

MOSAIC: A Scalable Coherence Protocol1

LUCIA G. MENEZO, University of Cantabria
VALENTIN PUENTE, University of Cantabria
PABLO ABAD, University of Cantabria
JOSE-ANGEL GREGORIO, University of Cantabria

The coherence protocol presented in this work, denoted MOSAIC, introduces a new approach to face the
challenges of complex multilevel cache hierarchies in future many-core systems. The essential aspect of
the proposal is to eliminate the condition of inclusiveness through the different levels of the memory
hierarchy while maintaining the complexity of the protocol limited. Cost reduction decisions taken to
reduce this complexity may introduce artificial inefficiencies in the on-chip cache hierarchy, especially
when the number of cores and private cache size is large. Our approach trades area and complexity for on-
chip bandwidth, employing an integrated broadcast mechanism in a directory structure. In energy terms,
the protocol scales like a conventional directory coherence protocol, but relaxes the shared information
inclusiveness. This allows the performance implications of directory size and associativity reduction to be
overcome. As it is even simpler than a conventional directory, the results of our evaluation show that the
approach is quite insensitive, in terms of performance and energy expenditure, to the size and associativity
of the directory.
Key Words and Phrases: Memory Hierarchy, Cache Coherence

 INTRODUCTION
The new paradigm of multiple cores inside a chip presents some new challenges. Among
them, we can consider the so-called bandwidth-wall [1] as one of the most crucial. This
obstacle is due to the limited growth in the number of pins and the operating frequency due
to physical and packaging cost restrictions. Off-chip communication necessities grow as the
number of cores and their complexity increase. However, the available off-chip bandwidth
does not increase at the same rate, becoming a bottleneck in the whole CMP. Some studies [2]
predict that this problem will limit the number of cores that can be introduced inside the chip.
Fortunately, there is a wide variety of solutions that are able to mitigate the problem. Among
them, the one that appears to have most benefits is the introduction of large amounts of

1 This work expands the results published at the 22nd edition of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), with the title “The case for a scalable coherence
protocol for complex on-chip cache hierarchies in many-core systems”. The whole text has been re-written,
improving figures and adding explanations that were omitted before. A detailed summary of the major
changes is described next:
• Sections 1 and 2 (Introduction and Coherence Protocol Schemes and Shortcomings) have been
modified with a much deeper description of the different solutions to manage the cache coherence problems
of any multicore system. Besides the directory coherence protocols which has been re-written, broadcast-
based protocol explanation has been added with a detailed argumentation of how their accepted
shortcomings do not have as much impact as it has been assumed.
• Section 3 is the part of the work with more additional information compared to the published
paper. The conceptual approach of the proposal and its design details have been completed with the in-
cache directory implementation. This means that the state transition tables of both type of coherence
controllers, sparse and in-cache directory are included with their corresponding explanation, highlighting
the main differences between them. Section 3 also includes a new subsection, “Running examples”, which
facilitates the reader the comprehension of the new mechanisms. This includes new diagrams and a
complete explanation of the processes that read and write requests follow under different circumstances
happening in a multicore system with MOSAIC coherence protocol.
• Sections 5 and 6 include new performance results. Section 5 extends previous results comparing
our proposal to the recently proposed Stash directory (HPCA 2014), due to the similarity of both protocols.
Section 5.4 includes results and discussion for both counterparts. Section 6 includes the performance
results and discussion corresponding to the in-cache directory implementation.
With all this, all the lacking details that were missing in the published paper mentioned at the beginning
of the document are given now and the complete functionality of our mechanism is fully describe with this
paper.

 L.G. Menezo et al.

memory inside the chip.

However, the efficient organization and management of large amounts of memory
associated with each of the cores is not a straightforward task. There is a consensus among
computer architects which assigns some cache memory to each of the cores in a stepped way
at different levels but, from the performance point of view, there cannot be “steps” with
excessive difference in capacity among them [3]. There is much less unanimity about the
distribution of the last level cache (LLC) and its characteristics. Some distribute it as a private
cache and others design it to be shared among some or all the cores in the chip. This decision
will have a significant effect on the CMP usage. In almost all the CMPs implemented so far
(Bulldozer [4], Haswell [5], Sparc T5 [6]), the LLC is shared among the cores in the chip
because it seems that this improves memory utilization. Other companies are tending to
maintain the LLC as local caches for each core although all the banks are used as victim cache
by the rest [7]. Although the most common number of levels used nowadays is three [7][8],
there are already some new commercial systems which include more levels, such as the IBM
z196 [9] or IBM Power 8 [10] which includes a fourth. As soon as the technology enables it,
with mechanisms such as 3D stacking [11], more levels will be introduced inside the chip.

