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The coherence protocol presented in this work, denoted MOSAIC, introduces a new approach to face the 
challenges of complex multilevel cache hierarchies in future many-core systems. The essential aspect of 
the proposal is to eliminate the condition of inclusiveness through the different levels of the memory 
hierarchy while maintaining the complexity of the protocol limited. Cost reduction decisions taken to 
reduce this complexity may introduce artificial inefficiencies in the on-chip cache hierarchy, especially 
when the number of cores and private cache size is large. Our approach trades area and complexity for on-
chip bandwidth, employing an integrated broadcast mechanism in a directory structure. In energy terms, 
the protocol scales like a conventional directory coherence protocol, but relaxes the shared information 
inclusiveness. This allows the performance implications of directory size and associativity reduction to be 
overcome. As it is even simpler than a conventional directory, the results of our evaluation show that the 
approach is quite insensitive, in terms of performance and energy expenditure, to the size and associativity 
of the directory.   
Key Words and Phrases: Memory Hierarchy, Cache Coherence 

 INTRODUCTION 
The new paradigm of multiple cores inside a chip presents some new challenges. Among 
them, we can consider the so-called bandwidth-wall [1] as one of the most crucial. This 
obstacle is due to the limited growth in the number of pins and the operating frequency due 
to physical and packaging cost restrictions. Off-chip communication necessities grow as the 
number of cores and their complexity increase. However, the available off-chip bandwidth 
does not increase at the same rate, becoming a bottleneck in the whole CMP. Some studies [2] 
predict that this problem will limit the number of cores that can be introduced inside the chip. 
Fortunately, there is a wide variety of solutions that are able to mitigate the problem. Among 
them, the one that appears to have most benefits is the introduction of large amounts of 

 
1  This work expands the results published at the 22nd edition of the International Conference on Parallel 
Architectures and Compilation Techniques (PACT), with the title “The case for a scalable coherence 
protocol for complex on-chip cache hierarchies in many-core systems”. The whole text has been re-written, 
improving figures and adding explanations that were omitted before. A detailed summary of the major 
changes is described next:  
• Sections 1 and 2 (Introduction and Coherence Protocol Schemes and Shortcomings) have been 
modified with a much deeper description of the different solutions to manage the cache coherence problems 
of any multicore system. Besides the directory coherence protocols which has been re-written, broadcast-
based protocol explanation has been added with a detailed argumentation of how their accepted 
shortcomings do not have as much impact as it has been assumed.  
• Section 3 is the part of the work with more additional information compared to the published 
paper. The conceptual approach of the proposal and its design details have been completed with the in-
cache directory implementation. This means that the state transition tables of both type of coherence 
controllers, sparse and in-cache directory are included with their corresponding explanation, highlighting 
the main differences between them. Section 3 also includes a new subsection, “Running examples”, which 
facilitates the reader the comprehension of the new mechanisms. This includes new diagrams and a 
complete explanation of the processes that read and write requests follow under different circumstances 
happening in a multicore system with MOSAIC coherence protocol.  
• Sections 5 and 6 include new performance results. Section 5 extends previous results comparing 
our proposal to the recently proposed Stash directory (HPCA 2014), due to the similarity of both protocols. 
Section 5.4 includes results and discussion for both counterparts. Section 6 includes the performance 
results and discussion corresponding to the in-cache directory implementation.  
With all this, all the lacking details that were missing in the published paper mentioned at the beginning 
of the document are given now and the complete functionality of our mechanism is fully describe with this 
paper. 
 
 



 L.G. Menezo et al. 
 
memory inside the chip.  

However, the efficient organization and management of large amounts of memory 
associated with each of the cores is not a straightforward task. There is a consensus among 
computer architects which assigns some cache memory to each of the cores in a stepped way 
at different levels but, from the performance point of view, there cannot be “steps” with 
excessive difference in capacity among them [3]. There is much less unanimity about the 
distribution of the last level cache (LLC) and its characteristics. Some distribute it as a private 
cache and others design it to be shared among some or all the cores in the chip. This decision 
will have a significant effect on the CMP usage. In almost all the CMPs implemented so far 
(Bulldozer [4], Haswell [5], Sparc T5 [6]), the LLC is shared among the cores in the chip 
because it seems that this improves memory utilization. Other companies are tending to 
maintain the LLC as local caches for each core although all the banks are used as victim cache 
by the rest [7]. Although the most common number of levels used nowadays is three [7][8], 
there are already some new commercial systems which include more levels, such as the IBM 
z196 [9] or IBM Power 8 [10] which includes a fourth. As soon as the technology enables it, 
with mechanisms such as 3D stacking [11], more levels will be introduced inside the chip. 

In any case, from the moment there are multiple copies of the same block in the system, 
coherence has to be enforced. Therefore, it is important to decide how it will be managed: via 
hardware and/or via software. There are numerous works analyzing the advantages of 
exposing to the programmer-compiler the capability of handling the data coherence of the 
blocks allocated in the private caches [12][13]. However, most of those studies are focused on 
performance comparison, i.e. execution time, and only consider a very specific type of 
applications. When taking into account general purpose applications, with the large amounts 
of memory in a multi-level hierarchy, coherence management is not a trivial task. For this 
reason, programming parallel applications without the hardware support to do this might 
hinder the productivity of programmers because they will have to pay too much attention to 
this duty. Although not unanimously, a large part of the industry and academia believes that 
the overall future chip general-purpose multiprocessors (CMP) will have some sort of 
hardware mechanism for cache coherence. Therefore, as in Martin et al. ’s discussion in [14], 
we also believe that for the next few years, data coherence maintenance should be guaranteed 
by hardware and the main target of this work has been the search for efficient strategies to 
achieve this. 

The responsibility of the coherence protocol is to ensure that all the potential copies of a 
memory block scattered throughout different caches are coherent. A large number of cores 
and complex cache hierarchies might increase coherence protocol responsiveness. On the one 
hand, having a large number of cores in the chip makes it unfeasible to rely on broadcast-
based coherence protocols. Although in current commercial CMPs this is the predominantly 
used approach [7][4][15][16], it has foreseeable difficulties to achieve success with larger 
numbers of cores in the system, due to their higher energy requirements [17]. On the other 
hand, complex cache hierarchies increase the likelihood of having multiple copies of shared 
blocks scattered throughout private levels, which is challenging for pure directory-based 
coherence protocols. The private section of the cache hierarchy in current systems is quite 
large but it will be greater in the medium term as the memory wall effects become more 
relevant. Therefore, the amount of information required by directory protocols will increase.  

Under the previously depicted context, we have developed a coherence protocol suitable 
for confronting the problem comprehensively. MOSAIC [18] is constructed on top of a 
conventional directory protocol [19], but instead of using inclusiveness to guarantee system 
correctness, MOSAIC will use a token coherence correctness substrate [20]. The proposal 
inherits the Token Coherence protocols’ simplicity, their lack of precise sharing knowledge 
and the power efficiency of conventional Directory protocols. Additionally, MOSAIC 
circumvents not only most of the multicast traffic of Token Coherence, but also the inelegant 
starvation avoidance mechanisms needed due to the lack of serialization points. 

