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Abstract

The Midimew network is an excellent contender for implementing
the communication subsystem of a high performance computer.
This network is an optimal 2D topology in the sense there are no
other symmetric direct networks of degree 4 with a lower average
distance or diameter. In fact, it reduces the diameter of the well
known torus network by approximately √2 . Although the
topology was proposed and analyzed a decade ago, the lack of
simple deadlock avoidance mechanisms prevented its utilization
up to date. This study solved this drawback by applying the
Bubble switching mechanism, a low cost deadlock-avoidance
strategy developed by the authors.  Moreover, by using routing
tables we can configure our Virtual Cut-Through adaptive router
to implement either a torus or a Midimew network. Thus, we can
exploit the topological advantages of Midimew networks by
simply changing the disposition of the wrap-around connections
of its torus counterpart, without increasing the network
implementation cost. To prove this assertion, we have carried out
a thorough evaluation, from the hardware cost of the router to the
parallel system performance under real loads.

1. Introduction
The topology is one of the key design factors of an
interconnection network. There is a large body of theoretical
research on optimal topologies, based on graph theory metrics
such as average distance, network diameter, and bisection
bandwidth, among others. These parameters have a direct impact
on network performance. For example, average distance is
reflected on the average network latency, network diameter
determines the largest base latency, and bisection bandwidth
reflects the communication capacity between any two halves of
the network when dealing with random or non-local traffic.

Other implementation factors such as wiring density and chip pin-
outs should be also taken into account when searching for an
optimal topology. In particular, a milestone performance study [5]
showed that lower dimensional networks, such as 2D and 3D tori,
outperform higher dimensional ones such as the hypercube under
constant wiring density constrains.
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The Midimew (MInimal DIstance Mesh with Wrap-around links)
[2] is an optimal topology in the sense that there is no direct
symmetric network of degree 4 with lower average distance or
diameter. Consequently, the Midimew seems an optimal
candidate for building interconnection subsystems, provided that
the complexity of its hardware implementation does not overtake
the topological gains. However, the Midimew is not deadlock-free
even for DOR (Dimension Order Routing) routing and up to now,
there was not an easy mechanism to prevent deadlock for this
topology.

In this paper we resolve this problem by adapting the mechanism
recently proposed in [15].  Firstly, we provide the first hardware
description for a Midimew router. Furthermore, by using routing
tables, a viable solution under current VLSI technology, we
provide a Virtual Cut-Through (VCT) router which can be
configured to implement the most common planar topologies:
mesh and torus, as well as the Midimew. In other words, we can
rearrange the wrap-around connections of the torus to implement
a Midimew at will. Obviously, the latter will be our preferred
choice so that parallel applications can take advantage of the
characteristics of this optimal topology.

Secondly, we used a thorough methodology to evaluate the
advantages of choosing the Midimew interconnect, from the
hardware cost of the router to the parallel system performance
under real loads. The results from this evaluation will prove the
practical benefits of the Midimew topology, when used to build
the interconnection network of a cc-NUMA system. This work
will show that the Midimew network improves the system
performance when compared to that using a torus network,
without added costs.

The rest of the paper is organized as follows. Section 2 reviews
the characteristics of the Midimew network. Section 3 introduces
our solution to deadlock in Midimew networks. Section 4
describes its router implementation. Section 5 details the
evaluation of this topology under a cc-NUMA platform running
parallel application benchmarks and discusses the results. Finally,
in Section 6 we draw some conclusions.

2. The Midimew Network

The Minimal Distance Mesh with Wrap-around links, or
Midimew for short, belongs to the family of circulant graphs of
degree 4, CN(a,b), in which every node i in the graph is connected



to nodes (i ± a)Mod N and (i ± b)Mod N, being N the size of the
network. The Midimew corresponds to the family:
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This family has the lowest diameter and average distance of any
regular and symmetric degree-4 graph [2]. (With • representing
the ceiling function).

