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a b s t r a c t

For those cache hierarchy levels where program locality is not as evident as in L1, LRU replace-

ment does not seem to be the optimal solution to determine which blocks will be requested

soon. The literature is prolific on alternative reuse-distance estimations at last on-chip cache

level, proving the difficulty of achieving an optimal hit rate. One of the key aspects for per-

formance is knowing inter and intra application reuse-distance variability. Many solutions

already do this, but most of them rely on a simple choice among a few alternative policies.

The experiments performed to motivate the proposal confirm application variability, but also

show that the behavior of applications is much more than bimodal. This means that there is a

performance gap that current hybrid policies are not able to cover. In this paper we propose a

mobile insertion position replacement policy (MIP), which combines well known LRU order-

ing and promotion policies with a completely adaptive insertion mechanism. The dynamic be-

havior of insertion is able to capture hit-rate variability in a more accurate way. Making use of

set dueling and dynamic set sampling for prediction, our mechanism continuously estimates

the insertion position that maximizes the cache hit rate. The hardware overhead compared to

a LRU replacement algorithm is merely three 3-bit saturating counters per LLC bank. Our ex-

periments show that for a wide range of applications, MIP is able to improve the hit rate of LRU

by 30% on average. MIP outperforms current state-of-the-art replacement policies with a sim-

ilar implementation cost by 10% on average and in single-thread or multi-thread workloads

by 20%.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The performance of current processor architectures is constrained by the memory hierarchy. Originally, Memory Wall [1] was

an exclusively latency problem (a processor can only compute as fast as operands become available), caused by the speed di-

vergence of processor and memory. Technology evolution has allowed a much higher transistor budget, making multiprocessors

on chip a reality nowadays and turning Memory Wall into a bandwidth problem too [2]. Additionally, future technology trends

(higher levels of integration and/or non-volatile memories) could extend the Memory Wall problem to even more aspects, such

as power consumption or endurance. All these issues make on-chip cache memory a critical component in maintaining the

same performance improvement quotas. Cache hierarchy is able to soften many of the Memory Wall issues, accelerating pro-

cessor access to data and filtering off-chip requests. The relevance of this part of the system becomes much more evident if we
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observe its evolution from the first microprocessors with simple one-level on-chip caching to the current sophisticated multi-

level hierarchies.

The ultimate objective of the cache hierarchy is to keep the data that will be needed in a near future close to the processor.

Unfortunately, due to the incompatibility between speed and capacity, in most cases application working sets are larger than

storage at close-to-processor cache levels. The replacement algorithm implements the arbitration process required to decide

which memory blocks are evicted when new data arrives at a full cache. Ideally, to ensure the highest performance cache should

retain those blocks that are likely to be accessed within a short interval. Defining block reuse distance as the time interval between

two consecutive accesses to its content, the optimal choice for replacement is to evict the block with largest reuse distance (that

will be accessed further in the future), as stated in Belady’s algorithm [3]. Optimal, but not realizable in real time, this algorithm

is only useful to measure the effectiveness of other proposals.

The unattainable objective of any replacement policy is to mimic Belady’s algorithm, making use of available information.

In general, temporal locality inherent to most applications is the property exploited to anticipate future reuse distance with

current information. Blocks accessed recently are more likely to be accessed again in a near future. Temporal distribution of block

references determines both recency and reuse frequency. Recency is defined as the time since the last reference to a block, while

reuse frequency is calculated as the number of consecutive references in a time interval between consecutive references. These

two parameters are employed by most algorithms to estimate reuse distance. Most replacement algorithms are implemented as

a priority queue where elements are inserted, ordered and evicted according to this estimation. This is the usual structure for a

replacement algorithm:

• Priority queue: In a set-associative cache, every block is assigned a priority value, which defines its position in the queue.

Usually, the block with lower priority value is evicted.
• Insertion policy: Determines the initial priority value assigned to a block when it enters in the priority queue for the first

time.
• Promotion policy: On a cache hit, the priority of the block is modified, usually promoting it to positions with higher priority.

Basic replacement algorithms are defined fixing each of these three components. The most common algorithm, widely em-

ployed for L1 caches, is LRU (or approximations). This static approach is valid when data locality of applications is high and stable,

reuse distance being efficiently estimated by the mix of recency (insertion) and frequency (promotion) provided by the LRU al-

gorithm. However, those hierarchy levels where locality is more volatile present a much more variable behavior in terms of reuse

distance [4]. To further increase the complexity of the problem, usually these levels are shared by different threads, often with

interfering behavior. There is an ample diversity of options trying to predict the reuse distance in such complex scenarios. Sim-

ple static policies balancing recency and frequency [5], hybrid policies that conjugate multiple basic ones [6] or reuse-distance

prediction [7] are a few examples of the large number of proposals in this sense.

In this paper we propose yet another approach, which to the best of our knowledge has not been explored before. We im-

plement an adaptive insertion policy, extending the insertion of new blocks to any position of the priority queue. With the help

of a few dedicated cache sets we explore how hit rate evolves as insertion position is moved away from the highest priority1

position of a classic LRU policy to the opposite end of the priority queue. Applied at last level cache, where application behavior

is highly dissimilar, MIP (mobile insertion policy) is able to dynamically adjust recency weight to a value providing higher hit

rate. The hardware implementation of the MIP algorithm has minimal overhead and complexity. Three 3-bit counters per LLC

bank are the only additional storage required compared to LRU as well as simple operations outside the critical path to calculate

optimal insertion position. We compare our proposal with classic LRU and a state-of-the-art algorithm with similar overhead

and complexity: Dynamic re-reference interval prediction policy [4]. Our evaluation shows that MIP outperforms LRU and DRRIP

for a wide variety of workloads, both multi-programmed and multithreaded. Summarizing, these are the main contributions of

this work:

• We show that there is a high variability in access patterns, which is hardly covered by static replacement policies. We also

show that when different applications interact, even current dynamic policies have not enough flexibility.
• We present a low-overhead, practical implementation of a fully dynamic replacement policy based on mobile insertion posi-

tion, which rapidly adapts to sudden changes in access patterns during application runtime.
• We compare MIP with two alternative proposals using a wide range of workloads and show that MIP provides 30% more

replacement policy performance than LRU and 10% compared to DRRIP.
• We show that, in contrast with DDRIP, cache hit-rate is improved 20% when the workload is a multithreaded or single-thread

application.

