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Abstract

Supercomputer performance is highly dependent on its
interconnection subsystem design. In this paper we
study how different architectural approaches for router
design impact into system performance when running
real parallel applications. A thorough methodology has
been employed to quantify this impact. Architectural
router decisions have been chosen taking into account
the constraints of the underlying VLSI technology. Af-
ter that, an exhaustive evaluation of the interconnec-
tion network under standard synthetic traffic has been
carried out. Finally, an execution-driven simulation en-
vironment has been used to assess the consequences of
several router designs on the performance of the en-
tire machine. We will show that low-level decisions, as
the adequate selection of router’s arbiter, significantly
reduce the execution time of parallel applications. To
illustrate the effects of the router architecture on sys-
tem performance two benchmarks were selected: Radix
and MP3D.

1 Introduction

In the field of high-performance computing, distributed
shared-memory multiprocessors (DSMs) are becoming
widespread. These parallel computers implement a sin-
gle address space, either with coherent caches (SGI Ori-
gin 2000 [13]) or without them (Cray T3E [18]). The
communication time involved on fetching remote data is
one of the main overheads which limits the performance
of many parallel applications. Moreover, cc-NUMA ma-
chines impose additional overheads due to synchroniza-
tion amongst processes and coherence maintenance. As
processor computing power increases, communication
performance should increase accordingly in order to ad-
equately balance the system.
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Last decade’s network improvements were based
on the use of pipelined switching techniques, worm-
hole or virtual cut-through, which considerably re-
duce message latency by routing a message as soon
as its header reaches the router [6]. These techniques
make latency less sensitive to the distance in the net-
work provided that messages are long enough, facili-
tating the search for optimal topologies. Several re-
searchers recommended the use of low-dimensional di-
rect networks in the k-ary n-cube class [1, 7]. As a re-
sult, the use of wormhole-based bidimensional or three-
dimensional meshes and tori or limited-degree hyper-
cubes is overwhelmingly dominant in multicomputers
and DSMs [3, 11, 18].

The interconnection network should minimize mes-
sage latency, so routers must have a intra-node delay as
low as possible. Consequently, dimensional order rout-
ing (DOR) has been a common option due to its sim-
ple hardware implementation [22]. However, DOR net-
works exhibit poor behavior for medium to high loads
because of increasing link contention. Thus, the latest
routers use mechanisms such as larger buffer capacity,
adaptive routing and virtual channels in order to al-
leviate contention. The Cray T3E router uses these
three techniques [18]. Other routers such as the Intel
Cavallino[3], the SGI SPIDER [11], and the MIT Reli-
able Router [9] also employ a few virtual channels per
physical link with the latter implementing fully adap-
tive routing as well. These features improve throughput
significantly [8, 10], and may reduce the execution time
for bandwidth-limited parallel applications. However,
virtual channels and adaptive routing have been shown
to increment router delay [5].

Recent work on the communication demands of par-
allel application has shown that many applications are
latency sensitive, so it has been suggested that routers
should implement neither virtual channels nor adaptive
routing [24].

In [20] we proposed an adaptive virtual cut-through
router with lower clock cycle and node delay than its
oblivious wormhole counterpart. This was achieved by
considering the VLSI constraints during the architec-
tural design of the router. A critical element of any
adaptive router is the arbiter, which role is to match the
input requests with the available output ports. This is



a simple task in a DOR router as each input requests
only one of the outputs and, therefore, each output port
assignment is independent of the rest. Complexity rises
with adaptivity because each incoming message may
request one or more output ports. Besides, adaptive
routers add two or more virtual channels in order to
avoid message deadlock. This, at least, duplicates the
number of possible requests. Independent arbitration
for each output port may lead to multiple output re-
sources assigned to the same message. A centralized
arbiter can accept multiple input requests from each in-
coming message, matching them to all available output
ports. Obviously, this approach allows for the maxi-
mum number of packets to be transmitted from input
to output [21]. However, it is easy to forecast a high
VLSI implementation cost. There are other approaches
to reduce its complexity including the following two:

e A distributed arbiter per input channel accepting
multiple output requests but servicing only one in-
put channel per cycle. A similar option was used
in the Cray T3E router [18].

e A distributed arbiter per output port that forces
each input to send a single request per cycle. This
is the approach taken in our adaptive router [20].