This circulant graph can be transformed into a mesh-connected
network with wrap-around links as shown in Figure 1. This
transformation provides good embeddability for parallel
applications and a planar representation with a minimum number
of crossing links. The figure shows a rectangular Midimew, in
which the network size N must be a multiple of either a (which is
b-1) or b. An algebraic methodology for the construction of
Midimew networks of any size can be consulted in [2].

2.1-Topological Comparison
We compare the Midimew with other planar topologies such as
the 2D mesh and the 2D torus. Their topological properties are
shown in Table 1.  For an exhaustive comparison, please refer to
[2].

For large networks, the diameter ratio between the torus and the
Midimew is approximately the square root of 2. In other words,
by only changing the disposition of the wrap-around connections
the diameter is reduced up to 30% in relation to the torus network.
The average distance is also reduced, although not as
dramatically. For example, in a 256-node network the average
distance decreases from 8.3 in the torus to 7.51 in the Midimew.

The presence of wrap-around connections in both the 2D torus
and the Midimew tangles its mapping into a 2D layout.  Solutions
to the Midimew case have been proposed having a minor impact
on cost and channel delay [8].

1

2

3

4

5

6
7

8910
11

12

13

14

15

16

17

18

19

20

21

22
23

24 25 26
27

28

29

30

31

0

 (a)  

228 31 5

15

3024 27

11

1

18

2623

14

29

2216 19

21

25

8

7 10

3 6

4

0

12

9

13

17

20

(b)

Figure 1. (a) Circulant graph C32(4,3) and (b) its transformation into a mesh with wrap-around links.
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Table 1. Comparison of planar topologies (• ceiling function and • floor function).



In terms of scalability, all networks can be easily scaled up by
adding additional rows or columns. In the case of the torus and
Midimew such addition only requires a change on the wrap-
around connections. Moreover, in the case of the Midimew it
can be possible to add any number of nodes, being this a clear
advantage over meshes and tori.

2.2 Routing in Midimew Networks.

In a planar network, we can express the path from a given
source to its destination as a pair (∆x, ∆y)  of signed
displacements which represent the number of hops required in
each dimension to reach the destination node.  The pair (∆x, ∆y)
is usually called the Routing Record (RR) and it constitutes the
packet header. When the packet arrives at a router, the header is
examined in order to select the next output channel, and then the
router will update the RR to reflect the current distance to its
destination. A packet with a header value (0,0) has completed its
path, thus being at the destination node.

(b)  (k1 x k2)Mesh

∆x:=(source mod k
2
)-(dest mod

k
2
);

∆y:=(source div k
2
)-(dest div

k
2
);

(a) N-node Midimew

 b := ceill(sqrt(N/2));

 m := abs(source-dest);

 If (dest <= source)

      sign := -1;

 else

      sign := 1;

 end if;

 If (m> N div 2)

      sign := -sign;

      m = N-m;

 end if;

 y0 := (m mod b);

 x0 := (m div b) - y0;

 y1 := b + y0;

 x1 := x0 - (b-1);

 If (y0 = 0 or x0 < y1)

      ∆y := y0;

      ∆x := x0;

 else

       ∆y := y1;

       ∆x := x1;

 end if;

(c)  (k1 x k2) Torus

   ∆x  := (source mod k
2
) -

(dest mod k
2
);

   If (∆x > k
1
/2)

         ∆x := k
1
 - ∆x;

   else if (∆x < -k
1
/2)

         ∆x := k
1
  + ∆x;

   end if;

   ∆y  := (source div k
2
) -

(dest div k
2
);

   If (∆y > k
2
/2)

         ∆y := k
2
 - ∆y;

   else if (∆y < -k
2
/2)

         ∆y := k
2
  + ∆y;

   end if;

Table 2. Routing record calculation for mesh, torus and
Midimew.

Table 2 shows the algorithm that derives these displacements
from the values source and dest for the midimew, mesh and
torus topologies.  The algorithm for the Midimew relies on the
node enumeration of the circulant graph as shown in Figure 1.
The other two rely on the network enumeration in which the
node at row i and column j is labeled with the number (i+ k2*j).