Although from a performance and cost point of view non-inclusiveness is desired, the 
common assumption is that inclusiveness is inescapable to keep coherence protocol 
complexity manageable [21][22]. As a matter of fact, MOSAIC is simpler than a plain directory 
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coherence protocol and any block stored in private caches may not be tracked (i.e. no entry 
will necessarily be allocated in the directory). The protocol is engineered to reconstruct the 
entry under demand (i.e. if a core misses at its private cache levels for an untracked cache 
block that is stored in other cores’ private cache). Our proposal is utilizable using in-cache or 
sparse directories [19]. We will show that even with extremely small directories and/or 
associativity, it is possible to sustain the performance and energy consumption of the system. 
The key aspect of this remarkable achievement is that token counting allows the data stored in 
LLC to perform directory entry reconstructions without any extra traffic. 

As the reader may remember, token coherence [20] is based on assigning a fixed number of 
tokens per cache block and requires at least one token to read and all of them to write. The 
most common case is that the data accessed will be private so LLC will have data with all the 
tokens. Taking this into account, LLC will, in most cases, have all the tokens, making it 
unnecessary to broadcast a message to reconstruct the block. In this way, LLC data will serve 
indirectly as the most effective filter to determine whether a data block is shared or not. The 
new coherence protocol, MOSAIC, is able to take advantage of the bandwidth availability 
inside the chip in order to avoid the necessity of inclusiveness and still keep the system 
scalable. Sending broadcasts to reconstruct the directory information whenever necessary 
avoids having to maintain inclusive information in the directory, although it requires extra 
bandwidth. However, token counting enables the LLC to be used as a filter to eliminate most 
of these broadcast messages, which enables a scalable system to be achieved. 

The rest of the paper is organized as follows: Section 2 introduces the basic coherence 
protocol schemes. Section 3 explains the proposal. In Sections 4 and 5 we introduce the 
evaluation methodology and the performance evaluation. Section 6 explains in-cache 
configuration architecture. Finally, Section 7 states the main conclusions of the paper. 

 COHERENCE PROTOCOL SCHEMES AND SHORTCOMINGS 

 Broadcast 
Among the options to design coherence protocols for small to medium scale multicores are 

the broadcast-based proposals. Their main characteristic is the reduced global latency of the 
whole system, exploiting the high bandwidth availability inside the chip in this kind of 
systems. The use of scalable point-to-point interconnection networks and the scalable cache 
hierarchy designs implemented, such as NUCA [23], make this bandwidth profuse inside the 
chip. If we add to these characteristics the appearance of 3D stacked systems [11] and the 
utilization of low-swing links [24], bandwidth is substantially increased and the energy cost of 
moving data faster is reduced. Currently there are a substantial number of CMP coherence 
protocol proposals that share this point of view [20] [17] [25] and most of the ideas use 
broadcasting as the mechanism to overcome indirection at intermediate ordering points. The 
impact of the shortcomings that these protocols might have can be much less than is 
commonly assumed. Namely: 

1) The multicast traffic required for on-chip cache requests will increase network consumption. It is 
true that power consumption is affected by multicast traffic, but the final effect depends on 
the network characteristics. As is known, if the network has hardware support for multicast 
messages [26][27], their impact could be reduced because each network resource is used at 
most once per request. This happens because the message is only replicated when it has to go 
via different paths to reach its destinations. When no multicast support is included, one 
message will have to be sent for each of the destinations and so each resource will be used 
many times. According to [26], using multicast support could save up to 70% in the network 
Energy Delay Square Product (ED2P). 

2) Excessive network cache bandwidth consumption could increase contention and significantly 
increase on-chip latency. Although this may potentially ruin the rationale of snoop-based 
coherence protocols, a correctly dimensioned design for the cache hierarchy capable of 
decoupling the number of cores and the on-chip cache bandwidth will prevent it. Under these 
circumstances, on-chip communication bandwidth will scale in proportion to core count 
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and/or its aggressiveness. 

3) Extra cache tag lookups produced in these protocols will increase cache energy consumption. If 
we take into account the growing leakage in each technological advance [2], the area devoted 
to cache, and the substantial benefit in terms of performance obtained by snoop-based 
coherence, the increased tag snoop energy might be quickly amortized by the benefits in 
dynamic energy.  

Therefore, although it is obvious that if the number of cores is very high this method may 
not be a suitable basic method to maintain the coherence, the previous three points allow us to 
conclude that the scalability is higher than many authors have estimated because of their 
failure to consider the previously mentioned aspects that may be essential.   

 Directory 
Historically, directory-based coherence protocols have been used to address the scalability 

problem in multiprocessor systems. However, as the memory wall effects become more 
relevant, more on-chip cache capacity will be required and therefore large private caches will 
be needed. These large capacities require large storage necessities to keep all the coherence 
information about all the data copies in the system.   

There are two main approaches to keep this information: in-cache and sparse directories [19]. 
For in-cache directories, each block stored in LLC has the tag and data attached to the block 
state and the sharers’ information (sharers bit vector, pointers, etc.). The coherence controller 
uses this information to deal with incoming requests and having a precise knowledge of the 
block’s sharing status is necessary to guarantee correctness. Therefore, LLC inclusiveness with 
the previous level caches is necessary because it is the only way to have knowledge of private 
level contents. For small private levels, this approach has a substantial overhead because, in 
order to keep track of the sharing status of a handful of data blocks, any LLC block has to 
have a substantial storage space reserved per block (at least log2P bits for P processors). 
Additionally, the effective capacity of the LLC will be reduced since there will be 
progressively more blocks that will have to be dedicated to maintaining this information and 
fewer blocks dedicated to victim cache for private replacements. 

When a sparse directory design is chosen, the total effective capacity of the LLC is 
recovered because directory entries are allocated under demand and therefore the overhead is 
proportional to the aggregate private cache level’s size (and not to the LLC size). When a 
block arrives at the chip in response to a request, a new directory entry is allocated. It will 
have to include at least, the block tag, the block state and the sharer vector (or any other core 
representation). This entry is allocated in a separate structure from the data. In current NUCA 
caches, to guarantee scalability, the most extended strategy is to bank the directory 
throughout the chip, keeping the data and directory slices connected to the same router [28]. 
In most cases, the address-to-slice mapping used is statically determined by the lowest bits 
(closest to the byte offset) of the address.  

The capacity and associativity of the directory has to be sufficient to keep private-level 
cache tags. In small systems [29] with small private caches and low associativity, the coverage 
can be full, commonly denoted Duplicate Tag Directory. Nevertheless, for medium-to-large 
numbers of cores, there is no feasible way to use such large-scale associativity. Then, each 
entry of the directory can only maintain a subset of all the possible block tags that can be 
stored in private caches, inducing conflict misses. Each one of these conflict messages means 
an invalidation of the corresponding blocks in the private caches, with a negative effect on the 
performance and what is worst, the magnitude of this negative effect strongly depends on the 
specific characteristics of each application. It should be noted that this inefficiency arises 
because of the directory inclusiveness, i.e. any block stored at any private cache level should 
have an entry allocated in the directory structure. 