The rest of the paper is organized as follows. Section 2 includes a detailed discussion of the experiments used to demon-

strate the motivation for our work. Section 3 provides a brief description of related work, focusing only on proposals with a

similar target to ours. Section 4 describes in detail how the mobile insertion policy works, as well as some design alternatives.

Section 5 summarizes the main simulation framework aspects and the applications employed for evaluation. Section 6 presents

an extensive set of results and finally Section 7 highlights the main conclusions of the work.
1 It is important to distinguish between replacement algorithm and insertion policy. In LRU replacement algorithm, insertion policy is MRU and vice versa.
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Fig. 1. Distribution of optimal insertion point throughout application runtime.
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Fig. 2. Optimal insertion position throughout execution time for: CG (above), FT (middle) and MIX17 (below).
2. Motivation

In order to estimate the hit-rate variability according to the insertion point selected for the replacement policy, we conducted

an extensive experiment analyzing the near-optimal insertion position at runtime in a 4-core CMP (see Section 5 for the configu-

ration details). Last level cache (LLC) sets are divided into 16 different types (the same as cache ways). Each set type implements

a different insertion policy, ranging from highest to lowest priority positions in priority queue depending on the four least signif-

icant bits of the address itself. Sets with the 4 least significant bits at 0 (lsb4 = 0 × 0) insert new blocks with the highest priority,

lsb4 = 0 × 1 in the second position and so on until sets with lsb4 = 0 × F, which insert new blocks with the lowest priority. Both

promotion and priority queue have the same configuration for every set type, equivalent to the one used in LRU replacement

policy. With a frequency of 100,000 Processor clock cycles, the hit rate of each set type is calculated, and the insertion position

providing the highest value is profiled as optimal. The set of applications employed for the experiment is described in detail in

Section 5 and Figs. 1 and 2 show the results obtained.

In Fig. 1, the Y axis represents the fraction of runtime when the maximum hit rate has been found at each insertion position.

Insertion positions have been grouped to augment graph legibility. Label {1–2} corresponds to sets inserting in positions with

the highest priority (MRU positions correspond to the classic LRU replacement policy) while label {15–16} corresponds to sets

with the lowest priority at insertion. The results obtained in this preliminary experiment show that static replacement policies

are not able to capture the real behavior of applications at last level cache. Optimal insertion position is far from static, finding

dissimilar results between applications. Additionally, it should be noted that for a wide range of applications, maximum hit rates

concentrate on intermediate insertion positions, which could reduce the effectiveness of some hybrid proposals that dynamically

change between scan resistant (MRU) and trash resistant (LRU) replacement policies.

Fig. 2 provides more detailed insight about how optimal insertion position evolves. In these graphs we represent this value

throughout execution time for three representative applications of the common behavior. Phases with different access patterns

can be clearly identified for multithreaded applications (CG and FT). Phases with high reuse are identified when optimal insertion
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position is close to 1, while when thrashing prevails the optimal insertion point is 16. As can be appreciated, best insertion point

at priority queue borders is unlikely. When workload is generated with multiple independent applications, such as MIX17 (see

Section 5), the presence of “pure” access patterns becomes highly improbable. Even in multithreaded applications such simple

access patterns are not frequently found in LLC because different data types present different behaviors (instructions vs data,

load vs store, shared blocks vs private blocks, etc.). Therefore, we might expect that the optimal insertion point is neither at the

LRU nor at the MRU positions.

The previous observations indicate that to extract the maximum performance benefit from replacement, the selected policy

should dynamically adapt to access patterns. The presence of steady reuse patterns over time seems not to be the common case.

Therefore, dynamic replacement policies that simply choose between schemes designed for specific patterns might impair some

performance. Figs. 1 and 2 suggest that there is room for further improvement with more flexible cache management policies.

For example, if somehow we are able to estimate optimal insertion position during runtime, LLC hit rate might be improved. The

main challenge is to predict future behavior with the available information and a constrained hardware overhead.

3. Related work

The amount of work in this area is profuse. This section only provides a brief survey of basic bibliography on replacement

policies and focuses on state-of-the-art proposals directly related to ours (i.e., with similar cost constraints). Aspects such as

dead block detection [8,9], block bypassing [10] prefetching interaction [11] or optimizations targeting shared caches [12,13] can

be considered as orthogonal to this work.

Belady’s algorithm [3] represents a clear reference of optimal behavior for replacement policies. For this reason, the final

objective of any proposal is to replicate this policy with realistic information (i.e., no need for knowledge about the future).

Exhibited past program locality determines cache access pattern, being the key element in predicting the reuse distance of a

cache block in the future. LRU replacement policies [14,5] exploit this, trying to keep the most recently accessed block in the set.

Therefore, the first access to the block at insertion time is the most recently accessed block. Consequently, at insertion, a cache

block should be placed in the MRU position. Basic LRU replacement policies work well when perceived locality is significant,

which makes them the most suitable choice for cache levels close to the processor.