This algorithm must be implemented in hardware in order to
provide a fast packet generation. Thus, the complexity of the
algorithm may increase the time needed to compose the header.
The operations mod and div, if the divisor is not a power of 2,
represent the higher cost (tens of cycles) compared to the basic
operations such as add, subtract or  compare (one cycle each).

The values k1, k2, b and source are fixed when the network is
configured, thus some calculations are not required for each new
packet, but all need to execute one mod and one div operations.
Thus, although the Midimew has the longest RR algorithm, the
time differences between the three topologies are not significant.
However, if the system enumerates the nodes in a different way,
the complexity of calculating the RR will change.

Alternatively to the RR method, each router can use a routing
table, which has an entry for each destination node in the
network listing the output channel(s) that will get the message
closer to its destination. In this case, the destination node,
contained in the header, is used to index the routing table and
obtain the output. This method presents an uniform routing cost
for any network type; thus, we have chosen it in order to
provide a fair comparison among the three topologies.

We need to initialize each node’s routing table when the network
starts up. Although this requires additional router-specific
messages or some other mechanism for establishing the contents
of the routing table, this turns out to be an advantage as we can
also modify the table contents in the presence of network faults,
making packets navigate around them. In fact, both the S3.mp
[11] and the Cray T3E [16], among others, use full table routing.

The same RR algorithms that calculates the routing record for a
packet going from source to dest (see Table 2), can also be used
to generate the contents of the routing tables. Each table
contains 4 bits per node entry that indicate the dimension and
the direction of travel. For example, the entry 1010 indicates the
message can use either +x or +y, 0011 indicates the x dimension
is exhausted (first bit is 0) so it must advance using the -y output
channel. The entry for its own node number is 0000, indicating
the message has reached its destination.

The advances in VLSI technology allow for large routing tables
(hundreds of entries with 4 to 8 bits per entry) to be easily
incorporated into a router chip. Besides, the access to such
tables has a similar delay that the decoding of the routing
record, although it requires larger silicon area. The table’s size
may limit network scalability for networks with thousands of
nodes, but this can be solved by using hierarchical tables that
route packets from one subnet to the next [6].

3. Deadlock Freedom in Midimew Networks
Parallel architectures have not capitalized on the topological
gains of the Midimew network because there was no simple
deadlock-avoidance mechanism for this topology. In this section
we will discuss the solutions to this problem.

It’s well known that the wrap-around links of the torus double
the bisection bandwidth in comparison to that of the mesh. By
doing so, the network forfeits deadlock freedom, even for DOR
routing, as the wrap-around links introduce dependency cycles.
Such cycles also occur in a Midimew network so that deadlock
must be prevented for both DOR and adaptive routing.

A common approach to eliminate these dependencies is to break
the cycles by using two virtual channels as shown in [4].  In a
Midimew network, though, channel dependencies are not
limited to a single row or column as in the torus, but they vary
in length and shape depending on the network size N and the
parameter b derived from it. Figure 2 shows two examples for N
equal to 16 and 18.



We can see that the number of x-rings and y-rings created by the
wrap-around links varies considerably from one network size to
the next. In the case of the rectangular Midimew shown in
figure 2(a), the y-rings resemble those of the torus, while the
single x-ring interconnect all rows, forming a Hamiltonian
cycle. In figure 2(b), though, the x-rings resemble those of the
torus, and the two y-rings interconnect 3 columns each. Thus, it
is difficult to establish what is the equivalent to the wrap-around
transition from one virtual channel to the next. Furthermore,
when we scale the network up the number of x-rings and y-rings
changes and it is difficult to predict where the wrap-around links
will be.

Recently, we have proposed an extension to virtual cut-through
called Bubble flow control [15] which avoids packet deadlock in
dimensional rings. Instead of statically breaking the cyclic
dependencies, it limits the entry of packets to any dimensional
ring in such a way that the buffer space of this ring will never be
completely exhausted. In other words, a dynamic cyclic
dependency within a dimensional ring cannot occur because
there is always a free buffer within that ring.