 PROPOSAL 
Our proposal is a new coherence protocol that does not require inclusiveness to guarantee 

correctness and which is still considerably simpler than a traditional directory protocol. The 
main idea is to take advantage of the bandwidth availability inside the chip in order to avoid 
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the necessity of inclusiveness with the aim of reducing one of the main problems that the directory 
approach has: the space needed to hold the coherence information for all the cache blocks stored in the 
private levels.  

 Conceptual Approach 
The MOSAIC protocol is focused on reducing one of the main problems that the 

conventional directory approach has when dealing with a large number of processors and 
with large number of blocks kept in the private levels: the space needed to hold all their 
coherence information.  The cost of the directory is proportional to the size and variety of the 
private levels. In order to avoid this directory constraint, MOSAIC does not evict blocks from 
the private levels when there is not enough space in the directory and some coherence 
information has to be removed to allocate new coherence lines. This means that the blocks can 
be kept in the private caches, although the directory is not tracking them anymore. Thus, 
coherence information inclusiveness is completely removed from the directory, allowing some 
restrictions to be eliminated when deciding the size of the directory. 

 

Figure 1. Sketch of MOSAIC’s concept after a request from P0 misses in the LLC and in the directory. 
 
Without this inclusiveness enforcement property, when a request is received and a miss 

occurs in the directory, it is not possible to know whether the requested data block is allocated 
in the off-chip memory, in the LLC and/or in any of the private levels. For this reason, the 
coherence protocol needs to have a special mechanism to locate all the possible copies of the 
requested data.  

In order to be able to collect all the coherence information associated with a requested 
block, after any subsequent miss in the directory, an on-chip reconstruction of the directory 
entry is initiated. This reconstruction process starts by checking whether the requested block 
with all the tokens is present in the LLC. If it is not, a broadcast message is sent to all the 
private caches asking for information about the requested block. This process will end when 
all the coherence information associated with that block (i.e. the sharers of the block and their 
state) has been collected. By using token counting [20], the process is kept simple and negative 
acknowledgements [16] are avoided. This is possible because only the private caches that have 
the data block with some tokens have to reply to the broadcast reconstruction message. These 
replies will include the number of tokens that they have, so by adding all of them the 
directory will know when it has finished the reconstruction process. It is important to bear in 
mind that the directory will not store the number of tokens each private cache has and it will 
only store which of them have a copy (i.e. the sharers) and which one has the owner token. 

To explain the whole process in a more graphical way, Figure 1 presents a schematic sketch 
of how MOSAIC behaves. The example starts with a read request from processor P0 that, after 
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missing in its private cache, sends a read request to the directory slice �. If the directory does 
not have any information about the requested data block, it checks whether it is present in the 
LLC �, and if it is not, it starts a broadcast reconstruction message looking for the data block 
needed �. This reconstruction message has two objectives: to build the directory sharers’ 
information and to solve the request that initiated the whole process. For this last goal, the 
reconstruction message includes information about who started the reconstruction and for 
which type of request it did so. Thus, the corresponding private caches will be able to know 
when and how they have to reply to the requestor. This means that, for example, in Figure 1, 
since the starting request is a read request, only the private cache holding the owner token 
will be in charge of solving it. For this reason, P1 sends a copy of the data block with one of its 
tokens to P0 �. To achieve the first goal of the reconstruction process, the directory needs to 
collect all the information about the requested data block. So it needs to know who is holding 
any tokens associated with that address and also how many of them are held, in order to 
know when the directory has finished collecting all the information. In Figure 1, P1 and P2 send 
the information about their tokens to the directory �. For a write operation, the reconstruction 
process is similar with the difference that all of the sharers will forward their tokens to the 
requestor (invalidating their copies) without sending any message to the directory. The 
requesting processor, after collecting all the tokens, will notify the directory with a completion 
message. In any case, once the entry is fully constructed, if the directory needs to evict it, 
because of lack of space in the directory after a subsequent miss, MOSAIC does not need to 
invalidate any of the private copies. It may replace the entry silently because it will be 
reconstructed if necessary. 

 
Table 1. MOSAIC protocol main states in both sparse and in-cache directories 

States Sparse- Description In-Cache- Description 

I Invalid. Block is not present in the sparse directory. Invalid. Block is not present in the last level cache. 
C_S Constructing the block after receiving a read request (GETS) 
C_X Constructing the block after receiving a write request (GETX) 

C_I does not apply 
Constructing the block after receiving an instruction fetch 

(GetI) from a core. 

A Allocated. Block is fully constructed with all the coherence information about that block. 

A_S Allocated and a read request (GETS) has been received from a core. Waiting for an unblock message. 

A_X Allocated and a write request (GETX) has been received from a core. Waiting for an unblock message. 

A_I Invalidating a block. 
S does not apply Shared. Block with valid data & one token. 
O does not apply Owned. Block with valid data & at least the owner token. 

M does not apply Modified. Block with valid data & all the tokens. 

 Design Details of MOSAIC 
The MOSAIC coherence protocol may be used either in a sparse directory or in an in-cache 

directory. The only difference between using one or the other of them is in the coherence 
controller that is in charge of constructing the line, which is the element holding all the 
coherence information and acting as the directory. This coherence controller can be a 
standalone directory in the sparse design or the LLC controller in the in-cache design. 

 The main states that might be considered are the ones giving name to the coherence 
protocol: Modified (M), Owner (O), Shared (S), Allocated (A), Invalid (I) and Constructing (C). The 
meaning of the first three and the invalid state are well known, but the new states A and C 
provide the key implementation details of the MOSAIC protocol. The C state indicates when an 
entry in the directory is being constructed and the A state defines when a line is fully 
constructed with all the coherence information attached. However, each of the designs has its 
own necessities and more importantly, its own possibilities for optimizations. For this reason, 
these main states vary a little from one to another. Next, specific design details of each of them 
will be seen using the table-based transitions method. 
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3.2.1 Sparse directory specification 
In a sparse design, the directory does not have data copies attached to each line. For this 

reason, having the M, O or S state in those entries does not apply, because the only necessary 
information is whether the entry is already constructed (A), being constructed (C) or invalid 
(I). When the directory controller is constructing a line, the block enters a transitory state, C_S 
or C_X, depending on whether the reconstruction process was started by a read request (C_S) 
or a write request (C_X). This requirement is also mandatory for the Allocated state (A) which 
is divided into A_S or A_X after a GetS or GetX request respectively. Table 1 provides a brief 
description of each state in each one of the controllers.  

Besides the state of the block, the coherence information that each of the entries in the 
directory should include is: the sharers of that block, the core holding the owner token (as it 
will be in charge of forwarding data if necessary) and a token-count field of that block. Any 
existing method to maintain the sharer information may be chosen [30][31]. However, a full 
bit vector will be assumed throughout this paper to simplify the presentation of the proposal. 