Some applications present special access patterns which are not recency-friendly. Some scanning patterns where the running

application has low locality benefit more from MRU replacement policies (and indirectly LRU insertion point), which tend to

maintain the oldest blocks in the cache. To deal with this dual behavior of applications, the authors of [15] propose a hybrid

replacement policy able to dynamically change between LRU and MRU insertion policies.

In the absence of recency, reuse frequency is a good metric to infer future behavior of a block. Frequently reused blocks are

more likely to be accessed sooner than rarely reused ones. LFU algorithms only take into account frequency for their decisions,

making them more suitable than LRU in the absence of locality. However, L1 cache is not always able to completely filter temporal

locality, which limits the potential benefits of replacement algorithms based only on frequency [5]. Many authors propose hybrid

solutions that combine both LRU and LFU policies in different ways [5,14,16–18]. Work in [14] employs one bit to identify blocks

with temporal locality (reused) and non-reused blocks are selected first for eviction. LRFU policy [5] implements two priority

queues to mix LRU and LFU with different weights. SRRIP [17] implements a replacement algorithm which makes use of reuse

frequency for decisions, but still takes into account recency considering that new blocks have a long reuse interval but not the

longest. Additionally, works like SBAR [19] or AC [6] propose alternative combinations to the conventional LRU/LFU.

When recency and frequency cannot be captured properly, many authors propose trying to directly estimate reuse distance

through alternative mechanisms [20–22]. The work in [20] estimates distance according to the PC that loaded that block. The

distance disparity between reads and writes is employed in [21] to dynamically divide cache capacity between loads and stores.

The work in [22] assumes that conflict miss detection can also improve replacement policy results.

Some recent works have started exploring the benefits of considering multiple insertion points. In [23], the LRU stack is di-

vided into two partitions, applying a different replacement policy on each side. Different partition sizes are dynamically analyzed

through shadow tags. For each partition size, two insertion positions are evaluated, MRU and “partition border”. Despite allowing

multiple insertion points, this feature is only analyzed after partition size is chosen, meaning the final decision is still bimodal. In

[24], the authors propose moving from the bimodal insertion policy of DIP to a multi-level decision tree able to choose between

five different insertion positions. Despite relying also on the dynamic selection of the optimal insertion point, the differences

with our proposal are clear. They assume a single-core, while our proposal is focused on multi-core chips, where the problem of

mutually interfering workloads is much tougher. Their mechanism is not able to detect phase changes after 100 million instruc-

tions, which is not the case with workloads like the ones assumed in our work. Our proposal allows insertion at any position,

not only a subset. As shown in Figs. 1 and 2, the optimal insertion point is sometimes different to the five positions proposed.

Despite claiming their method is adaptive, results seem to show static behavior, which makes the proposal a bit confusing.

Many of the policies described in this section are orthogonal and could be implemented to work together. The disparity in

implementation overhead also makes it difficult to make a fair comparison. Some of them drastically change the organization of

the cache. For these reasons, we have decided to reduce our counterparts to only two, a well-known baseline mechanism and

a state-of-the-art proposal with a similar structure and implementation overhead. The two counterparts selected for evaluation

are LRU and DRRIP [17] policies. As LRU is the baseline counterpart of most proposed mechanisms (as well as RRIP), comparison of

MIP with other proposals could be indirectly performed through these two counterparts (if similar methodology and workloads

are employed).
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4. Mobile insertion policy (MIP)

This section describes the mechanism that can determine the most suitable insertion position throughout application run-

time under constrained cost conditions. Similarly to the set dueling concept [15], for this purpose we measure hit rate in a few

dedicated sets, where different insertion positions are employed. The insertion position of the rest of sets is periodically updated

according to these estimations. Hit rate estimation is performed through an N-bit saturating counter (form 0 to MAXHR) which is

updated on every access to the set. The counter is decremented or incremented according to the access result (hit or miss). After

a fixed number of bank accesses (Update Interval), hit rates are evaluated to implement insertion policy.

The sets in each cache bank are divided into groups of size N (N being a power of 2). Each group is made up of two set types,

evaluation and conventional. The insertion position of evaluation sets is selected with the aim of finding the position providing

the optimal hit rate. Conventional sets select their insertion position according to the estimations performed by evaluation sets.

A straightforward way to perform hit rate estimation is to dedicate one evaluation set to each insertion position available.

This means that in an M-way cache, M evaluation sets would be required. The replacement policy of each evaluation set would

employ a different insertion position, ranging from 1 to M in the priority queue. Saturation counters of every evaluation set would

periodically be compared and the insertion position of conventional sets would be chosen according to the values obtained.

This is a way to find the near-optimal insertion position providing maximum hit rate, but it has a severe drawback: too many

evaluation sets. The usually high associativity of the LLC could drastically reduce the number of conventional sets, artificially

increasing cache misses despite making accurate replacement decisions. For this reason, we analyze a more cost-effective way

of estimating the best insertion position, minimizing the number of evaluation sets in each group.

4.1. Optimal hit-rate exploration with two evaluation sets

We explore a particularization of similar strategies already employed for different purposes [25,26], reducing the number

of evaluation sets per group in an M-way cache from M to 2. One set will have an insertion policy at a fixed point, acting as a

reference set and another set will move its insertion point looking for maximum hit rate, acting as an explorer set. Therefore, in

each group we define three different kinds of sets:

• Reference: In these sets a reference policy, in this case classic LRU, is implemented. The insertion point is fixed over the whole

execution time. In the case of a LRU policy, an insertion point for a new block always corresponds to the position with highest

priority (MRU). The purpose of this estimation is to have a fixed baseline as a beacon. This fallback point guarantees at least

LRU performance in most cases.
• Explorer: The role of the second set of the group is to start the exploration of different insertion alternatives to the reference

one. Insertions in these sets are initialized at the MRU + 1 position and can move through all the positions in the priority list

according to the hit rates obtained. The purpose of this estimation is to know how the cache might perform if we move the

insertion point one click toward the LRU insertion point.
• Conventional: The other sets in the group are those where the insertion position is considered to be optimal for the next

update interval. This position is selected according to its own hit rate and the values obtained by the reference and explorer

sets. The initial insertion position for conventional sets is MRU (as in reference). Conventional sets always maintain the same

insertion position relative to explorer sets.

