As we can see, the 
cubic influence of performance in ED2P has a major effect, 
meaning that the ED2P of the network, in spite of producing more 
traffic, is even smaller for broadcast-based protocols. 
Additionally, for 32nm technology and a large cache footprint 
(8MB in this configuration), leakage power, which is constant 
across coherence protocols, causes the ED2P leakage proportion 
to grow significantly when the performance is worse. Therefore, 
and contrary to common belief, snoop-based broadcast coherence 
protocols have lower average ED2P than the one based on 
directories. Due to the more consistent LOCKE performance, on 
average it requires 19% less ED2P than DIRECTORY. In contrast, 
due to performance instabilities, TOKEN is only capable of saving 
7%. 

5.2 System Scalability 
To explore the scalability of each protocol, system size has been 
increased to 16 cores (config2 in Table 1). Using a higher number 
of processors, given their architectural complexity, would imply 
an unattainable computational cost for the simulations. 
Additionally, most of the benchmarks do not scale well beyond 
sixteen cores. In any case, given that each processor can have up 
to 16 pending memory transactions, the system could have up to 
512 simultaneous coherence actions, including L1 misses and 
write-backs. This could be four times more demanding for the 
coherence protocol than having 64 in-order cores. 

The performance observed in Figure 7 (a) indicates that LOCKE is 
able to increase its advantage in comparison to DIRECTORY. 
Scaling up the network size to accommodate NUCA slices would 
increase the cost of DIRECTORY indirections. Nevertheless, the 

 
(a) 
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Figure 6. Directory normalized 8-processor CMP.  
 (a) Execution Time. (b) Memory Hierarchy ED2P. 
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 (b) 

Figure 7. Directory Normalized 16-Processor CMP. 
(a) Execution Time. (b) Memory Hierarchy ED2P. 
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increased contention due to larger numbers of multicast 
destinations seems not to increase the latency in the network 
significantly for LOCKE. Therefore, the performance advantage of 
LOCKE over the directory is now greater than in 8-core CMP 
(16%). In contrast, TOKEN performs poorly, being noticeably 
slower than DIRECTORY. 

5.3 Coherence Protocol Responsiveness  
In order to provide insight into protocol effectiveness, Figure 8 
shows the average latency perceived by the processor with each 
protocol for an 8-processor system. 

As can be appreciated in both systems, the DIRECTORY-based 
protocol has a larger memory contribution in some applications. 
This is a direct consequence of inclusiveness. Whereas snoop-
based protocols do not need inclusiveness to track on-chip block 
sharers, DIRECTORY requires an entry in LLC for all L1 cached 
blocks. Consequently, the effective cache capacity is larger in the 
former protocols, raising LLC miss rate. This problem is 
acknowledged as a serious drawback of directory coherence 
protocols [7]. Serialization with directory reduces on-chip hit 
latency in applications where network contention is not 
significant. TOKEN coherence introduces pressure on the network 
in some applications and the starvation avoidance mechanism 
increases the on-chip hit latency significantly, making the average 
access time up to 40% slower in applications such as IS. In 
contrast, LOCKE seems to consistently outperform other protocols 
in most applications. 

Although, on-chip hit latency provides a good idea about protocol 
efficiency, it might be interesting to isolate how the protocol 
reacts when multiple coherence events arise simultaneously for 
the same block. In these situations, the effectiveness of the 
protocol is the key to prompt resolution of the situation. Figure 9 
shows how effective each protocol is when dealing with true 
racing requests in eight processor systems. As we can see, in most 
cases LOCKE is the fastest one, being on average 10% faster than 

DIRECTORY and 60% faster than TOKEN. Token’s persistent 
mechanism to resolve those situations makes it the slowest one, 
being on average 40% slower than DIRECTORY. Although not 
shown, for sixteen-core systems the advantage of LOCKE is even 
greater. With non-conflicting coherence events broadcast-based 
coherence protocols are faster than directory due to inclusiveness, 
which increases on-chip miss rate, as can be appreciated in the 
memory contribution in Figure 8. 

5.4 Network Energy Impact of Multicast 
Traffic  
As stated before, it is commonly assumed that multicast traffic has 
a large impact on network power consumption. This assumption is 
based on the large increment in control traffic observed at the end-
point, i.e. consumers. Nevertheless, when a network has multicast 
support, i.e. on-network packet replication, this is completely 
wrong because multicast packets use network resources only once 
before replication [10][1]. Therefore, unlike unicast-only 
networks, energy consumption is not proportional to end-point 
traffic, but to average link utilization. For example, Figure 10 
shows the directory normalized network link utilization for LOCKE 
and TOKEN for eight- and sixteen-processor CMPs. All the links in 
the interconnection networks have been considered, including the 
connections from routers to L1 caches, L2 slices and memory 
controllers. 

As we can appreciate, and contrary to common belief, network 
activity in snoop-based protocols is not much higher than 
directory protocols. Multicast capable routers have an identical 
data-path to conventional ones [10][1], so normalized link 
utilization differences will be translated into energy consumption 
(and negligible implementation cost). In all cases, LOCKE has 
lower link activity because the multicast tree used is much deeper 
than the one used in TOKEN, which tries to reach all the 
destinations as soon as possible. As indicated in Section 3.1 

 
Figure 8. Directory Normalized Average Latency for 8-Processor system.  