A simplified version of the transition table of the sparse directory controller working with 
MOSAIC is shown in Table 2. When receiving a request (GetS or GetX), if the block is not 
present in the directory (state I), this controller initiates a reconstruction process like the one 
explained in the previous section. Note that this reconstruction process is different depending 
on whether the request is a GetS or a GetX and so the state the entry has to change to is 
different (C_S or C_X respectively). 

 
Table 2. MOSAIC sparse directory controller transition table. Shaded cells indicate control actions, lighter boxes 

indicate stalling the requests and darker ones error transition 
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During the reconstruction, when the controller receives information about some tokens’ 

location (event: Token Info), it adds that sharer to the sharers’ bit vector and updates the 
number of known located tokens. When the request triggering the reconstruction is a GetS, the 
cache with the owner token of the block will send a copy of the data with one of its tokens to 
the requestor. After that, it will inform the directory about how many tokens it has left. When 

Events 
States 
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the requestor finishes its request, it sends an unblock message (event: Unblock).  

If the request is a GetX, all the caches with a copy of the requesting block will have to 
forward their tokens to the requestor, which will send the unblock message when it has 
collected all of them and so its request is finished. In this case, the directory controller will add 
the requestor as the exclusive sharer of the data (state C_X, event Unblock). 

If the coherence information needed is in the directory (state A), all the data locations are 
known so the directory only has to forward the request to the appropriate sharer. If it is a read 
request (GetS), it sends it to the cache holding the owner token; if it is a write request (GetX), it 
sends it to all the sharers of the block.  

The directory needs to be informed about all the replacements occurring in the private 
levels in order to always have updated information about the sharers. Any private cache 
replacing a block sends a request with the tokens (event: PUT Tokens), or if it has the owner 
token with the data (event: PUT Data) to the directory. The directory increases the number of 
tokens it owns (this is why the entry needs to have a token count field). When receiving a data 
replacement, if the entry is not constructed (state I) or there is no pending request (state A), 
data and all the tokens are written back to LLC (action: write data in LLC). 

Replacements that occur while the line is being constructed (C_X or C_S) or when the 
directory is still dealing with a request (A_S or A_X) have to be handled carefully. Write 
requests are easier (C_X), because when the directory receives a replaced data block (event: 
PUT Data) or replaced tokens (PUT Tokens) it just forwards them to the pending requestor 
(action: bounce data to requestor). Read requests on the other hand are a little trickier, because a 
lot more possible situations can occur. On some occasions, the directory might be in charge of 
solving the pending read request with the replaced data, but it cannot be fully sure about this 
without more information, because it does not know whether the request has already been 
solved. If the reconstruction request arrived at the owner before it made its replacement, it has 
dealt with the pending request. If it arrived after the replacement, it could not do so because it 
did not have any tokens.  

When the replacement message arrives with all the tokens attached the answer is clear, the 
request has not been solved and the directory needs to do so itself. On the contrary, if the 
replacement message does not include all the tokens, the directory controller is not able to 
know whether one of the missing tokens was sent to the requestor or not. The only way to 
know without sending extra control messages or negative acknowledgements is to finish 
constructing the whole entry and locate all the tokens. When the reconstruction is over, if the 
pending requestor did not send any token information, it means it did not receive any 
response and the directory needs to send one. 

As the reader may appreciate, all these corner cases require the addition of more states and 
more events indicating these situations with their corresponding extra transitions. However, 
they were not included in Table 2 to avoid extra complexity for the reader and only the most 
common cases are illustrated. The full protocol specification may be found in [32]. 

In a correct construction of the system, the directory and the LLC for the same address are 
side by side.  This gives MOSAIC a great opportunity for optimization. When a request is sent 
to the directory, the LLC can be accessed in parallel. Although the entry is not present in the 
directory, if the data block is found in the LLC with all the tokens, it is possible to avoid the 
broadcast reconstruction request because it is known that no other copy of the block is located 
in any of the private caches and the directory entry reconstruction will proceed without 
broadcast. This speeds up the entry reconstruction and more importantly, it filters most of the 
multicast messages sent to the private caches in the CMP. As LLC capacity will be substantially 
higher than the number of blocks tracked by the directory, this will be the most habitual 
scenario for actively used private data blocks, which is the common case. Therefore, in most 
situations the data and all the tokens will be allocated there. 

3.2.2 In-cache directory specification 
The in-cache implementation of MOSAIC has a substantial number of similarities with the 

sparse version. Nevertheless, its different structure means the addition of new states and in 
some cases the possibility of some optimizations. A LLC controller working with a MOSAIC 
protocol also needs to provide information about the situation each data block is in. For this 
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reason, it is then not sufficient to define only whether an entry is constructed or not, but it is 
also necessary to indicate the state that valid data are in. Therefore, in contrast to the sparse 
design, now there are three additional possibilities, which are that a data block can be shared 
(S), owned (O) or modified (M). The A state is still necessary, because block sharing 
information may be valid (entry constructed), while data copy is not. The C states are now a 
group of three different states. As well as distinguishing whether the reconstruction process is 
started with a read request (C_S) or a write request (C_X). Additionally, MOSAIC is optimized 
to react differently when there is an instruction fetch, in which case the entry is in C_I state. A 
brief description of the main states is given in Table 1. 

 
Table 3. Additional transition states of MOSAIC in-cache LLC controller transition table. Shaded cells indicate 

control actions, lighter boxes indicate stalling the requests and darker ones error transitions. 
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Table 3 shows the main additional transitions occurring in the LLC controller compared to 

the sparse case (Table 2). The main difference is the existence of the C_I state whose aim is to 
optimize the protocol when receiving an instruction fetch. This optimization is possible 
thanks to having the sharing information next to each data block. For loads (non-instructions), 
MOSAIC always tries to send the data block along with all the tokens to the requestor in order to 
facilitate the following writes on that block, emulating an exclusive (E) state behavior. If the 
block has all the tokens, the controller may write in it without sending any request (i.e. 
upgrade miss) and the more tokens it has, the easier it will be to collect the remaining ones. 
Moreover, avoiding maintaining tokens in LLC favors silent entry evictions in case of 
replacements. Therefore, when constructing an entry, if the requested data block is present in 
off-chip memory, it is sent with all the tokens to the requestor. However, instructions will not 
be written during the execution and they may be part of shared code, so it does not make 
sense to initially send them with all tokens to the requestor. Instead, when off-chip memory 
receives a reconstruction request for an instruction, it sends a copy of the block with one token 
to the requestor and another copy with the rest of the tokens (including the owner) to LLC. In 
Table 3, when the entry is in C_I, it may receive a data block from memory (event: data from 
Memory) and when it receives the Unblock message from the requestor, it changes its state to O 
(owner). Thus, if those instructions are later requested by other cores, they will receive a copy 
with a token simply using a 2-hop process: requesting to LLC and LLC sending data to the 
requestor.  