Each set type has its own counter, named HRREF, HREXP and HRCON, which are updated with each reference. At each update

interval, these three values are compared and the maximum determines the insertion position of the conventional sets, Ipos, for

the next interval. If the hit rate of conventional sets (HRCON) is greater than or equal to HRREF and HREXP, the insertion positions

are maintained (conventional sets have found the maximum). If HREXP is greater than HRREF and HRCON conventional and explorer

sets move away one position from the reference. Finally, when HRREF is the largest, both conventional and explorer sets move

their insertion point one position closer to reference. It should be noted that conventional and explorer sets always have adjacent

insertion positions. Formally, if MRU is position 1 and LRU is position M:

Ipos =
{

Ipos if (HRCON ≥ HRREF & HRCON ≥ HREXP)
Ipos+1 if (HREXP ≥ HRCON &HREXP> HRREF)
Ipos − 1 otherwise

(1)

Fig. 3 provides a simple example of the insertion policy operation for a 4-way cache. Each of the three colored columns

represents a different kind of set (from the same cache bank), according to the previous classification presented in this section.

The left column represents a reference set, with a replacement policy equivalent to LRU. The central and right columns represent

conventional and explorer sets respectively. Insertion position of conventional sets is initialized to the value of the reference

policy (Ipos = 1) and the insertion position of explorer sets is placed one position from conventional i.e. to Ipos + 1. Hit rate of each

set is evaluated every four references. After each reference interval, the insertion position of both conventional and explorer sets

is updated according to the hit rate values obtained in the previous interval and Eq. (1). For the sake of simplicity, we consider the

same access pattern in each set, which represents a mix of highly reused and “dead” blocks with the following reference order:

[X1, X2, X3, X4, X5, X6, X7, X8, X1, X2, X2, X9, X10, X11, X1, X2]. In Fig. 3 blocks are labeled according to their set (X1 in explorer set

is labeled as E1).
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Fig. 3. Behavior of MIP (and LRU) for a mixed access pattern.
During the first reference interval, both the reference and conventional sets offer no protection for MRU blocks, and new

insertions move R1 and R2 blocks towards eviction. In contrast, the explorer set evaluates hit rate behavior when LRU blocks

are only slightly protected. During the first interval all cache accesses are references to new blocks, which return the same hit

rate for every set, leaving the same insertion positions for the second interval. Thanks to MRU protection, the explorer set is

able to obtain better hit rate during the second interval (E1 was not evicted after the insertion of four new blocks). For the next

interval, the replacement algorithm decides to increase MRU protection in conventional sets, guided by explorer results. As a

consequence, the explorer insertion position is also moved away from the reference one. Finally, the third interval shows that

for this particular access pattern the modification of insertion position provides a better hit rate, both for the conventional and

explorer sets. This means that insertion position will be modified again for the next interval (not shown).

4.2. Hardware overhead

We assume exact LRU as baseline policy to build MIP. PseudoLRU implementations limit the flexibility of our proposal, because

the number of different insertion positions is reduced. In a 16-way cache, total ordering requires more bits to be implemented

than pseudoLRU or RRIP policies, but the performance benefits presented in Section 6 seem to clearly compensate for the ad-

ditional storage required. While tree-based pseudoLRU requires a storage overhead of 15 bits per cache line, RRIP increases this

overhead to 32 bits and our proposal uses 64 bits. As can be seen, compared with state-of-the-art cache line sizes (1 kB in our

case), the storage overhead of MIP is 0.78%.

Aside from the hardware required to maintain the LRU priority queue, the only area overhead is devoted to implementing

the three saturating counters per bank, which is several orders of magnitude below bank capacity. Hit rate updating makes use

of a demultiplexor and the two least significant bits of the address to determine which counter should be updated. Finally, the

arbitration process only requires the comparison of estimated hit rates and an adder to update position.

Note that in contrast to other (bimodal) dynamic insertion policies we use three-reference points and not just two. This

simple extension provides a continuously variable insertion point. In this way we will try to capture and take advantage of the

observations explained in Section 2 in order to maximize cache hit-rate.

5. Experimental methodology

We use GEMS [27] as the main tool for our evaluation, therefore full system activity will be modeled. We provide both hit-

rate and final performance impact (execution time). Current processors, even in the embedded domain, are out-of-order with

speculative execution. Therefore, the feedback between cache management policies and processor should be taken into account.

Using traces or non-MLP systems might have a non-negligible effect on final results.
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Table 1

Summary of system configuration.

Core arch. Functional units 4 × I-ALU/4 × FP-ALU/4 × D-MEM

Instruction window size/issue width 128, 4-way

Frequency/processor count 3 GHz, 4

Private caches (L1) Size/associativity/block size/access time 32 kB I/32 kB D, 8-way, 64 B, 1 cycle

(L2) Size/associativity/block size/access time/type 256 kB unified, 8-way, 64 B, 4 cycles, exclusive with L1

Shared L3 Size/associativity/block size/type 8 MB, 16-way, 64B, inclusive

NUCA mapping Static, interleaved by LSB

Coherence prot., consistency mod. MOESI directory (in-cache), TSO

Data slice size/access time 2 MB/6 cycles

Mem. Capacity/access time/BW 4 GB/350 cycles/32 GB/s

NoC Topology/link latency/link width 2 × 2 mesh/1 cycle/16 B

Router latency/flow control/routing 1 cycle/Wormhole/DOR

Table 2

Single-core applications.