From the architectural point of view, these two ap-
proaches penalize throughput in comparison to the cen-
tralized option. To properly evaluate the virtues of a
router design we need to consider, not only the net-
work behavior in terms of cycles, but also the VLSI
cost, that determines the network clock cycle as well as
the demands of parallel applications that will make use
of that network.

According to this methodology, three arbiters were
designed using VHDL tools. We then carried out a thor-
ough evaluation in terms of node performance, network
performance and execution time of parallel applications.
The differences among these arbiter implementations
clearly translate into gains both at the network level
and at the application level.

The rest of this paper is organized as follows. Section
2 will present the motivation and framework for study-
ing the router’s arbitration of messages as well as their
architectural details. Section 3 will provide VLSI cost
values for each arbiter and their corresponding impact
on node performance. Section 4 extends the evaluation
from one node to a given size network and Section 5
studies the impact of network performance in the execu-
tion time for two parallel applications. Finally, Section
6 will summarize the findings of this work.

2 Motivation and Related Work

As mentioned above, our interest on arbiter’s evalua-
tion originated from the VLSI design of an adaptive
virtual cut-through (VCT) router [20]. Thus, we will
first present an overview of such a router. This router
was specified using the hardware description language
VHDL.

2.1 The Adaptive Bubble Router

Internal router components are clocked synchronously
but communication with neighbor routers are asyn-
chronous in order to avoid clock skew problems. The
main blocks of the proposed router architecture are
shown in Figure 1. Each input link has two FIFO
queues associated to it, namely adaptive queue and es-
cape queue. Each of the input queues is conceptually
the same as a virtual channel in a wormhole-based con-
text. As we assume a VCT context, each queue must
be able to store at least one packet; we measure the
capacity of a queue in terms of packet units.
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Figure 1: Router organization for a 2-D torus.

Input queues and output ports are connected
through a crossbar. As link multiplexing is performed
on a packet-by-packet basis, a virtual channel controller
is not required at the crossbar output.

Packets can move from an adaptive queue to an
escape queue or viceversa, fulfilling the following
premises:

e Packets travelling through escape queues use DOR
paths and the access to each dimensional ring is
regulated by Bubble flow control [4]. This dif-
fers from VCT in that packet injection into the
ring is only allowed if there are at least two
empty packet units (Bubble condition) in the set
of queues corresponding to the dimension (and di-
rection) requested by the incoming packet. The
first free packet unit must be located at the re-
quested queue, and our implementation checks lo-
cally the existence of the second free packet unit.
This policy guarantees deadlock-freedom in each
unidirectional ring.

e Packets travelling through adaptive queues can use
any minimal path and are regulated by virtual cut-
through flow control.

Packets using a escape queue can freely use, if avail-
able, an adaptive queue at the next router. The re-
sulting routing algorithm is minimal fully adaptive and
reduces hardware requirements with respect to previous
proposals.



A routing unit, attached to each input queue, de-
codes the packet header flits and determines the list of
possible outputs. The selection function examines the
possible outputs in a fixed order, which for 2D routers
is the following:

1. The adaptive queue of the neighbor along the in-
coming dimension, if the first offset is not zero.

2. The adaptive queue of the neighbor along the other
dimension, if the second offset is not zero.

3. The escape queue of the neighbor along the first
dimension, if the = offset is not zero or the escape
queue of the neighbor along the second dimension
if the z offset is zero. Prior to requesting an escape
queue, the routing unit (RU) verifies the Bubble
condition.

Thus, messages only turn when they encounter a
busy link or they exhaust their path in that dimen-
sion. When a request is granted, the RU adjusts the
header’s phits so that the offset of the granted dimen-
sion is decremented, and sent first. Finally, it is worth
mentioning that the operations carried out by the rout-
ing unit depend on packet destination but they do not
depend on the queue storing the packet. Thus, the RU
is identical for both adaptive and escape queues, except
for the need to check the bubble condition.

The arbitration process in a k-ary n-cube involves
2n + 1 input queues and n + 1 output ports, that is 9
input queues and 5 output ports in a 2D torus. The ar-
biter receives requests from each input’s RU, performs
the matching of requests to outputs, then sends the cor-
responding signals to the successful input(s) and set the
crossbar’s datapath. Thus, any variation on the ar-
biter’s design impacts in these other two components
and we will describe their interaction for each router
alternative.