Another detail to take into account in the in-cache version is that replaced data has to be 

Events 

States 
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distinguished in order to know to which state the block needs to change to after writing it 
back. In Table 3, only the event PUT Data appears, but note that with only this event, it is not 
possible to know to which state the controller has to go to when the entry is in the I or A state. 
Once again, the complete and detailed documentation of the coherence protocol for the in-
cache design can also be found in [33]. 

One of the main disadvantages of the in-cache structure is that, in some cases, replacements 
cannot be silent. When it is necessary to construct a line and there is no available space for it 
in the LLC, the coherence protocol needs to replace one block to construct a new one. If the 
data block is in the A state, the eviction can be made silently, but if it has some tokens, it has to 
replace these tokens writing them back in off-chip memory. Although LLC evictions are done 
the same way, in the sparse version of MOSAIC, the construction of a line does not mean an 
eviction from the LLC. 

 Running Examples 
Now that the reader has a vision of the details of the coherence protocol, we can review the 

conceptual approach seen at the beginning of this Section, but focusing on precisely 
describing what happens with the entry states and the rest of the copies in the system. Figure 
2 and figure 3 shows the representation of two consecutive reads in a 4-core CMP with a 
MOSAIC sparse directory. We have added one additional processor (P3) to the conceptual 
approach example in order to be able to see the behavior when there is a second read after the 
line has been reconstructed. The initial situation is with P1 having the data block with all the 
tokens except for one, which is in P2’s private cache with another copy of the data block. P0 
issues a read request (GetS) to the directory � because it does not have the data block in its 
private cache (which might be composed of multiple levels). The directory does not have any 
entry allocated for the requested address so it broadcasts a reconstruction message � asking 
for all the token information and indicating that P0 needs a copy of the data block with at least 
one token. Processors that do not have any token ignore the request (like P3) and processors 
with the data block in a shared state (such as P2) send information about how many tokens 
they have. The processor holding the owner token (in this case P1) is in charge of dealing with 
the initial request, so it sends a copy of the data block with one token to P0 � and sends 
information about all the tokens left to the directory. 

 
Figure 2. Example of MOSAIC coherence protocol when a read request arrives at the directory and no entry 
for the requested block is allocated. P0 issues a GetS operation and the directory has to initiate the 
reconstruction process. 
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Figure 3. Example of MOSAIC coherence protocol when a read request arrives at the directory and it finds 

the entry for the requested block constructed with all the coherence information. 
 

   
While the directory is receiving messages with the token location information, it updates 

the sharers’ vector and it increases the number of known tokens that it has received so far. It 
will also receive information about which processor holds the owner token. Thus, when it 
knows where all the tokens are and who the owner of the block is, the directory is able to 
ensure that the entry information is completed. In our example, this occurs when the last 
token information arrives from the requestor �, when the directory can change the state to A 
indicating that the entry is allocated with all the information updated.  

After this process, any other request for that address arriving at the directory will find the 
entry fully reconstructed and it can be dealt with directly, like in a conventional directory 
protocol. This situation is shown in Figure 3 where, using the final situation from the previous 
figure as the starting point, P3 issues another read request to the directory�. This time, when 
the request arrives at the directory, the line is fully constructed and it includes all the 
necessary coherence information. Therefore, as it knows that the owner of that data block is P1, 
it only has to forward � the read request to P1 and the owner will reply to P3 with a data block 
copy and one token �. After P3 finishes its read request, it sends a complete message to the 
directory, which will add it as another sharer and set the entry state back to the stable state A 
�. Similarly, in the case of a write request, if necessary, the reconstruction process is carried 
out in a similar way, with the main difference that each core having a copy of the block sends 
all their tokens to the requestor and invalidates its own copy. 

Using token counting is a key component in MOSAIC, because it simplifies all the 
handshaking used to reconstruct directory entries and it avoids the use of negative 
acknowledgements as well as the necessity of timeouts. It also allows corner cases to be 
correctly handled as a consequence of data forwarding and ignoring requests. For example, if 
the broadcast request going to P3 is delayed and this core gets the data block before receiving 
it, P3 will not respond properly. However, this data and token movement will only cause an 
efficiency issue and not a correctness one because although MOSAIC ignores requests in the 
absence of tokens, it does not ignore data block messages (which include tokens) when they 
arrive at a cache which is not expecting it. These unexpected data blocks will be bounced to 
their home node, which works as a serialization point and detects the anomaly in the 
corresponding entry. This would be silently invalidated (like in a replacement) and the single-
writer and multiple-readers correctness invariant will still be accomplished. Note that this 
inefficiency case is highly improbable so we considered that it was better to use it than the 
indirection of data and tokens through the directory to keep complete ordering of the network 
messages. 

Table 4. 8-core and 16-core CMP system configuration  

Core Arch. 

Functional Units 4×I-ALU/4×FP-ALU/ 4×D-MEM 

ROB size / Issue Width 128, 4-way 

Frequency / Count  3Ghz, 8 (or 16) 

Private (L1)Size/Associativity / 32KB I/D, 2-way, 64B, 1 cycles 
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Caches Block Size / Access Time 

(L2)Size / Associativity/ 
Block Size / Access Time 

128KB Unified, 4-way, 64B, 2 cycles, Exclusive with L1 

Outstanding Requests per core 16 

Shared L3 
Size / Associativity / Block Size 16MB (or 32MB), 16 (or 32)×1MB, 16-way, 64B  

NUCA Mapping Static, interleaved by LSB  
Slice Access Time 6 cycles 

Mem. Capacity / Access Time / Memory Controllers / BW 4GB, 240 cycles, 2/32GBs (or 4/64GBs) 

Network 
Topology / Link Latency / Link Width 4×4 (or 6×6) Mesh, 1 cycle, 16B  

4 virtual channels 

Router Latency / Flow Control / Routing 1 cycle/ Wormhole/DOR 

 EVALUATION METHODOLOGY 

 System Configuration and Simulation Stack 
To analyze MOSAIC, we will use aggressive out-of-order cores, similar to those used by 

commercial systems [7][15][4]. The rationale behind this decision is that instruction-level 
parallelism (ILP) performance should not be underestimated [34]. Out-of-order processors 
will exert a high pressure on the coherence fabric. Since the number of pending instructions 
per core could be large, the concurrent coherence operations could be orders of magnitude 
bigger than those observed with a large count of simple in-order cores.  

In our particular case, we will use 4-wide issue cores with 128 in-flight instructions and up 
to 16 pending memory operations. The numbers of cores chosen in our evaluation are 8 and 
16 cores per CMP. The on-chip hierarchy configuration, like in [7][15][4], is composed of three 
levels. The first two are private, strictly non-inclusive layers. The third level is similar to the 
one proposed in [15], shared following a static NUCA [23] approach. In contrast with this 
system, instead of an ultra-wide ring network (which in part, is imposed by the coherence 
protocol used) we will use a mesh network, which is characterized by a better on-chip 
bandwidth scalability and better performance/cost ratio. In order to avoid protocol deadlock 
we will assume four virtual channels. By using Dimension Order Routing (DOR) we avoid 
packets from one source to the same destination overtaking each other. The routers in the 
network can handle multicast traffic natively [26]. Although for this size of system a broadcast 
protocol might obtain better performance [35][17], our objective is to prove that MOSAIC is 
capable of overcoming classic directory limitations, which will be a requirement with a much 
higher number of cores in the CMP.  