Spec 401.bzip2 437.leslie3d 464.h264ref 482.sphinx3

403.gcc 444.namd 470.lbm 483.xalancbmk

429.mcf 450.soplex 471.omnetpp

433.milc 456.hmmer 473.astar

Table 3

Multi-threaded applications.

Server OLTP TPC-C like, IBM DB2 DBMS. 800 Mb database, 4000 warehouses (3 districts, 30 customers, 10 items per warehouse)

Apache Dynamic Spec-Web like, Apache. 20,000 file repository (500 Mb), zero think time clients

JBB Spec-JBB like, Oracle JRE. 24 warehouses, 500 Mb data size

Zeus Static Spec-Web alike, Zeus

NPB Conjugate gradient (CG) Size A LU Gauss–Seidel (LU) Size A

Fourier transform (FT) Size W Scalar penta-diagonal (SP) Size A

Integer sort (IS) Size A Unstruct. adaptive mesh (UA) Size A

Block tri-diagonal (BT) Size A Multi-grid (MG) Size W
Our base system tries to mimic the main characteristics of the Intel Haswell architecture [28]. We model a 4-core CMP where

out-of-order processors have a 4-way superscalar pipeline with 4 ways and a 128 entry ROB. The first two levels of the memory

hierarchy are private to each processor. L1 instruction and data caches are 8-way associative, with 32 kB size. L2 maintains the

same associativity but is 256 kB. Finally, LLC configuration corresponds to a shared SNUCA [29] with 4 banks and a total capacity

of 8 MB. L2 is exclusive with L1 (i.e., acts as a victim cache of L1) and LLC is inclusive with private caches [28]. All caches in the

hierarchy use 64Byte blocks. We use an in-cache MOESI directory coherency protocol. Main memory access is simulated through

a fixed delay of 250 cycles, assuming a 32 GB off-chip bandwidth. Additionally, in order to provide a wide use scenario, we have

evaluated the proposal in a single-core system. In this case we reduce the LLC capacity of the baseline system to 2 MB.

More than 70 diverse workloads, running on top of the Solaris 10 OS, have been considered for evaluation. We include both

single-core configurations and multi-core ones. For single-core evaluation we use 14 workloads from the SPEC2006 benchmark

suite. We include both memory intensive and non-memory intensive applications. Multi-core applications include both multi-

programmed and multi-threaded applications (both scientific and commercial servers). There are eight numerical applications

from the NAS parallel benchmarks suite (Openmp implementation version 3.2 [30]). The server benchmarks correspond to the

whole Wisconsin Commercial Workload suite [31]. The multi-programmed workloads are made up of 46 different mixes of the

SPEC CPU2006 suite, representing variable cache sensitivities and memory behaviors. The lists in Tables 1–4 provide a brief

summary of the whole application set employed for our experiments.

For each workload evaluated, multiple runs are employed to fulfill strict 95% confidence intervals. Benchmarks are fast-

forwarded to the point of interest, during which page tables, TLBs, and caches are warmed up. In iteration-based applications,

corresponding to the NPB suite, the warm checkpoint is taken in the middle of the main loop execution and simulations perform

a fixed number of loop iterations after warm checkpoint. Transactional workloads are warmed up by running hundreds of thou-

sands of transactions, and accurately simulated for a fixed number of additional transactions. SPEC workloads are fast-forwarded

to the point of interest and simulate 5 billion instructions.

6. Results and analysis

6.1. Setting MIP configuration parameters

Prior to MIP performance evaluation, we must analyze and understand the influence that the different configuration al-

ternatives could have on results. The two basic aspects for MIP replacement are hit-rate calculation and update interval. Hit

rate precision is proportional to the number of bits devoted to the saturation counters. The more bits in the counter, the more
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Table 4

Multi-programmed applications.