For example in a 2D router, the complexity of ar-
bitration is given by the maximum number of requests
which is 27, that is three simultaneous requests from
each of the 9 input queues. Considering both the selec-
tion function described above and the status of output
ports and their adjacent queues, the arbiter may grant
up to 5 of those requests.

2.2 The Output Arbiter Crossbar (OAC)

Our initial approach, called Output Arbiter Crossbar
(OACQ) limits each routing unit to request a single out-
put port per cycle from its set of possible outputs.

As there is only one request per input, the complex-
ity of the OAC arbiter is similar to that of the DOR’s
arbiter: (2n+1) input requests directed to any of the
(n+1) ports. This unit grants as many requests as pos-
sible, arbitrating amongst inputs contending from the
same output. The (2n + 1)x(n + 1) crossbar can be
subdivided into (n + 1) multiplexers of (2n + 1) inputs.
Thus, arbitration and switching logic is distributed for
each output port as shown in Figure 2.

The number of requests per input queue is reduced to
one by applying the selection function at the RU. Each

cycle, the RU will request one of the possible outputs,
in the order given by the selection function, until one
of them is granted.
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Figure 2: Partial Router Structure for Output Arbiter
Crossbar (OAC).

2.3 The Symmetric Arbiter Crossbar (SAC)

Tamir describes a switch in which each input port con-
tends for multiple output ports but needs only one for
full utilization [21]. Similarly, each output port con-
tends for multiple input ports and needs one for full
utilization. Thus, the arbitration task is symmetrical
with respect to inputs and outputs. The arbiter sees all
the requests and it takes a combined decision regard-
ing output selection for each input and contention for a
given output.

Tamir proposed a Wave Front Arbiter as the one
shown in Figure 3, in which each row r; represents the
set of requests from input ¢, and each column the com-
peting requests for output j. The arbitration cells for
each request reached their final configuration in a wave
form that moves diagonally from the top left to the bot-
tom right corner of the arbiter. Although this scheme
achieves good performance [21] is not exempt of fairness
and starvation anomalies. Tamir’s solution is based on
circulating a token which selects the row and column
with highest priority. The circulating token is imple-
mented using a circular shift register.

Figure 3: (a)Wave Front Arbiter 4x4 and (b)arbiter’s
basic cell unit

Tamir’s arbiter gives equal priority to all requested
outputs. In other words, the selection function has
no fixed priorities but the priority (first output exam-
ined) rotates as the token circulates. This differs from
our router proposal in which messages only turn when
blocked in their current dimension. Besides, escape



queues have always low priority, thus they should al-
ways be located at the end of the wave front. Our SAC
arbiter is based on the WFA but it reorders the output
columns in such a way that the selection function is pre-
served. Thus, the wave’s starting cell changes from row
to row each cycle, but starts always in the first output
column.
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Figure 4: Partial Router Structure for Symmetric Ar-
biter Crossbar (SAC).

2.4 The Sequential Input Crossbar (SIC)

The third approach is similar to OAC in that simpli-
fies arbitration by reducing the number of processed
requests per cycle. In this case, the arbiter services
only one input’s routing unit (Header Decoder) per cy-
cle. Incoming messages are sequentially serviced in a
round-robin fashion. Thus, in each cycle the arbiter
only checks the availability of the requested outputs by
the current HD and, if two or more are available, it
selects the one with higher priority.

If we draw a schematic design of a router using the
SIC arbiter it will look alike the router of Figure 4.
But internally is much simpler as it only examines the
requests from one input at a time, so arbitration logic
such as the WFA is replaced by a simple token structure
that selects the next input to be serviced.

3 Arbitration and Node Performance

The three arbiter schemes have been designed and in-
corporated into the Adaptive Bubble Router. This sec-
tion shows the impact of each scheme in the router fea-
tures, in terms of VLSI cost and node performance.

3.1 Arbiter and Router Implementation

We have designed the three arbiters using the Synop-
sys v1997.08 synthesis tool. Then, we mapped our de-
sign into 0.7 um (two metal layers) technology from
ATMEL/ES2 foundry under typical working conditions
with standard cells from Es2 Synopsys design kit V5.2.

Although the obtained results for area and time are
estimated by Synopsys in a pessimistic way [23], they
provide us with values very close to the physical domain.