Comparing MOSAIC with a conventional protocol, varying the directory properties (i.e. 
associativity and capacity) might be enough to understand the advantages of the proposal. 
MOSAIC can work in both sparse and in-cache directories. We begin our analysis with the 
former and later we will carry out a similar performance analysis with in-cache directory 
designs. A summary of the main parameters used in our analysis is shown in Table 4. 

The main tool for our evaluation was GEMS [36]. With this tool, it is possible to perform 
full-system simulations. Coherence protocols have been implemented using the SLICC 
language (Specification Language for Implementing Cache Coherence). For the power 
modeling we use CACTI 6.5 [37] for modeling the cache and DSENT [38] as the network 
modeling tool.  

The workloads considered in our study are ten multi-programmed and multi-threaded 
applications (scientific and server) running on top of the Solaris 10 OS. The numerical 
applications are three from the NAS Parallel Benchmarks suite (OpenMP implementation 
version 3.2 [39]). The server benchmarks correspond to the whole Wisconsin Commercial 
Workload suite [40]. The remaining class corresponds to multi-programmed workloads using 
part of the SPEC CPU2006 suite running in rate mode (where one core is reserved to run OS 
services). 

 PERFORMANCE 
When the number of cores is large, conventional directory protocols have to face 

limitations in two main factors, capacity and associativity. Next we will analyze how sensitive 
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MOSAIC is to the two parameters and compare its results with those from a conventional 
sparse directory implementation. The reference point in this analysis will be a directory with 
duplicate tags. Under this configuration there will not be any private cache invalidations due 
to directory misses and therefore there should not be performance differences between 
MOSAIC and the conventional protocol.  

We will start with small private caches of a 2-way 32 KB L1 I/D and unified victim cache of 
4-way and 64KB L2. Assuming in both cases a block size of 64 bytes, for these cache sizes the 
number of required entries in the directory to avoid capacity misses is 2048*#cores. Until sub-
section 5.5, we will assume that the number of cores in the CMP is eight. Therefore, assuming 
8 bytes per directory entry (enough to store tag and sharing information), the total directory 
size required to avoid capacity misses will be 128KB. The storage overhead will grow with the 
number of cores since the aggregate private cache will increase (the number of entries needed 
in the directory) and the sharing vector will be larger (the size of the entries in the directory).  

With the aim of minimizing the access time to data in data slices and avoiding bottlenecks 
in the accesses, we distribute the directory in 16 slices (as many slices as the LLC) (Figure 1). 
The slice interleaving of data and directory entries over LLC uses the least significant bits of 
the address. For the same addresses, the directory slice and data slice are 1 cycle away.  To 
completely avoid conflict misses in the directory, the required associativity will be 64. This 
large associativity is necessary because on each entry we need as many ways as the sum of 
both of the private levels’ associativity times the number of cores (i.e. (L1I associativity + L1D 
associativity + L2 associativity) * #cores). Obviously, any realistic proposal should reduce this 
value to be scalable. 

 Decreasing Directory Associativity 
Initially, we will determine the sensitivity of a conventional directory protocol and MOSAIC 

when the associativity is reduced, i.e. how the two protocols react when the number of 
conflict misses in the directory is increased. In order to perform this analysis, we keep the 
directory capacity fixed at 128KB and modify the associativity from 64-way to 1-way per set. 
As associativity goes down the number of conflicts grows, because even though there is space 
for all potential blocks stored in private caches, some of them may conflict in the directory. 
Obviously, from an implementation point of view it does not make much sense to reduce 
associativity to 1. However, this setting allows us to analyze a key aspect of the system 
scalability given that when the number of cores, each with its own private cache, is increased, 
the number of blocks mapping to the same entry in the directory will also increase.  

Figure 4 shows how the base Directory protocol (to avoid confusion from now on it will be 
denoted BASE) and MOSAIC impact on cache level behavior when the number of directory 
conflicts is increased. Unsurprisingly, BASE directory has a bad reaction to that change in the 
associativity, forcing a large number of misses in private levels due to directory invalidations. 
In some applications, such as Omnetpp (where the cores are not sharing any data), the misses 
in those levels are multiplied by two. Nevertheless, and as expected, MOSAIC is completely 
insensitive to any associativity modifications. These results indicate that the implementation 
cost can be the same as the simple directly mapped configuration without any performance 
penalty. 
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Figure 4. Normalized number of misses at the private levels when sparse directory associativity is changed 

for a conventional coherence protocol (BASE) and MOSAIC. 

The final performance differences depend on each type of application, i.e. its behavior in 
private caches using a duplicate tag directory. Figure 5 (a) shows these results, indicating that 
the MOSAIC protocol could be up to 40% faster than the BASE protocol. For the combination of 
system size and applications used, the most remarkable effects are found in extreme situations 
when even with capacity to track all private blocks, the performance will fall, on average, 
12%. Previous works, such as [30], have identified limited associativity as a major issue in 
directory coherence protocols. MOSAIC overcomes this problem completely since a simple 
directly mapped directory is capable of maintaining the performance. 

 Sensitivity to Capacity & Conflict Misses 
The second effect that might influence performance is the capacity misses in the sparse 

directory. The combination of capacity misses induced by limited directory storage as well as 
the associativity reduction previously seen will increase total conflict misses. To compare how 
both effects might impact on each protocol, we reproduce the previous analysis but reducing 
the directory capability to track only an eighth of the private cache capacity, i.e. up to 2K 
blocks. Again, such low values allow us to check the goodness of our proposal under a heavy 
pressure with such a tough configuration. In some way, it allows us to forecast what would 
happen if a large number cores map their private cache entries to a scalable directory. Figure 5 
(b) reproduces the results provided in Figure 5 (a) with the new directory capacity.  