In any case, from the moment there are multiple copies of the same block in the system,
coherence has to be enforced. Therefore, it is important to decide how it will be managed: via
hardware and/or via software. There are numerous works analyzing the advantages of
exposing to the programmer-compiler the capability of handling the data coherence of the
blocks allocated in the private caches [12][13]. However, most of those studies are focused on
performance comparison, i.e. execution time, and only consider a very specific type of
applications. When taking into account general purpose applications, with the large amounts
of memory in a multi-level hierarchy, coherence management is not a trivial task. For this
reason, programming parallel applications without the hardware support to do this might
hinder the productivity of programmers because they will have to pay too much attention to
this duty. Although not unanimously, a large part of the industry and academia believes that
the overall future chip general-purpose multiprocessors (CMP) will have some sort of
hardware mechanism for cache coherence. Therefore, as in Martin et al. ’s discussion in [14],
we also believe that for the next few years, data coherence maintenance should be guaranteed
by hardware and the main target of this work has been the search for efficient strategies to
achieve this.

The responsibility of the coherence protocol is to ensure that all the potential copies of a
memory block scattered throughout different caches are coherent. A large number of cores
and complex cache hierarchies might increase coherence protocol responsiveness. On the one
hand, having a large number of cores in the chip makes it unfeasible to rely on broadcast-
based coherence protocols. Although in current commercial CMPs this is the predominantly
used approach [7][4][15][16], it has foreseeable difficulties to achieve success with larger
numbers of cores in the system, due to their higher energy requirements [17]. On the other
hand, complex cache hierarchies increase the likelihood of having multiple copies of shared
blocks scattered throughout private levels, which is challenging for pure directory-based
coherence protocols. The private section of the cache hierarchy in current systems is quite
large but it will be greater in the medium term as the memory wall effects become more
relevant. Therefore, the amount of information required by directory protocols will increase.

Under the previously depicted context, we have developed a coherence protocol suitable
for confronting the problem comprehensively. MOSAIC [18] is constructed on top of a
conventional directory protocol [19], but instead of using inclusiveness to guarantee system
correctness, MOSAIC will use a token coherence correctness substrate [20]. The proposal
inherits the Token Coherence protocols’ simplicity, their lack of precise sharing knowledge
and the power efficiency of conventional Directory protocols. Additionally, MOSAIC
circumvents not only most of the multicast traffic of Token Coherence, but also the inelegant
starvation avoidance mechanisms needed due to the lack of serialization points.

Although from a performance and cost point of view non-inclusiveness is desired, the
common assumption is that inclusiveness is inescapable to keep coherence protocol
complexity manageable [21][22]. As a matter of fact, MOSAIC is simpler than a plain directory

MOSAIC: A scalable coherence protocol

coherence protocol and any block stored in private caches may not be tracked (i.e. no entry
will necessarily be allocated in the directory). The protocol is engineered to reconstruct the
entry under demand (i.e. if a core misses at its private cache levels for an untracked cache
block that is stored in other cores’ private cache). Our proposal is utilizable using in-cache or
sparse directories [19]. We will show that even with extremely small directories and/or
associativity, it is possible to sustain the performance and energy consumption of the system.
The key aspect of this remarkable achievement is that token counting allows the data stored in
LLC to perform directory entry reconstructions without any extra traffic.

As the reader may remember, token coherence [20] is based on assigning a fixed number of
tokens per cache block and requires at least one token to read and all of them to write. The
most common case is that the data accessed will be private so LLC will have data with all the
tokens. Taking this into account, LLC will, in most cases, have all the tokens, making it
unnecessary to broadcast a message to reconstruct the block. In this way, LLC data will serve
indirectly as the most effective filter to determine whether a data block is shared or not. The
new coherence protocol, MOSAIC, is able to take advantage of the bandwidth availability
inside the chip in order to avoid the necessity of inclusiveness and still keep the system
scalable. Sending broadcasts to reconstruct the directory information whenever necessary
avoids having to maintain inclusive information in the directory, although it requires extra
bandwidth. However, token counting enables the LLC to be used as a filter to eliminate most
of these broadcast messages, which enables a scalable system to be achieved.

The rest of the paper is organized as follows: Section 2 introduces the basic coherence
protocol schemes. Section 3 explains the proposal. In Sections 4 and 5 we introduce the
evaluation methodology and the performance evaluation. Section 6 explains in-cache
configuration architecture. Finally, Section 7 states the main conclusions of the paper.