Three channel widths were considered: 9 (8 data bits
+ 1 tail bit), 17 and 33 bits. The main impact of the
channel width is on router area and pin count but it
does not impact on the arbitration complexity or clock
cycle. From now on, we will consider that the channel
width is 33 bits, that is 4 bytes per phit plus 1 tail bit.

For SIC and SAC, the arbiter unit exhibits the high-
est delay, imposing the router’s clock cycle. OAC ar-
bitration, though, exhibits a much shorter delay than
SIC, in spite of accepting more requests, because the se-
lection function is already applied at the Routing Unit.
Even after integrating the arbitration and crossbar set-
up in a single stage, we obtain a through delay simi-
lar to that of the RU stage, thus resulting in a well-
balanced pipeline. Consequently, the interaction be-
tween the routing unit, the arbiter and the crossbar
varies for each alternative, resulting in different pipeline
organizations. Figures 5 and 6 show the pipelines for
OAC and SIC/SAC respectively.
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Figure 5: Bubble router pipeline with OAC arbitration
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Figure 6: Bubble router pipeline with SIC/SAC arbi-
tration (Critical Paths for 2-D Router).

The cost values for 2D and 3D router nodes are
shown in Table 1. As expected, SAC requires the most
area and exhibits the highest delay. Both OAC and SIC
reduce arbitration time significantly as well as arbiter’s
area.

3.2 Single Node Performance

Each router performance depends not only on the arbi-
tration time, but also on the ability to match multiple




| [ 2D [ 3D
Arbiter | Router Arbiter’s Router’s Router Arbiter’s Router’s
Type Cycle(ns) | Area(mm?) | Area(mm?) || Cycle(ns) | Area(mm?) | Area(mm?)
OAC 5.65 14.33 43.72 6.28 24.5 66.83
SAC 8.45 21.68 52.04 11.69 39.14 71.59
SIC 6.19 8 32.5 7.5 16 50.1

Table 1: Area and time values for each arbiter scheme in a 2-D and 3-D router node under typical conditions.

requests to the available outputs. Although the phys-
ical implementation would be the best way to assess
the performance of a router as part of a network in a
parallel system, accurate results can also be obtained
by employing simulation tools. We used a register level
transfer (RTL) simulator called SICOSYS [19], which
reflects the implementation cost in terms of pipeline
stages and clock cycle. This simulator provides accu-
rate results which are extremely close to those obtained
through VHDL simulation [20]. This approach exhibits
lower simulation times, thus reducing the design cycle.

All our experiments applied the component delays
previously obtained, and set the input queues capacity
to 4 packets. The first experiment stressed the node
capabilities by loading all its input channels to their
maximum rate. To do so, we attached injection and
consumption virtual units to each input and output link
of the router node. A continuous stream of packets was
supplied and node throughput recorded. Considering a
network with a large radix k, the number of messages
delivered to the local node is negligible when compared
to the volume of transit traffic. Hence, node throughput
is limited to 2% d x B, where d represents the number of
dimensions and B the link bandwidth. The incoming
traffic emulated the behavior of messages in a real net-
work under uniform random traffic, fulfilling the rules
dictated by the Adaptive Bubble Routing algorithm.

Figures 7 and 8 shows the maximum throughput
achieved in 2D and 3D routers as a function of packet
length. Routing the header phit takes one or two cy-
cles more than forwarding a data phit due to the pass
through the routing and arbitration stages. Thus, be-
tween each packet transfer the link will be idle for one
or two cycles. Besides, short messages impose high
demands into the arbitration process: the number of
arbitrations increases as it is more likely that multi-
ple header phits are simultaneously requesting multiple
outputs. As expected, SAC shows the highest through-
put followed by OAC.

Current networks deal with packets of less than 100
bytes and phit sizes in the order of 4 bytes. Thus, pack-
ets are in the range of 10 to 20 phits [18],[11]. We have
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4 Network Analysis

This section is devoted to evaluate the impact of the
routers in the network behavior under synthetic traffic.
Synthetic loads are useful when the architect goal is to
stress the network capabilities by considering that no
other bottleneck exists on the entire machine except the
subsystem under study. Besides, analysis of real traf-
fic shows that many applications exhibit patterns that
are quite close to synthetically generated patterns[24].

selected a fixed packet length of 16 phits (64 bytes). |

Table 2 shows the base latency (1-hop path) and
maximum throughput for each alternative. OAC has
the lower latency, due to its shorter node pipeline. As
expected, the more flexible arbiter achieves the highest
throughput and the more sequentialized arbiter, SIC,
the lowest. However, the differences are not as signifi-
cant as expected.