 Figure 3 illustrates the use of Bubble flow control in a
dimensional ring. Packets (shaded queue units) are allowed to
move (shaded arrows) from one queue to another inside the ring
as per virtual cut-through switching. However, packet injection
is only allowed at a given router if there are at  least two empty
packet buffers in the dimension (and direction) requested by the
packet. By doing so, we guarantee that there is always at least
an empty packet buffer in the ring. That free buffer acts as a
bubble, guarantying that at least one packet is able to progress.

This mechanism is applicable to a network if we can easily
identify which routing decision causes a packet to enter a
network ring, and apply bubble flow control at that point. For
DOR routing, packets enter a new dimensional ring when they
are injected into the network or when they change dimension
from X to Y or vice versa. This condition remains unchanged
for any size Midimew, independently of the length of its x-rings
or y-rings.  So, there is no problem to identify where to apply
the deadlock avoidance mechanism. Besides, this condition is
similar for both torus and Midimew topologies so they will have
the same complexity.
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Figure 2.- Location of  Y-wrap-around links for Midimew networks with 16 and 18 nodes
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4  Router implementation.

With the aim to show the feasibility of the Midimew network this
section describes the hardware implementation of an adaptive
router for this topology. This is the first hardware proposal of a
Midimew router, thanks to the combination of Bubble flow
control and routing tables.

In fact, by using routing tables we can implement a VCT router,
which can be configured to build mesh, torus or Midimew
networks; the differences in wrap-around connections and routing
algorithms are only reflected in the contents of their routing
tables. Thus, we can reuse the adaptive Bubble router described in
[15] for torus networks to build meshes or Midimews as well.

Figure 4 shows the basic structure of this router. It has two virtual
channels per link: a deterministic channel that applies DOR and
an adaptive channel able to select any minimal path. The flow
control is virtual cut-through (VCT) and channel multiplexing is
performed at the packet level.  It should be noted that
deterministic channels require a minimum capacity of 2 packets in
order to apply the Bubble mechanism [15] (except for the mesh
case which has no wrap-around connections).
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Figure  4.  Architecture of the adaptive router used for the

comparison of planar topologies.

We should point out that the cost of implementing the Bubble
deadlock avoidance mechanism in the deterministic channel is
negligible. It requires one occupancy status signal from each
deterministic input to every routing unit. This signal indicates if
there is a second free buffer on that dimensional ring, and if such
is the case, the channel access can be granted.

The packet size has been fixed to 20 phits, and each phit has 16
bits. Router communication is asynchronous, so there is an extra
bit (signaling the tail phit) that flags the transmission of data.
Thus, the channel width is 17 bits.

Each router is self-timed and pipelined into 4 stages as shown in
Figure 5. The first stage corresponds to the synchronization
module for each input link. Then, the incoming packet is received
and stored at the input FIFO. The header information is used at
the routing unit to access the routing table and to select the output
channel(s). The selected channel is requested to the arbiter; when

the request is granted, the crossbar connection is established and
the packet forwarded to the next node. For a detailed description
of each module, please refer to [15].

We measured the router’s implementation cost by generating its
VHDL description, which was then fed into Synopsys, a high-
level synthesis tool. This design was mapped into 0.70 µm
technology with two metal layers from the ATMEL/ES2 foundry.
The delays were calculated under the standard conditions of this
technological library.
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Figure 5.  Router’s 4-stage internal pipeline.

Although the router will exhibit the same delay under any
topology, it is important to quantify its hardware cost. Then,
higher level simulations can incorporate this cost and provide
network performance in bytes per nanosecond instead of a generic
phits per cycle, where both units may vary from one
implementation to another.

Critical Path (ns.) Area (mm2)

Synchronization 3.53 0.55(x5)

Input  FIFO

( 4 packets = 80 phits ) 5.22 1.10(x9)

Routing Unit 5.64 1.06(x9)

Crossbar & Arbiter 5.65 8.98(x1)

Clock Cycle/ Total Area 5.65 31.17

Table 3. Time and area characteristics of each router module.