 
Figure 9. Normalized time to resolve conflicting memory 

accesses for an 8-processor CMP. 

 
Figure 10. Directory Normalized Average Network link 

utilization. 
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LOCKE ordering I-trees delay packet replication, which increases 
request base latency, but reduces network activity. With 
particularly demanding applications, such as most NPB 
benchmarks, or bigger system sizes, TOKEN starvation avoidance 
increases the amount of activity. Even in the largest system, 
network system activity is only 15% greater in LOCKE than in 
DIRECTORY. Performance benefits offset this, making LOCKE the 
most efficient coherence protocol. With small size, the system 
DIRECTORY generates more network activity than snoop-based 
protocols due to protocol indirections and the larger number of 
on-cache misses. 

6. RELATED WORK 
There are numerous proposals for snoop-based on-chip coherence 
protocols over unordered networks in both academic 
[2][22][30][33] and commercial architectures [28][19]. In our 
proposal, two main characteristics can be seen. On the one hand, 
our method fulfills its main aim: to maintain all the advantages of 
token counting while eliminating the drawbacks of the persistent 
request method. Working in the same direction, the authors of the 
original token coherence protocol proposed PATCH [30]. This 
work extends a standard directory protocol to track tokens and 
uses token counting rules for enforcing coherence permissions. 
Token counting allows PATCH to support direct requests on an 
unordered interconnect, while a mechanism called “token tenure” 
uses local processor timeouts and the directory’s per-block point 
of ordering at the home node to guarantee forward progress 
without relying on broadcasting. Nevertheless, this solution still 
depends on a suitable choice of the timeout used. Our proposal, 
offers the advantage of not needing fixed delays in order to take 
coherence decisions, which improves protocol responsiveness and 
stability. We believe that no quantitative performance comparison 
with PATCH is strictly necessary, because according to its authors, 
PATCH performance is between TOKEN and DIRECTORY, and 
LOCKE is better than both. It should be noted that the main 
motivation of PATCH is to reduce end-point traffic, which it 
successfully achieves. Nevertheless, as background motivation 
and according to the results presented in this paper, for on-chip 
systems it does not seem to be a fundamental issue.   

On the other hand, to maintain system scalability, unordered 
networks are essential, but coherence protocols should provide a 
method to offer some kind of ordering of requests. There are 
many proposals where different solutions are provided. One of the 
possibilities is to establish this order by adding information to the 
requests sent to facilitate their ordering at their destination. In 
Timestamp Snooping [24], a coherence protocol is proposed in 
which a logical timestamp is added to all requests. These requests 
are sent out-of-order and put back into order at their destination.  

Ordered requests may also be accomplished by using a physical 
structure through which requests may travel. One of the most 
simple and low-cost approaches is to embed a ring in the network 
and use it to transfer snoop messages. In order to address possible 
long response latencies or too many snoop operations, adaptive 
snooping algorithms are proposed in Flexible Snooping [34]. In 
these algorithms, depending on the chance of providing the line, a 
node receiving a snoop request will snoop first and then forward 
the request, or forward first and then snoop the operation. 
Moreover, if the node can prove that it will not be able to provide 
the line, it will skip the snoop operation, forwarding the request 
directly to the next node in the ring. However, any protocol using 
a ring as an interconnection network (either logical or physical) 
needs to send its snoop requests through it, forcing all requests to 
visit every node, which obviously means the loss of any 

possibility of parallelism with the snoop requests, thus increasing 
transaction latency. Trying to solve this problem, Unconstrained 
Snoop Request Delivery (UNCORQ) was proposed [33]. While 
requests are delivered using any network path, responses use the 
logical ring. A similar ring-approach, but inspired by token 
coherence, was used in [26].  

Similarly to LOCKE, Virtual Tree Coherence [11] uses a tree to 
maintain ordering. This coherence protocol keeps track of sharers 
of a coarse-grained region, and multicasts them through a virtual 
tree to enforce ordering. Virtual trees are embedded inside a 
physical network of the topology. The root of the virtual tree 
provides an ordering point needed to order requests. Note that 
other works, such as [8], use trees with Token coherence, 
however, not for ordering but to avoid deactivations in persistent 
requests. Therefore, the lack of responsiveness and potential 
instabilities that persistent requests incur are still present. 

7. CONCLUSIONS 
This work presents a new coherence protocol suitable for CMP 
on-chip interconnection network characteristics. The protocol 
augments token coherence protocol, avoiding potential 
instabilities induced by workloads or system configuration. The 
increased robustness is accompanied by a performance benefit. 
LOCKE can proactively separate true data sharing and 
synchronization among cores from spurious data movements. 
Clearly LOCKE’s benefits compensate its shortcomings, achieving 
a great scalability with aggressive out-of-order processors. In 
conclusion, LOCKE is competitive in terms of performance and 
energy footprint, not only with token but also with directory. 
LOCKE clearly demonstrates that the utilization of snoop-based 
coherence protocols is a suitable choice for managing CMP 
coherence, at least in systems with up to 16 aggressive out-of-
order processors in the chip. 
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