 
Figure 5. (a) MOSAIC execution time normalized to BASE, while varying the associativity of a fully sized 

sparse directory (i.e. 16K entries). (b) MOSAIC execution time normalized to BASE, while varying the 
associativity for a directory with one eighth of fully sized sparse directory (i.e., 2K entries) 

In this new configuration, misses in private cache for BASE, although not shown, are 
substantially higher. After reducing the size of the directory, even with an associativity of 64, 
capacity conflicts in the directory have a relevant impact on performance, degrading it by up 
to 20%. The capacity misses seem to be more relevant in applications with a higher sharing 
degree (i.e. commercial workloads [40]). Applications with a reduced working set (such as 
hmmer) are less sensitive to capacity misses in the directory. With this directory size, conflicts 
are more probable than in the fully sized directory and consequently associativity now has a 
greater influence on performance.  
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 Bandwidth and Energy Overhead of MOSAIC 
Since the rationale of MOSAIC is to trade directory cost for on-chip bandwidth and 

additional snoops in private caches, we need to analyze the energy overheads. The first step 
in this analysis is to quantify how directory cost reduction influences the on-chip bandwidth 
consumption. If the network is using routers with support for handling multicast traffic [26], 
the real measure of bandwidth and energy consumption for the interconnection network is 
given by the average link utilization and not the end-point traffic consumption. Figure 6 
shows the average link utilization for the initial configuration (i.e. exclusive 32KB L1 and 
64KB L2) when the capacity of the directory or its associativity is reduced. The values are 
normalized for a duplicate tag directory, i.e. capacity for 16K entries (128KB) and 64-way 
associative. The results show that on average and under the worst conditions (i.e. a 2-way 
associative directory, with an eighth of the capacity of the full directory) the traffic is just 5% 
higher than a duplicate tag directory. 

 
Figure 6. (a) Average network link utilization of MOSAIC normalized to a duplicate-tag directory varying 
directory capacity and associativity. (b) Average network link utilization of MOSAIC normalized to BASE 

directory. 
Focusing our attention on each class of applications, multi-programmed workloads are 

completely insensitive to directory configuration. Since in these applications there is no 
information shared between the cores, this is the expected behavior. More noteworthy is the 
behavior of scientific applications, where there is a substantial amount of shared and highly 
contended data. In such cases, the directory replacement algorithm prevents the eviction of 
actively shared data and entries of private blocks are more prone to being replaced. 
Consequently, traffic does not change. 

Server workloads seem to be the most sensitive, since in this case the amount of shared 
data is large, most of them being code. Therefore these blocks will be accessed in read-only 
mode and the directory will be less frequently accessed. As a consequence, the chances of 
evicting an actively shared entry are higher than in numerical applications and so too are the 
chances of requiring a multicast to reconstruct these entries. Nevertheless, even in the most 
adverse (and unpractical) directory configurations, this increment is less than 20%, which is 
substantially less than in broadcast coherence protocols [35][17][20].  

The key point for this behavior is that multicast is only generated when, after a miss in the 
sparse directory, the data and tokens available in LLC are not enough to fully reconstruct the 
sharing information. If the block has all the tokens, it can be ensured that there are no copies 
in any private caches and consequently the multicast can be avoided. Since LLC can be very 
large, the most usual case will be this one and, therefore, multicast will be required only if the 
data is really shared. In contrast, if we compare the bandwidth consumption of MOSAIC and 
BASE protocols when the directory is simplified, the results are very different. As Figure 6 (b) 
indicates, the BASE protocol requires more on-chip bandwidth in most cases, especially when 
the directory is highly limited. In the most extreme case, i.e. a 16KB, 2-way associative 
directory, BASE requires up to 40% extra bandwidth consumption on average. The main 
reason for this is that MOSAIC has fewer misses in the private caches and directory evictions 
are silent. For instance, in SPEC applications all processors have mostly independent 
executions so the conflicts that occur in the sparse directory with a conventional directory 
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protocol induce a large number of invalidation messages to the private levels. These 
invalidation requests replace the data needed by the processors, which may still be useful. 
Subsequent misses will require extra communication with the directory. In contrast, MOSAIC 
leaves these data in the private levels avoiding extra misses in the sparse directory because 
they is private data and so they will not be requested again. In this way it avoids requests and 
data travelling back and forward through the network. When the difference in the number of 
misses between the two protocols is small and applications have a high sharing degree, 
broadcast messages of the reconstruction requests are more noticeable. With highly contended 
shared data, such as in numerical applications, the replacement algorithm of the directory 
inhibits evictions of actively used data and therefore the external invalidations in caches with 
BASE are fewer (at least with directory configurations that are not highly constrained). Under 
this configuration MOSAIC memory misses might increase the traffic due to the multicast 
traffic required to deal with them. Although this multicast traffic might be avoided using 
simple solutions such as [41], it seems irrelevant in most applications. The most relevant case 
is IS, which has a large MPKI. Even in these cases, the extra traffic is less than 10%. In server 
applications, shared blocks rarely change their state (from S) and they have the same 
probability to be evicted as private data blocks. Consequently, the number of invalidations of 
useful data in private caches is larger. The result is that the extra traffic required to deal with 
this situation is much greater than with MOSAIC. 

 
Figure 7. Total dynamic energy used by caches and network normalized to the directory-based coherence 
protocol with aggregate 128KB sparse directory. Different sizes: 128KB, 64KB and 16KB (8, 4 and 1 1KB 

per slice). 

The previous discussion partially addresses the potential added costs. To complete it, we 
need to look at the energy consumption, with emphasis on the cache hierarchy. Results of this 
analysis are shown for both protocols in Figure 7 when using a 2-way associative sparse 
directory with three different sizes: 128KB, 64KB and 16KB. The results have been normalized 
to 128KB and a 2-way directory size of BASE protocol and they are coherent with the traffic 
results: MOSAIC reacts in a more energy efficient way than the BASE protocol when the 
directory size is constrained. 

 Evicting Private Blocks Only 
When trying to increase the effectiveness of the directory storage, some recent works 

[42][43] have focused their proposals on the deactivation of the coherence only for private 
blocks. Unlike MOSAIC, in these proposals shared blocks are still being treated as in a 
traditional sparse directory. Even though logic leads us to think that it is not necessary to 
maintain coherence in private blocks, there are other situations where shared blocks do not 
have to be considered for coherence either. There are many applications with read-only and 
shared blocks (like instructions for example), whose exclusion from the directory does not 
mean any loss in performance while leaving space for other highly shared data blocks. On the 
other hand, many blocks are initially private blocks, but they become shared at some moment 
of the execution, causing unnecessary traffic.  

The effectiveness of both possibilities has been analyzed by comparing our proposal with 
the implementation of Stash [42] whose behavior is very similar to Mosaic, but with the 
difference that shared blocks are not retired from the directory. As expected, results are very 
similar in those applications with a low-sharing degree as in the SPEC cases. Differences of 
between 5% and 10% occur when executing numerical applications; 20% for transactional 
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applications which have a large working set with a high-sharing degree of code. The reasons 
for these results are clear. First, Stash limits the silent replacements only to the private blocks 
which removes the possibility of maintaining in the directory only highly-shared entries, 
especially when the pressure on the directory is strong. Therefore, MOSAIC’s capacity to 
reduce the directory is obvious. Second, in those applications with a high sharing degree of 
read-only blocks, like the transactional ones, the (unnecessary) invalidation of shared data 
blocks because of lack of space in Stash is highly costly in terms of time and traffic since each 
of the sharers will cause a miss in the next read. Finally, from the energy point of view, the 
performance improvement reduces the time dedicated to the application’s execution and so 
the EDP as well.  