Spec MX1 astar/bzip/lbm/mcf MX18 gcc/lbm/mcf/sphin MX35 libq/milc/hmmer/gcc

MX2 astar/bzip/milc/mcf MX19 gcc/libq/milc/sphin MX36 mcf/milc/lbm/lbm

MX3 astar/gcc/hmmer/lbm MX20 gcc/milc/libq/hmmer MX37 mcf/milc/lbm/libq

MX4 astar/gcc/hmmer/mcf MX21 hmmer/astar/bzip/bzip MX38 milc/lbm/hmmer/gcc

MX5 astar/lbm/milc/sphin MX22 hmmer/astar/omne/milc MX39 milc/mcf/gcc/hmmer

MX6 astar/libq/bzip/omne MX23 hmmer/bzip/xala/sphin MX40 milc/mcf/libq/hmmer

MX7 astar/libq/xala/sphin MX24 hmmer/gcc/astar/omne MX41 omnet/libq/bzip/sphin

MX8 astar/mcf/hmmer/gcc MX25 hmmer/gcc/bzip/libq MX42 omnet/mcf/hmmr/gcc

MX9 astar/omnet/lbm/milc MX26 hmmer/gcc/lbm/lbm MX43 omnet/mcf/lbm/gcc

MX10 bzip/libq/mcf/sphin MX27 hmmer/gcc/mcf/mcf MX44 omnet/milc/mcf/sphin

MX11 bzip/omnet/lbm/mcf MX28 hmmer/hmmer/gcc/gcc MX45 omnet/omnt/lbm/lbm

MX12 bzip/omnet/xala/hmmer MX29 hmmer/libq/milc/gcc MX46 omnet/xala/milc/lbm

MX13 bzip/sphin/libq/xala MX30 hmmer/milc/omne/lbm

MX14 bzip/xala/omnet/sphin MX31 lbm/milc/libq/libq

MX15 gcc/bzip/lbm/milc MX32 leslie/lbm/libq/mcf

MX16 gcc/hmmer/lbm/lbm MX33 libq/lbm/mcf/xala

MX17 gcc/hmmer/milc/lbm MX34 libq/mcf/milc/sphin
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Fig. 4. Hit rate estimation for different configuration values. Results normalized to LRU.
accurate the estimation of hit rates. Unfortunately, precision is not free. Larger counters need more updates to reach saturation.

In these cases where hit rate tendency changes suddenly, it takes more cache accesses to reflect this fact in the estimated hit

rate value (larger distance between 0 and MAXHR). Accesses to LLC are not profuse and if this parameter is not selected carefully

insertion decisions could be taken too late. Similarly, update interval could also be relevant for performance. If it is set too long,

abrupt changes in optimal insertion position could be ignored by the insertion policy.

We have performed a design-space exploration for these two parameters, evaluating the hit-rate evolution for the whole set

of applications. All the simulations have been performed with cache groups of 32 sets, long enough to minimize the possible

disturbance caused by the reference and explorer sets. The hit rate improvements obtained for all the configuration options

analyzed are shown in Fig. 4. Values have been normalized to LRU results and only average; maximum and minimum values are

displayed (i.e., workload with best and worst behavior). Each x-axis position represents a different size for update interval (I) and

saturation counter (C). Size is expressed in bits, I-6 meaning that 64 accesses to LLC are performed in each update interval. C-2

represents a two-bit counter, ranging in value from 0 to 3.

The improvement over LRU is consistent across the set of configuration points, average values being between 15% and 35%. It

should be noted that the application providing the worst results is very close to LRU, while the best results improve hit rate by

more than five times in any case. Fig. 4 shows that the highest average hit rate is obtained when minimal precision is employed

to calculate hit rate. With only two or three bits per saturation counter, we are able to extract the maximum benefit. In contrast,

as precision grows, hit rate estimation slowly decreases. If too many bits are employed for hit-rate encoding, the movement

from MAXHR to 0 requires more accesses and the slower explorer and conventional set movement slightly affects performance.

Concerning update interval, the behavior of the MIP replacement policy remains nearly constant for a wide range of update

values. Only when the update interval is extremely long (more than 1024) does performance degradation become significant.
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Fig. 5. Hit rate improvement over LRU results.
The results in Fig. 4 suggest that MIP benefits are mostly independent of configuration point. Saturation counter size has

negligible effect on performance, providing maximum benefit with minimal overhead. Degradation of performance for large

counters is below 5%. In the case of update interval, in the range from 64 to 512 accesses per update, performance remains

nearly constant, also providing a minimal storage overhead in this case. For the rest of evaluation sections, we have chosen 3-

bit saturation counters and an update interval of 256 accesses. This means a storage overhead of only 17 bits and some simple

additional logic to choose and shift the insertion point.

6.2. MIP performance

Fig. 5 shows the behavior of the MIP proposal when compared to LRU replacement. The y-axis shows hit rate improvement

for LLC, while the x-axis shows applications. Compared to LRU, MIP is able to significantly improve Cache performance. Most

applications benefit from dynamic insertion and hit rate degradation is only observed in isolated cases (and always below 10%).

On average, MIP is able to increase cache performance by 35% compared to LRU. Analyzing results group-by-group, we observe

that the lowest performance benefit corresponds to the multi-threaded group. Recency-friendly patterns predominate in numer-

ical applications, making LRU the best option in most cases. Minimal hit rate degradation can be observed in a few applications,

such as jbb. In those cases where LRU is the optimal policy during the whole execution time, MIP suffers a small performance

degradation caused by explorer sets, which never reach the MRU insertion position. However, some numerical applications have

special access patterns without reuse (unlike MRU). This is the case of CG, where the MIP policy is able to move the insertion

point to the last position in the priority queue, improving hit rate by more than 400%. The single-core group has bimodal behav-

ior. Applications with a small working-set, such as astar, hmmer or omnetpp, extract no benefit from the replacement algorithm.

The number of accesses to LLC in these cases is low, and the estimation of optimal insertion position becomes extremely difficult

due to the low number of accesses to evaluation sets. In contrast, other applications such as lbm or leslie3d seem to be able to

quickly find the optimal insertion position despite infrequent references. Again, MIP replacement is able to outperform LRU in

these cases. Finally, SPEC 2006 mixes seem to extract the maximum benefit from MIP policy. For this group, the temporal and

per-core variability of access patterns increases irregularity, improving the utility of dynamic insertion. Those cases where no

performance improvement is observed correspond to mixes where no (or few) applications have a large enough working set to

stress LLC.

Fig. 6 represents full-system performance (execution time) improvement normalized to LRU values. As can be seen, results

are consistent with observed hit-rate improvements. On average, MIP improves execution time by nearly 5%. It should be noted

that these results are highly dependent on the workload working set. Thus, applications such as lbm or leslie3d extract marginal

performance benefit from replacement policy, even when doubling LLC hit rate as seen in Fig. 5. In contrast, other applications
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Fig. 6. Full system performance improvement over LRU.
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Fig. 7. FT workload. Optimal insertion position (left). MIP distance to optimal position (right).