[ OAC | SAC | SIC |
2D [ 3D [ 2D [ 3D | 2D | 3D
T 20 | 20 | 21 | 21 | 21 | 21
Latency(cycles)
TH max 145 [22.0 | 15.0 | 22.7 | 13.0 | 20.0
(bytes/cycle)

Table 2: Single adaptive Bubble node performance for
different arbiter designs.



We will later see, in Section 5, how the performance
under synthetic traffic truly translates into system per-
formance when executing real parallel applications.

The results presented below correspond to two torus
networks with 64 nodes, an 8-ary 2-cube and a 4-ary
3-cube. We considered them under two different mes-
sage destination patterns: random, and specific permu-
tations. In the first case, all the nodes have the same
probability of becoming the destination for a given mes-
sage. However, two message length distributions were
considered: short messages and bimodal which com-
bines short and long messages. The latter resembles the
traffic generated in DSM multiprocessors in which short
messages correspond to requests (or invalidation prim-
itives for cc-NUMA), and long messages correspond to
cache lines.

For the specific permutation experiments, three traf-
fic patterns were taken into account: matrix transpose,
bit reversal, and perfect-shuffle. All three cases are fre-
quently used in numerical applications, such as in ADI
methods to solve differential equation systems and in
FFT algorithms, among others. In all the experiments,
the temporal traffic generation is uniform and randomly
distributed over time.

Table 3 shows the maximum throughput of a 2D
and 3D adaptive Bubble networks using each arbiter’s
implementation under different traffic patterns. The
results in terms of phits/cycle are quite similar. SAC
always outperfroms SIC and OAC due to its ability to
match more than one request per cycle. The differ-
ences become more significant when considering the cy-
cle (or arbitration) time. The OAC alternative, with
the shortest arbitration time, clearly outperforms the
other arbiters for any traffic pattern. Similar response
is observed in a 3D network. In this case, SAC achieves
better performance in phits per cycle for any of the three
permutations when compared with OAC. Nevertheless,
these minor benefits achieved by the most flexible ar-
biter, SAC, result in lower actual throughput due to
their much higher implementation costs.
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Torus under Random Traffic (a) Structural Performance
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These costs are also reflected in network latency.
Firstly, because both SIC and SAC add one more stage
to the node’s pipeline. Secondly, the clock cycle dif-
ferences results in large differences for packet latency
under any traffic pattern. Figure 9 shows network per-
formance from two different angles: from the architec-
tural point of view and from the implementation’s one.
From the former point of view, there are minor gains
achieved by OAC due to its better balanced pipeline.
Notwithstanding, implementation constraints are not to
be overlooked as they drive the final design.

Similar behavior was observed for all other traffic
patterns in 2D and 3D topologies. For the sake of sim-
plicity we will only show latency results, in Figures 10
and 11, for bimodal traffic and matrix transpose per-
mutation.
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5 System Performance Under Real Loads

Finally, we have evaluated the impact of the arbiter’s
design when executing real parallel applications. This
evaluation is carried out by linking our RTL network
simulator SICOSYS to Rsim [14], a DSM multiprocessor
simulator. Figure 12 shows the main elements of this
simulation environment. Rsim emulates a cc-NUMA
architecture which is highly configurable. We have used
the default values included in the Rsim distribution [15].

Three network configurations, one for each arbiter’s
alternative were used in these experiments. As previ-
ously mentioned, we set the channel width to 4 bytes.
Assuming a cache line of 64 bytes and cache manage-
ment commands of 16 bytes, this results in data pack-
ets of 20 phits and request and invalidation packets of
4 phits. Another important parameter is the speed of
the processor relative to the network speed. We have



| Traffic | Random | Bimodal | M. Transpose | P.Shuffle | Bit Reversal |
Arbiter Phits/cycle | Phits/ns | Phits/cycle | Phits/ns | Phits/cycle | Phits/ns | Phits/cycle | Phits/ns | Phits/cycle | Phits/ns
2D | OAC | 41.50 7.34 35.51 6.28 28.44 5.03 37.70 6.67 34.87 6.17
SIC 40.47 6.54 31.50 5.08 28.00 4.55 35.24 5.69 32.57 5.26
SAC 42.40 5.02 33.85 4.01 29.95 3.54 38.22 4.52 35.57 4.21