The characteristics of the router elements in terms of delay and
area are shown in Table 3. The clock frequency is set by the
slowest stage of the pipeline that corresponds to the crossbar &
arbiter unit. Once the critical module was identified, the other
modules were synthesized under the new time restrictions in order
to optimize their area demands.

5. Performance Analysis.

The theoretical advantages of the Midimew topology were clear
[2]. Now that we are able to physically implement this network,
we can also verify that these advantages are going to translate into
better network and system performance when compared with
other planar topologies. Hence, our next step is to compare the
performance of the network, based on the router described above,
under each topology. Although our main comparison is with the
torus network we have considered the mesh network as the
baseline planar topology due to its simplicity.



This task was carried out using a register-transfer level simulator
called SICOSYS [14], which takes into account the key parameters
of the low-level implementation and obtains results which are
very close to those of a VHDL simulator but with a lower
computational cost.

We considered two types of workloads. Firstly, we applied
synthetic loads that allow us to heavily stress the network using a
range of message distribution patterns. Secondly, we test the
network under real loads generated by applications running under
a DSM architecture with cache coherence protocol (ccNUMA)

5.1. Network Performance under  Synthetic Loads

We have tested network performance under uniform traffic with
either a fixed or a bimodal (short and long messages) length
distribution. We have also considered three destination patterns
based on some permutations: matrix transpose, bit-reversal and
perfect-shuffle. Message length is fixed to 20 phits (a single
packet) except for the 10% of long messages (200-phits split into
10 packets) in the bimodal distribution.

We studied three network sizes, 16, 64 and 256 nodes. Mesh and
torus networks are 4x4, 8x8 and 16x16 respectively. Midimew
configurations are C16(2,3), C64(5,6) C256(11,12) for each
respective size. By varying the network size we can see the
performance trends for each topology as system size increases.

Figure 6 shows the base latency for each possible network and
traffic combination. As all routers have the same node delays, the
variations result from the different average distances of each
particular message distribution under the three topologies.
Although average distance varies from pattern to pattern, all
exhibit the lowest value, and therefore the lowest base latency, for
the Midimew case. As we increase network size, so they do the
differences in average distance and their respective network
latencies.

Figure 7 shows the maximum throughput (bytes/nanosecond)
achieved by each simulated network under the different traffic
patterns. We can observe that the Midimew network achieves the
highest throughput for any traffic pattern, and that these gains
increase with network size. Besides, the differences between the
torus and the Midimew are greater for permutation patterns.

Average distance plays an important role on the time a message
spends using the network resources. Shorter paths lead to a lower
resource usage and therefore a higher message delivery rate.  The
Midimew gains over the torus topology are more significant for
larger networks, because the reduction in average distance is also
greater.

Another factor is the distribution of the traffic load over the
network channels. Torus and Midimew, being symmetric
networks, have a balanced channel utilization under uniform
traffic. Thus, the throughput gains of the Midimew in relation to
the torus for random and bimodal traffic patterns are due to its
lower average distance. The mesh topology, with its lower
bisection bandwidth and network asymmetry, achieves the lowest
throughput for any traffic pattern.

Non-uniform traffic makes an unbalanced used of channels, so
throughput depends heavily on the type of traffic distribution. In
fact, mesh and torus networks exhibit the same message average
distance for the perfect-shuffle permutation (8.05 in a 256-node

system). Therefore, they present the same base latency.
Throughput, though, differs because is not only affected by the
number of channel used but also by their distribution, which is
more balanced in the torus due to the presence of wrap-around
links.
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The Midimew achieves throughput gains of 19%, 32% and 26%
in relation to the torus, in the case of 256-nodes, for the three non-
uniform patterns: matrix-transpose, perfect-shuffle and bit-
reversal respectively. The reduction in message path length for
the three patterns is 8.5%, 8% and 5% respectively. The
additional throughput gains under matrix-transpose and perfect-
shuffle traffic are due the more balanced use of the channel
resources. For example, in Figure 8 we show the buffer
occupancy for the 16x16 torus and for the 256 Midimew under
matrix transpose traffic beyond saturation point. Each one of the
four squares in the Figure represents the set of adaptive channels
for each topology. It can be noted that there is a more balanced
buffer usage in the Midimew case, hence its channels become
saturated at higher loads.