1

5

9

13

0

0.1

0.2

0.3

0.4

0.5

1
11 21

31
41

51
61

71

81

91

10
1

11
1

12
1

13
1

14
1

0.4-0.5

0.3-0.4

0.2-0.3

0.1-0.2

0-0.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 15 30 45 60 75 90 105 120 135 150

OIP

MIP

Fig. 8. MIX17 workload. Optimal insertion position (left). MIP distance to optimal position (right).
such as FT or CG are able to transform a great part of hit rate improvement into performance benefits. In the case of CG, the

utilization of MIP as the replacement algorithm leads to a 25% reduction in execution time.

6.3. MIP distance to optimal insertion point

In order to better understand the behavior of the MIP policy, this section describes how close the optimal insertion point curve

is followed over time. We have selected two workloads with different distances between MIP and OIP (optimal insertion policy)

insertion position. For each case analyzed, Figs. 7(left) and 8(left) are a three-dimensional representation of the hit-rate obtained

for each insertion position over execution time. The Z-axis measures hit-rate, the Y-axis represents the different insertion and

the X-axis the millions of cycles simulated. The optimal insertion position for each time interval is represented as a 2D curve in

Figs. 7(right) and 8(right), comparing its shape with the one obtained by MIP replacement policy for the same workload.

Fig. 7 corresponds to the results obtained by FT workload, where MIP policy is able to improve hit rate over 15% compared to

LRU. As can be seen, this application presents execution phases where the optimal insertion point is far from the MRU position,

which degrades LRU performance in favor of MIP. For this application we observe in Fig. 7 how MIP provides a curve with a

similar shape to the curve described by OIP, demonstrating the correct behavior of our proposal. In some execution phases dis-

tance between optimal and MIP increases. This phenomenon is more clearly detected in Fig. 8 in which, while optimal insertion

position rapidly moves between distant values, MIP insertion position remains nearly constant for a distant-to-LRU insertion

position. Although we might think that the MIP algorithm is not working correctly in these cases, Fig. 8(left) provides additional

information that helps with understanding this phenomenon. In this case, the 3D representation shows that the difference be-

tween the hit rate at optimal position and adjacent ones is minimal. This shows a kind of flattened shape where many insertion
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Fig. 9. MIP sensitivity to cache size per core.
positions share a similar hit rate value. In these cases, MIP policy tends to place insertion position at the further-from-LRU border

of the flattened shape. In this way, despite being far (in distance) from the optimal insertion point, hit-rate is still very close to

its optimal value.

6.4. MIP sensitivity to LLC size

Fig. 9 represents MIP performance for the three workload types with different LLC sizes, ranging from 512 kB to 8 MB. In the

case of single-core applications, these values correspond to total LLC. In contrast, for the rest of the applications, size values are

per-core parameters, total LLC size being calculated as size multiplied by the number of cores. Associativity and block size is

maintained for all cache sizes evaluated. All the results provided show hit-rate improvement normalized to LRU values. Results

show that MIP consistently outperforms LRU while application working sets are larger than LLC size.

A different trend can be observed between multi-programmed applications and the other groups. When LLC is too small,

inclusiveness reduces the effective capacity. In the case of single-core applications, this reduction significantly affects LLC per-

formance, making the replacement policy less relevant. A similar behavior is observed for multi-threaded applications, where

the replacement algorithm is not effective when room for shared data is scarce. In contrast, multi-programmed applications do

not suffer from smaller LLC capacities, because storage is shared among applications with different working sets in which appli-

cations with larger working sets can make use of LLC that is not utilized by those with smaller working sets. The 512 kB value

for multi-threaded applications seems to be inconsistent with the rest of the results. For the LU application the hit rate of LRU is

extremely degraded for such a small LLC size, which increases the MIP value to a 10× better hit rate in this case. If LU is excluded,

the geometric mean value for 512 kB is similar to that obtained for 1 MB.

When the total amount of LLC storage is increased to 32 MB, the working set of most applications fits with LLC. The number

of cache misses is low and consequently the relevance of the replacement algorithm is minimal.

6.5. Comparing MIP to other policies

Our last experiment compares the results obtained for MIP to a state-of-the-art proposal with similar characteristics. We have

chosen DRRIP [17] as a counterpart because both replacement policies share a similar structure (improvement over a baseline

policy) and hardware overhead (one/three saturating counters per cache bank). DRRIP has demonstrated to perform better than

a wide range of counterparts, such as LRU, NRU, DIP, or hybrid NRU/LFU [17]. For this reason we limit our evaluation to a single

counterpart. DRRIP has been configured according to its optimal values as described in [17]. Results for this evaluation are shown

in Figs. 10 and 11. Fig. 10 represents the hit-rate improvement of the two counterparts using LRU as normalization point. Results

have been grouped according to the workload class. More detailed results are provided in Fig. 11, where the s-curve for the

hit-rate of MIP and DRRIP is shown. The X-axis represents all 72 workloads, while the y-axis represents hit-rate relative to LRU.

As can be seen, MIP consistently outperforms DRRIP for any of the application groups analyzed. The dynamic behavior of MIP

allows it to rapidly adapt to application changes, regardless of the access pattern. In contrast, DRRIP can degrade performance

when reuse frequency varies significantly over the application runtime. If reuse disappears suddenly for cached data, DRRIP is

unable to handle such an amount of thrashing. The replacement policy is not fast enough to eliminate these dead blocks, because

only infrequent insertions move dead blocks to eviction positions. In this scenario, MIP rapidly observes that the optimal hit rate

is obtained when current cache content is evicted, moving the insertion point to MRU positions. When multiple applications

with different access patterns are mixed, these fast changes in reuse are rarely found. In these cases, both DRRIP and MIP are

able to clearly outperform LRU, obtaining a 20% and 30% hit-rate improvement respectively. However, isolated applications are

in some cases much more sensitive to this thrashing effect. In these cases DRRIP results are highly application dependent. The

left-side values observed in Fig. 11 for DRRIP show that in some cases LRU performance can be degraded by more than 30%. For
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both multi-threaded and single-core applications MIP results are much more consistent, with left-side values very close to LRU

and significant improvements in some applications. This leads to a sustained 20% improvement of MIP over DRRIP in both groups.