 COHERENCE PROTOCOL SCHEMES AND SHORTCOMINGS

 Broadcast
Among the options to design coherence protocols for small to medium scale multicores are

the broadcast-based proposals. Their main characteristic is the reduced global latency of the
whole system, exploiting the high bandwidth availability inside the chip in this kind of
systems. The use of scalable point-to-point interconnection networks and the scalable cache
hierarchy designs implemented, such as NUCA [23], make this bandwidth profuse inside the
chip. If we add to these characteristics the appearance of 3D stacked systems [11] and the
utilization of low-swing links [24], bandwidth is substantially increased and the energy cost of
moving data faster is reduced. Currently there are a substantial number of CMP coherence
protocol proposals that share this point of view [20] [17] [25] and most of the ideas use
broadcasting as the mechanism to overcome indirection at intermediate ordering points. The
impact of the shortcomings that these protocols might have can be much less than is
commonly assumed. Namely:

1) The multicast traffic required for on-chip cache requests will increase network consumption. It is
true that power consumption is affected by multicast traffic, but the final effect depends on
the network characteristics. As is known, if the network has hardware support for multicast
messages [26][27], their impact could be reduced because each network resource is used at
most once per request. This happens because the message is only replicated when it has to go
via different paths to reach its destinations. When no multicast support is included, one
message will have to be sent for each of the destinations and so each resource will be used
many times. According to [26], using multicast support could save up to 70% in the network
Energy Delay Square Product (ED2P).

2) Excessive network cache bandwidth consumption could increase contention and significantly
increase on-chip latency. Although this may potentially ruin the rationale of snoop-based
coherence protocols, a correctly dimensioned design for the cache hierarchy capable of
decoupling the number of cores and the on-chip cache bandwidth will prevent it. Under these
circumstances, on-chip communication bandwidth will scale in proportion to core count

 L.G. Menezo et al.

and/or its aggressiveness.

3) Extra cache tag lookups produced in these protocols will increase cache energy consumption. If
we take into account the growing leakage in each technological advance [2], the area devoted
to cache, and the substantial benefit in terms of performance obtained by snoop-based
coherence, the increased tag snoop energy might be quickly amortized by the benefits in
dynamic energy.

Therefore, although it is obvious that if the number of cores is very high this method may
not be a suitable basic method to maintain the coherence, the previous three points allow us to
conclude that the scalability is higher than many authors have estimated because of their
failure to consider the previously mentioned aspects that may be essential.

 Directory
Historically, directory-based coherence protocols have been used to address the scalability

problem in multiprocessor systems. However, as the memory wall effects become more
relevant, more on-chip cache capacity will be required and therefore large private caches will
be needed. These large capacities require large storage necessities to keep all the coherence
information about all the data copies in the system.

There are two main approaches to keep this information: in-cache and sparse directories [19].
For in-cache directories, each block stored in LLC has the tag and data attached to the block
state and the sharers’ information (sharers bit vector, pointers, etc.). The coherence controller
uses this information to deal with incoming requests and having a precise knowledge of the
block’s sharing status is necessary to guarantee correctness. Therefore, LLC inclusiveness with
the previous level caches is necessary because it is the only way to have knowledge of private
level contents. For small private levels, this approach has a substantial overhead because, in
order to keep track of the sharing status of a handful of data blocks, any LLC block has to
have a substantial storage space reserved per block (at least log2P bits for P processors).
Additionally, the effective capacity of the LLC will be reduced since there will be
progressively more blocks that will have to be dedicated to maintaining this information and
fewer blocks dedicated to victim cache for private replacements.

When a sparse directory design is chosen, the total effective capacity of the LLC is
recovered because directory entries are allocated under demand and therefore the overhead is
proportional to the aggregate private cache level’s size (and not to the LLC size). When a
block arrives at the chip in response to a request, a new directory entry is allocated. It will
have to include at least, the block tag, the block state and the sharer vector (or any other core
representation). This entry is allocated in a separate structure from the data. In current NUCA
caches, to guarantee scalability, the most extended strategy is to bank the directory
throughout the chip, keeping the data and directory slices connected to the same router [28].
In most cases, the address-to-slice mapping used is statically determined by the lowest bits
(closest to the byte offset) of the address.

The capacity and associativity of the directory has to be sufficient to keep private-level
cache tags. In small systems [29] with small private caches and low associativity, the coverage
can be full, commonly denoted Duplicate Tag Directory. Nevertheless, for medium-to-large
numbers of cores, there is no feasible way to use such large-scale associativity. Then, each
entry of the directory can only maintain a subset of all the possible block tags that can be
stored in private caches, inducing conflict misses. Each one of these conflict messages means
an invalidation of the corresponding blocks in the private caches, with a negative effect on the
performance and what is worst, the magnitude of this negative effect strongly depends on the
specific characteristics of each application. It should be noted that this inefficiency arises
because of the directory inclusiveness, i.e. any block stored at any private cache level should
have an entry allocated in the directory structure.