5.2 Network Performance under Real Loads

In the previous subsection we have proved that the Midimew
increases the network performance of its torus counterpart.  We
complete this study by evaluating the impact that this topology
will have on the whole system; in other words, how it will affect
the execution time of parallel applications.

This evaluation was carried out by using a execution-driven
simulator ED-SICOSYS[14] which has been derived from RSIM
[12] by replacing the original RSIM’s network module NETSIM
[7] with our own simulator SICOSYS. This allows for a more
precise simulation of the communication subsystem as part of a
cc-NUMA machine.

RSIM emulates the behavior of a cc-NUMA machine with state-
of-the-art ILP processors.  Thus, our evaluation must consider
parallel applications written under the distributed-shared memory
paradigm. The three benchmark applications we are going to use
belong to the SPLASH2 suite [18], and were selected because
they are communication intensive, thus the network plays an

important role in their performance.  The applications are
RADIX, FFT and LU, executed on a 64-node system with either a
8x8 mesh, a 8x8 torus or a C64(5,6) Midimew. In all cases, we
used the default problem sizes.

TOPOLOGICAL ASPECTS OF DATA DISTRIBUTION

When a parallel application is compiled, the shared variables must
be distributed amongst the processing nodes. Parallel applications
must exploit data locality in order to minimize their
communication demands. Thus, data distribution depends on both
the number of nodes and the network topology [13].

The standard data distribution follows the locality pattern of the
torus and mesh network in which node i is directly connected to
nodes i+1 and node i-1. Before we execute the application we
should consider how to adapt this data distribution to exploit data
locality in the Midimew network. We can take one of these two
approaches:

• Make the application aware of the Midimew characteristics,
including its particular node enumeration and let the
programmer deal with it.

• Hide this difference from the application by constructing the
routing tables based on the enumeration assumed by the
application code. The relation between the enumeration at
application level and the one at the network level follows the
algorithm depicted in Figure 9.

In this study we opted for the second approach, so the application
code is the same for the three topologies. The former solution,
though, allows the programmer to explore other data distributions
that may further exploit the characteristics of the underlying
topology.
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Figure 8. Buffer occupation (expressed in phits) for matrix transpose traffic in 16x16 Torus and in 256-node Midimew
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int MidimewIndex (int NetworkIndex){
    int  b := ceill(sqrt(N/2));
    int  rest:=b;
    int  counter:=0;
    int  number;
    while(rest>0){
      number:=(b-1)*(b-rest);
      while(number<N){

   if (NetworkIndex==counter){
      ApplicationIndex:= number;
      return ApplicationIndex;
      }
      counter++;
      number:=number+b;
      }
      number:=rest;
      while(number<(b-1)*(b-rest)){

if(NetworkIndex==counter){
              ApplicationIndex:= number;
              return ApplicationIndex;
            }
          counter++;
          number:=number+b;

}
rest:=rest-1;

}

Figure 9. Node mapping between Application Level and Network Level.

PERFORMANCE ANALYSIS.

The parameters of the cc-NUMA machine simulated (cache
coherence protocol, processor architecture, etc) have the default
values set by RSIM [13] except for:

• The cache line size which is set to 32 bytes,

• The command size is 8 bytes,

• The processor speed is set to 650 MHz instead of the
default 300 MHz.

Therefore, a data message contains 40 bytes or 20 phits (the
channel width or phit size is 2 bytes). The control messages,
request or invalidation, are 8 bytes or 4 phits.