Additionally, although in the results it has not been taken into account, MOSAIC 
reconstructions are more efficient because of the use of tokens since only the cores with some 
tokens reply, which reduces the reconstruction time and the generated traffic. Only if the 
requested data blocks are always shared by all the cores is the amount of traffic and the time 
needed the same in the two protocols. The effect of the additional bit of the LLC added in 
Stash  [42] to avoid unnecessary broadcasts is the same as the effect of the tokens in the LLC in 
MOSAIC. Finally, it is convenient to recall the importance of how the applications with large 
footprints obtain most benefit from our proposal, since these characteristics are the same as 
the increasing needs of the Cloud and Big Data applications. 

 Scalability 
One important aspect of our proposal is the scalability. Although the full-system simulation 

of a realistic architecture, including the OS, like the one used in this work limits the size of the 
system, we have doubled the whole system size to check the trend of each of the results 
shown until now. Obviously, when increasing the number of cores to 16, the number of LLC 
banks also has to be scaled and consequently the size of the interconnection network has to be 
scaled too. We used a 6x6 mesh which means an increase of 50% in the bisection bandwidth. 
The rest of the parameters have not been modified. 

 
Figure 8. Link utilization of MOSAIC normalized to a Duplicate Tag Directory (128-way associative, 256KB) 

varying directory capacity and associativity in a 16-core CMP. 

The main obstacle that will limit the scalability of our proposal is undoubtedly the 
interconnection network, which will have to manage the increased traffic of the new system. 
Figure 8 shows the link utilization of MOSAIC normalized to a duplicate tag directory when 
varying the directory capacity and associativity. As can be seen, even having increased the 
bisection from 4 to 6 links (50%), the increment in traffic is far from the bisection increment, 
even with the most unfavorable directory configurations. 

If these results are compared to the corresponding results with 8 cores Figure 6 the 
difference compared with the duplicate tag directory is even greater. Even in extreme 
situations, such as the one corresponding to a 2-way set associative directory with capacity to 
track an eighth of the private caches, only 7% more on average is consumed than with a 
Duplicate Tag Directory. The rationale for this is that misses (due to directory invalidations) in 
private caches take longer to be resolved in LLC due to the larger size of the system. 

Therefore, it seems reasonable to say that MOSAIC will scale up to systems with tens of out-
of-order cores, such as those considered in this work. Note that this represents approximately 
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an order of magnitude when considering in-order cores.  

 Realistic Private Cache Configuration 
Up to now, we have been using limited private cache capacity and associativity. If we 

consider the configuration of commercial systems  [7][4][15], L2 caches have between 1/8 and 
1/4 of L3 capacity and both L1 and L2 have a larger associativity. Therefore, we will next 
carry out a sensitivity analysis for the size of the directory with a realistic configuration for 
private caches. 

 
Figure 9. (a) MOSAIC execution time normalized to Duplicate Tag Directory, for a Nehalem-like private 

caches configuration varying directory capacity. (b) The same experiment for the BASE protocol. 

In this particular case, we try to mimic the L2 cache configuration in Intel’s Nehalem (4-way 
32 KB of L1s and 8-way 256 KB of L2). We will keep the associativity fixed at 16 ways (like in 
the data banks) and vary the capacity of the directory, from double [13] the full directory (i.e. 
640KB) to a tenth of full directory (i.e. 32KB). Figure 9 presents the average execution time for 
each application normalized to the double-sized directory where, even with the smallest 
capacity, there is no performance impact. When reproducing the same experiment for the 
BASE protocol, the performance impact is greater than 20% in some cases. 

 IN-CACHE ANALYSIS 
Although the previous results have been focused on a sparse directory configuration, 

MOSAIC has also been implemented on in-cache configuration architecture. It is well-known 
that introducing coherence information into the LLC under specific requirements has some 
advantages. The most important one is to avoid having to duplicate the cache block tags and 
the associated logic in an extra directory. It is only necessary to add the sharing information of 
each block to each entry in the LLC. However, this space saving decreases as the relation 
between the aggregate private cache capacity and the total LLC size increases. For a Nehalem-
like structure where the LLC is 4 times larger than the aggregate private cache capacity, when 
needing more than 32 bits per block, it is more area-efficient to use a sparse directory structure 
separated from the LLC.  

In any case, in-cache MOSAIC has the same advantages over BASE as the ones seen in the 
sparse design analysis supporting the same arguments. When the relation between the total 
amount of private cache capacity and the LLC size is closer to 1, i.e. the same size in both of 
them, MOSAIC’S advantages are greater. This happens because, as almost all the entries in the 
LLC are used to track blocks in the private caches and so there are not too many victim 
entries, whenever there is a replacement in the LLC, MOSAIC will not invalidate any data 
block allocated in private cache while the BASE directory will. 

As the relation between private and shared capacities gets further from 1 and so the 
number of invalidations of blocks in the private caches decreases, so does the performance 
difference between the two protocols. Figure 10 shows the execution time of BASE and 
MOSAIC normalized to the BASE directory with two different size relations: 1/16 and 1.  
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Figure 10. Execution time of MOSAIC normalized to BASE directory when using in-cache MOSAIC in an 8-

core CMP and varying the LLC size. 

In spite of the better performance of in-cache and the inconvenience of the necessary logic 
for maintaining separate structures, the sparse directory allows the size of the directory itself 
and the size of the LLC to be decoupled. This gives an important advantage to this 
architecture design from a scalability point of view, because as the number of cores increases, 
the total capacity of the private caches also increases and so it will be necessary to increase the 
LLC size to maintain the off-chip traffic bounded. Even though neither in-cache or sparse 
MOSAIC requires a quadratic increase in the storage space needed for keeping the coherence 
information, the sparse solution does not limit the size of the LLC as the in-cache does. 
Anyway, if the number of cores is not very large and the private/shared size ratio is low, the 
in-cache MOSAIC is as efficient as the sparse solution and with a lower complexity. 

 CONCLUSIONS 
A new coherence protocol that addresses the challenges of complex multilevel cache 

hierarchies in future many-core systems has been implemented. In order to limit coherence 
protocol complexity, inclusiveness is required to track coherence information throughout 
levels in this type of systems, but this might introduce unsustainable costs for directory 
structures. Cost reduction decisions taken to reduce this complexity may introduce artificial 
inefficiencies in the on-chip cache hierarchy, especially when the number of cores and private 
cache size is large. The coherence protocol presented in this paper, denoted MOSAIC, 
introduces a new approach to tackle this problem. In energy terms, the protocol scales like a 
conventional directory coherence protocol, but relaxes the shared information inclusiveness. 
This allows the performance implications of directory size and associativity reduction to be 
overcome. MOSAIC demonstrates that inclusiveness is avoidable and can be removed from a 
directory coherence protocol, while maintaining the complexity constrained. In fact, MOSAIC is 
even simpler than a conventional directory. The results of our evaluation show that the 
approach is quite insensitive, in terms of performance and energy expenditure, to the size and 
associativity of the directory. 
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