3D | OAC 50.30 8.00 43.08 6.86 44.51 7.19 45.40 7.29 41.58 6.66
SIC 47.07 6.28 39.85 5.31 42.20 5.62 45.75 6.10 41.82 5.57
SAC 50.56 4.33 42.48 3.63 48.12 4.12 49.04 4.19 44.41 3.80

Table 3: Maximum achievable throughput for 2-D and 3-D networks for the three arbiter designs under various

traffic patterns.
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Figure 12: Execution Driven Simulator.

consider a 600 MHz processor, like the new release of
the alpha microprocessor [12], which is the family used
in the Cray T3E system [18]. Table 4 shows the rel-
ative speed of the processor with respect to the three
networks, using the clock period previously calculated.
Although these values highly depend on the technology
used (0.7 pum), they are quite realistic. In fact, the Cray
T3E system [18] has a relative processor speed approx-
imately 8 times faster than the network.

Clock Speed(MHz) | Relative speed
Arbiter | 2D 3D 2D 3D
OAC 177 159 3.39 3.78
SAC 162 133 3.70 4.51
SIC 118 85 5.08 7.05

Table 4: Relative speed of a 600 MHz processor node
versus network speed.

Finally, we fed the simulator with two applications
selected from the SPLASH [16] and SPLASH-2 [25]
suites: Radix and MP3D, which had already been
ported into Rsim by researchers at Rice University [17].
These two applications were selected because they have
low data locality, so both are very demanding.

5.1 Performance Using Radix Benchmark

Radix is an integer sorting kernel described in [2]. Radix
has three distinctive phases: data distribution, kernel
computation and results verification. The permutation
of keys generates an all-to-all communication pattern.
In order to limit simulation time, we selected a prob-
lem size below the suggested by default. The integer

Time (Cycles)

set has 512 K elements and the radix is 1024. We also
simplify key generation by providing the keys as an in-
put file. This changes won’t affect the metrics under
consideration.

The kernel computation phase is the longest one,
having execution times two order of magnitude larger
than the other two phases altogether. Thus, we will
present figures for this phase only.

Figure 13 shows the execution time for two 2D net-
work sizes: 16 and 64 nodes. As expected, execution
time decreases when increasing the number of nodes.
This is because the communication to computation ra-
tio is P + (P — 1), being P the number of processors.

Central Phase Time for Radix (16 nodes)

Central Phase Time for Radix (64 nodes)
BOE+06— |
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MEM
WBUSY

Time (Cycles)

Figure 13: Radix execution time for (a) 4 x 4 Torus and
(b) 8 x 8 Torus.

Obviously, the system with OAC network executes
faster than with SIC or SAC networks. The SAC sys-
tem, for 4 x 4 Torus (8 x 8 Torus), has an execution
time 40% (48%) slower than the OAC system and the
SIC system is 16% (20%) slower.

Relating these gains to the clock cycles and network
performance estimated under synthetic loads is not a
simple task from a quantitative point of view. Never-
theless, the trends exhibited under synthetic loads are
qualitatively translated into the network behavior un-
der real traffic patterns. Real loads differ from synthetic
ones in that load patterns varies during execution, both
in injection rates as well as on the selection of destina-
tions. At low loads, the application is more sensitive to
base latency. At high loads the application is more sen-
sitive to network throughput. Thus, we need to observe
the evolution of network traffic over time.

Figure 14 shows how network throughput (the num-
ber of data delivered per time unit) oscillates over time
for OAC and SIC networks. We can identify two phases
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Figure 14: Reply net load evolution for Radix in a 4 x 4
torus.

which are throughput-bounded, with three other minor
phases in between with low loads. The OAC network
delivers 10 phits/cycle at saturation loads while SIC is
only able to reach 8.5 phits/cycle. This reduces the
throughput-bounded phase length significantly as seen
in Figure 14 (end of phase has a b tag). Besides, the
OAC system reaches this phase earlier than SIC due
to its smaller network latency. The combined effect of
lower latency and higher throughput results in a reduc-
tion of the execution time greater than that due to the
relative speeds of both networks (SIC’s clock is only 9%
slower than OAC).