The higher processor speed represents a viable parameter with
the latest implementation technology.  In line with this, the
network speed is limited by the router speed which clock cycle
was estimated in Section 3 to be 5.65 ns for any of the three
topologies. So the network operates at a clock speed of 177
MHz, and the relative speed of the processor in respect to the
network is 3.67.  We consider that there are two separate data
and control networks, so there is no application deadlock due to
limited consumption queues capacity.

Average

distance
Radix FFT LU

Mesh 8x8 5.33 4.55 5.29 4.88

Torus 8x8 4.06 3.47 3.99 4.00

Midimew 64 3.87 3.45 3.74 3.76

Table 4. Average message path length for each application
and topology (64 processors).

The average distance traveled by messages for each application
and topology is shown in Table 4. The first column, given as a
reference point, represents the topological average distance.
Obviously, the mesh shows the largest values for any
application. Midimew and torus differ in the range of 1% to 8%.
So, we will expect execution time for FFT and LU to be shorter
for the Midimew in respect to the torus. The topology has a
lesser impact on Radix because a large amount of traffic is
related to synchronization tasks involving access to global
variables (home) at a neighbor node.
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Figure  10. Execution time (normalized in relation to the
mesh system) for each application executed over the

different topologies.

Figures 10 and 11 show the execution time for each possible
combination; results for a given application have been
normalized to the result of a mesh-based system. We can see
that the Midimew system is again showing the best results,
although the differences between torus and Midimew systems
are less significant than for synthetic traffic for the same size
system. This is because the applications demands are quite



variable over the execution time in comparison to the constant
pressure provided by synthetic traffic.
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Figure  11. A close-up of the previous graph showing

detailed execution times.

CHANGING THE NETWORK SIZE: FFT STUDY.

As with synthetic traffic, is interesting to study the trends in
network performance as the network size increases, so we can
forecast its performance for larger networks. Both Radix and
LU do not properly scale over the 64-node size, so we focus on
the FFT application and consider four system sizes: 16, 32, 64
and 128 nodes. All the other parameters are those described for
the previous tests.

Figure 12 shows the results for each topology. The trend is
similar to that observed for synthetic loads. As the network size
increases, so it does the difference in performance between the
three topologies.  For the largest system, 128 nodes, the
Midimew reduces execution time by 8% and 23% in respect to
the torus and mesh respectively. We can conclude that a system
with a large number of nodes will clearly benefit from the
topological properties of the Midimew.
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Figure  12. Execution time for FFT application for different

system sizes.

6. Conclusions
The Midimew is an optimal 2D topology which reduces the
average distance and diameter of its torus counterpart.
Therefore, Midimew networks are good candidates for
implementing the communication subsystem of a multiprocessor
computer. Reducing the average message path length plays an
important role in network performance: message latency is
reduced and throughput increased.

As the Midimew can be decomposed into a set of dimensional
rings, we can avoid deadlock, as we did for the torus network,
by combining dimensional order routing and Bubble flow
control. The differences in path selection disappear by using
routing tables, so we can implement an adaptive router, which is
identical for either torus, or Midimew networks. Therefore, we
can exploit the topological advantages of the Midimew by
simply changing the arrangement of the wrap-around
connections of its torus counterpart and consequently, without
any increase on the network implementation cost.

A thorough evaluation of both networks, both under synthetic
loads and under real loads generated by benchmark applications
running on a cc-NUMA architecture, has confirmed the superior
performance of the Midimew network with no extra cost. It
must be highlighted that higher performance is achieved when
the network size increases. Therefore, Midimew networks are
very good candidates for the design of truly massively parallel
computers, as the ones used in the ASCI project.

The system evaluation presented above corresponds to the
standard data distribution used for mesh and torus networks. We
are currently exploring the benefits of other data distributions
that exploit even further the topological properties of the
Midimew network.

In short, all our evaluation showed that the improvements in
terms of topological characteristics of the Midimew network are
transportable to improvements in network performance under
both synthetic and real application loads.
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