 PROPOSAL
Our proposal is a new coherence protocol that does not require inclusiveness to guarantee

correctness and which is still considerably simpler than a traditional directory protocol. The
main idea is to take advantage of the bandwidth availability inside the chip in order to avoid

MOSAIC: A scalable coherence protocol

the necessity of inclusiveness with the aim of reducing one of the main problems that the directory
approach has: the space needed to hold the coherence information for all the cache blocks stored in the
private levels.

 Conceptual Approach
The MOSAIC protocol is focused on reducing one of the main problems that the

conventional directory approach has when dealing with a large number of processors and
with large number of blocks kept in the private levels: the space needed to hold all their
coherence information. The cost of the directory is proportional to the size and variety of the
private levels. In order to avoid this directory constraint, MOSAIC does not evict blocks from
the private levels when there is not enough space in the directory and some coherence
information has to be removed to allocate new coherence lines. This means that the blocks can
be kept in the private caches, although the directory is not tracking them anymore. Thus,
coherence information inclusiveness is completely removed from the directory, allowing some
restrictions to be eliminated when deciding the size of the directory.

Figure 1. Sketch of MOSAIC’s concept after a request from P0 misses in the LLC and in the directory.

Without this inclusiveness enforcement property, when a request is received and a miss

occurs in the directory, it is not possible to know whether the requested data block is allocated
in the off-chip memory, in the LLC and/or in any of the private levels. For this reason, the
coherence protocol needs to have a special mechanism to locate all the possible copies of the
requested data.

In order to be able to collect all the coherence information associated with a requested
block, after any subsequent miss in the directory, an on-chip reconstruction of the directory
entry is initiated. This reconstruction process starts by checking whether the requested block
with all the tokens is present in the LLC. If it is not, a broadcast message is sent to all the
private caches asking for information about the requested block. This process will end when
all the coherence information associated with that block (i.e. the sharers of the block and their
state) has been collected. By using token counting [20], the process is kept simple and negative
acknowledgements [16] are avoided. This is possible because only the private caches that have
the data block with some tokens have to reply to the broadcast reconstruction message. These
replies will include the number of tokens that they have, so by adding all of them the
directory will know when it has finished the reconstruction process. It is important to bear in
mind that the directory will not store the number of tokens each private cache has and it will
only store which of them have a copy (i.e. the sharers) and which one has the owner token.

To explain the whole process in a more graphical way, Figure 1 presents a schematic sketch
of how MOSAIC behaves. The example starts with a read request from processor P0 that, after

 L.G. Menezo et al.

missing in its private cache, sends a read request to the directory slice �. If the directory does
not have any information about the requested data block, it checks whether it is present in the
LLC �, and if it is not, it starts a broadcast reconstruction message looking for the data block
needed �. This reconstruction message has two objectives: to build the directory sharers’
information and to solve the request that initiated the whole process. For this last goal, the
reconstruction message includes information about who started the reconstruction and for
which type of request it did so. Thus, the corresponding private caches will be able to know
when and how they have to reply to the requestor. This means that, for example, in Figure 1,
since the starting request is a read request, only the private cache holding the owner token
will be in charge of solving it. For this reason, P1 sends a copy of the data block with one of its
tokens to P0 �. To achieve the first goal of the reconstruction process, the directory needs to
collect all the information about the requested data block. So it needs to know who is holding
any tokens associated with that address and also how many of them are held, in order to
know when the directory has finished collecting all the information. In Figure 1, P1 and P2 send
the information about their tokens to the directory �. For a write operation, the reconstruction
process is similar with the difference that all of the sharers will forward their tokens to the
requestor (invalidating their copies) without sending any message to the directory. The
requesting processor, after collecting all the tokens, will notify the directory with a completion
message. In any case, once the entry is fully constructed, if the directory needs to evict it,
because of lack of space in the directory after a subsequent miss, MOSAIC does not need to
invalidate any of the private copies. It may replace the entry silently because it will be
reconstructed if necessary.

Table 1. MOSAIC protocol main states in both sparse and in-cache directories

States Sparse- Description In-Cache- Description

I Invalid. Block is not present in the sparse directory. Invalid. Block is not present in the last level cache.
C_S Constructing the block after receiving a read request (GETS)
C_X Constructing the block after receiving a write request (GETX)

C_I does not apply
Constructing the block after receiving an instruction fetch

(GetI) from a core.