Finally, we have run Radix in a 3-D network (4 x 4 x
4) with the execution times shown in Figure 15. The
impact of each router type is similar than for 2D. If we
compare the two 64-node networks (Figure 13.b versus
Figure 15) we can see that 2D networks reduce Radix’s
execution time for SAC and SIC when compared with
their 3D counterparts.

On the other hand, the 3D OAC system presents the
shortest execution time, slightly lower than for 2D. If
we look back to Table 3 we see that both OAC and SIC
exhibit higher throughput for 3D configurations.

Central Phase Time for Radix (64 nodes Torus 3-D)

Time (Cycles)

Figure 15: Radix execution time for 4 x 4 x 4 Torus.

5.2 Performance Using MP3D Benchmark

MP3D [16] is a particle-based wind tunnel simulation
used for aeronautical tests. The MP3D code presents
no data locality, thus being quite sensitive to network
delay. We selected the default problem size: 50,000
particles over a geometry of 2353 cells (test.geom[16])
but the number of iterations was reduced to 2 in order
to limit our simulation time.

Similarly to Radix, we have simplified the initial-
ization process which is not dependent on network re-
sponse, and focus on the execution time of the 2 iter-
ations. Figure 16 shows the execution time for the 16
node network size.

As expected, for 4 x 4 Torus the SAC system, has an
execution time 49% slower than the OAC system and
the SIC system is 17% slower as well.

Central Phase Exgcution Time for Mp3d (16 nodes)
7E+06T —

Time (Cycles)

Figure 16: Mp3d execution time for 4 x 4 Torus.

Figure 17 shows how network throughput (the num-
ber of data delivered per time unit) oscillates over time
for OAC and SIC. The graph presents a clear load pat-
tern for each of the 2 iterations. Two phases are commu-
nication intensive: a wide phase with a delivered load
around 5-7 phits/cycle and a narrow which reaches 8
phits/cycle in both networks. By comparing OAC and
SIC we can see that they deliver similar throughput
which indicates none of them reached loads above their
saturation points. In this case, network performance at
very low loads is critical. We can see that at 63 million
cycles (initialization phase) both systems reach the end
of the communication phase with little advantage for
OAC. However, the application reaches the next com-
munication intensive phase much earlier for OAC than
for SIC. This indicates that the code executed in be-
tween was very sensitive to base latency which is lower
for OAC as shown in sections 3 and 4.

6 Conclusions

The architectural design of a router cannot be carried
out in isolation from either VLSI constraints or real ap-
plications demands. The implementation of an adaptive
router motivated the low-level analysis of alternative
adaptive arbiter’s implementations.

In order to evaluate the impact of the arbiter’s design
at all levels in a parallel system a thorough methodol-
ogy has been used. Firstly, we produced the detailed
VLSI designs for an Output Arbiter Crossbar (OAC),
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Figure 17: Reply net load evolution for MP3D in a 4 x4
torus.

a Symmetric Arbiter Crossbar (SAC) and a Sequen-
tial Arbiter Crossbar (SIC). This approach provided a
fair VLSI cost comparison of each arbiter under similar
router conditions. Secondly, detailed simulation in RTL
environments, was carried out to study the impact of
arbitration in the node and network response. Finally,
we evaluated the impact of this router element on exe-
cution time of two applications from the SPLASH-1/2
suites.

In single node experiments, the OAC arbiter exhibits
the best performance in bytes/ns. Although SAC is able
to improve the number of bytes/cycle, the OAC presents
the best trade-off between number of input-to-output
assignments per cycle and the arbitration time. Be-
sides, the OAC router present a well balanced pipeline
which has one stage less than the other two alternatives.
Similarly, network performance is best for OAC for any
synthetic pattern due to both its shorter pipeline and
its higher clock frequency.

Parallel applications clearly benefit from the higher
throughput and lower base latency exhibited by OAC.
It is not easy to translate network performance under
synthetic loads into direct gains in real system perfor-
mance for a given application. But, by analyzing in
more depth the communication demands of the two se-
lected applications, the connections between synthetic
and real loads can be drawn. Radix execution is signifi-
cantly shorter for OAC due to its high network through-
put. MP3D execution is affected by base latency in-
stead. In any case, the impact of design decisions at
low-level on the execution time of real applications is
higher than it could be expected.
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