Fig. 11 summarizes the potential advantages of MIP over DRRIP. Having LRU as reference policy, in a worst-case scenario the

fallback reference point guarantees close-to-LRU performance. When reuse frequency correlates with reuse distance DRRIP and

MIP behave similarly, DRRIP being better on some occasions. Finally, when reuse distance is highly variable and locality better

estimates reuse distance, MIP obtains its optimal results. From Fig. 11 we observe that 10 out of 72 applications at least double

hit-rate results obtained by LRU, while only one application reaches this value in the case of DRRIP.

A noteworthy result is that in contrast to DRRIP, for multithreaded or single-thread applications, LLC hit-rate benefits from

the proposal. Since general purpose CMPs include such workloads, this scenario of usage is relevant. Therefore DRRIP seems to be

useful when there are multiple independent threads accessing the LLC. If these threads exhibit dissimilar reuse characteristics,

the mechanism seems to work better than LRU. When the threads have the same behavior, such as in the case of multithreaded

workloads, DDRIP seems to impair LLC performance slightly. Our proposal is capable of going beyond, and improving cache

performance in a broader usage scenario.

6.6. Exploring additional benefits in alternative MIP configurations

The search for maximum hit rate with the current MIP configuration favors the displacement of insertion position to distant

positions from the highest priority insertion point (LRU replacement). In those cases where reference sets have a poor hit rate

the only useful information comes from the explorer sets, but there is no information at all about what is happening on the “left

side” of the conventional sets (positions from MRU + 1 to current insertion position).

With this unbalance, insertion position tends to favor those values “far” from the reference, which is not bad a priori, but

could leave many insertion positions unexplored for a long period of time. Additionally, in the presence of a single explorer we

could experience the appearance of local or “false” hit-rate maximums, as depicted in Fig. 12. In an attempt to solve this problem

we explored the possibility of adding a second explorer to the mechanism, with an insertion position between conventional and

reference. In this way one of the explorers will be aware of what happens at those insertion positions that are unexplored when

moving too far from the reference.
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There are multiple ways to select the insertion position of this second explorer. For this analysis we have opted for two

different approaches. The first one, named MIP2EXP-next, always places the insertion position of the second explorer next to

the insertion position of conventional sets. This means that the explorer insertion positions are always Ipos + 1 and Ipos − 1

(for right and left explorers respectively). With this configuration we can take the correct decision for situations such as the

ones shown in Fig. 12(left), where the utilization of only one explorer could lead to a suboptimal insertion point. However, with

both the explorer and conventional sets having a close insertion point, we could be confined to a local maximum, as shown in

Fig. 12(right). In an attempt to reduce the possible impact of these situations, an alternative proposal is to place the insertion point

for the second explorer at a distance half way between the reference and conventional insertion points. With this configuration,

named MIP2EXP-mid, the number of conventional sets in each group is reduced by one, which could have some impact on global

hit rate if groups are small. The update of insertion position is performed in the same way as before, replacing only HRREF by

HRLEFT = MAX(HRREF, HREXP-left).

We evaluated these two MIP alternatives with the results shown in Figs. 13 and 14. Fig. 13 shows the hit-rate improvement of

the two alternatives when compared to baseline MIP (denoted here as MIP-FM), while Fig. 14 represents the s-curve for the same

counterparts. Focusing on results of both graphs, the single-explorer configuration (MIP-FM) seems to be the best approach.

Despite having more information to search for a global maximum hit rate, algorithms with two explorers do not improve base

results. The reason behind this is the shape of Hit-Rate curve. The second explorer was included to identify false maximums when
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conventional and explorer sets were far from LRU insertion position (reference set). However, when this false maximum is close

to MRU, the additional explorer has the opposite effect. Insertion position can be held back by the new explorer, in a similar way

but in an opposite direction as explained in Fig. 12 for the first explorer. This effect is much more significant when the insertion

position of the new explorer sets is not close to the conventional sets’ insertion position. In this situation, global maximums far

from MRU could be missed, losing a great opportunity to improve hit rate. Looking carefully at the results obtained we can infer

that the situations where a false maximum is close to LRU are more frequent than those next to MRU. For this reason baseline

MIP is more effective than the two-explorer based approaches.

7. Summary

The work devoted to finding the optimal way to estimate reuse distance of cache blocks is profuse. Through our initial ex-

periment we have confirmed that applications show non-bimodal reuse behavior over runtime. This fact limits the potential

benefits of replacement policies that assume a bimodal reuse, either statically or dynamically. In this paper we propose cache

replacement using mobile insertion policies (MIP). MIP dynamically adjusts the insertion position of new blocks looking for the

maximum hit rate. Making use of a set dueling mechanism, we have evaluated alternative ways to find the optimal insertion

point. We have found that the optimal results are obtained when a single explorer is employed. We show that MIP outperforms

LRU hit rate by an average of 30%. We also show that MIP improves LRU performance by an average of 5% on a 4-Core CMP with

a 16-way 8 MB shared last level cache. Finally, we compared our proposal to DRRIP, demonstrating 10% better performance on

average and improvement of single-thread workloads and multithreaded applications by 20% on average.
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