A Allocated. Block is fully constructed with all the coherence information about that block.

A_S Allocated and a read request (GETS) has been received from a core. Waiting for an unblock message.

A_X Allocated and a write request (GETX) has been received from a core. Waiting for an unblock message.

A_I Invalidating a block.
S does not apply Shared. Block with valid data & one token.
O does not apply Owned. Block with valid data & at least the owner token.

M does not apply Modified. Block with valid data & all the tokens.

 Design Details of MOSAIC
The MOSAIC coherence protocol may be used either in a sparse directory or in an in-cache

directory. The only difference between using one or the other of them is in the coherence
controller that is in charge of constructing the line, which is the element holding all the
coherence information and acting as the directory. This coherence controller can be a
standalone directory in the sparse design or the LLC controller in the in-cache design.

 The main states that might be considered are the ones giving name to the coherence
protocol: Modified (M), Owner (O), Shared (S), Allocated (A), Invalid (I) and Constructing (C). The
meaning of the first three and the invalid state are well known, but the new states A and C
provide the key implementation details of the MOSAIC protocol. The C state indicates when an
entry in the directory is being constructed and the A state defines when a line is fully
constructed with all the coherence information attached. However, each of the designs has its
own necessities and more importantly, its own possibilities for optimizations. For this reason,
these main states vary a little from one to another. Next, specific design details of each of them
will be seen using the table-based transitions method.

MOSAIC: A scalable coherence protocol

3.2.1 Sparse directory specification
In a sparse design, the directory does not have data copies attached to each line. For this

reason, having the M, O or S state in those entries does not apply, because the only necessary
information is whether the entry is already constructed (A), being constructed (C) or invalid
(I). When the directory controller is constructing a line, the block enters a transitory state, C_S
or C_X, depending on whether the reconstruction process was started by a read request (C_S)
or a write request (C_X). This requirement is also mandatory for the Allocated state (A) which
is divided into A_S or A_X after a GetS or GetX request respectively. Table 1 provides a brief
description of each state in each one of the controllers.

Besides the state of the block, the coherence information that each of the entries in the
directory should include is: the sharers of that block, the core holding the owner token (as it
will be in charge of forwarding data if necessary) and a token-count field of that block. Any
existing method to maintain the sharer information may be chosen [30][31]. However, a full
bit vector will be assumed throughout this paper to simplify the presentation of the proposal.

A simplified version of the transition table of the sparse directory controller working with
MOSAIC is shown in Table 2. When receiving a request (GetS or GetX), if the block is not
present in the directory (state I), this controller initiates a reconstruction process like the one
explained in the previous section. Note that this reconstruction process is different depending
on whether the request is a GetS or a GetX and so the state the entry has to change to is
different (C_S or C_X respectively).

Table 2. MOSAIC sparse directory controller transition table. Shaded cells indicate control actions, lighter boxes

indicate stalling the requests and darker ones error transition

 GETS GETX Token Info

Last
Token Info Unblock

PUT
Data

PUT
Tokens

Silent
Replace

Replace
with tokens

Ack
From
LLC

I
• initiate

reconstruction
• initiate

reconstruction • write data in
LLC

• write
tokens
in LLC

 C_S C_X

C_S wait wait

• add sharer
• update num

tokens known

• add last sharer
• wait for

Unblock

• add last
sharer • bounce data

to requestor
• update

tokens
wait wait

 A

C_X wait wait
add exclusive
sharer • bounce data

to requestor

• bounce
tokens
to
request
or

wait wait

 A

A
• fward req to

Owner
• mcast req to all

sharers
• update

tokens
• update

tokens

• invalidate
block

• invalidat
e block

• write
Tokens in
LLC

 A_S A_X I A_I

A_S wait wait
• add new

sharer • update
tokens

update
tokens wait wait

 A

A_X wait wait

• remove old
sharers

• add exclusive
sharer

• bounce data
to requestor

• bounce
tokens
to
request
or

wait

 A

A_I wait wait
• write data in

LLC

• write
tokens
in LLC

• remove

block
 I

During the reconstruction, when the controller receives information about some tokens’

location (event: Token Info), it adds that sharer to the sharers’ bit vector and updates the
number of known located tokens. When the request triggering the reconstruction is a GetS, the
cache with the owner token of the block will send a copy of the data with one of its tokens to
the requestor. After that, it will inform the directory about how many tokens it has left. When

Events
States

 L.G. Menezo et al.

the requestor finishes its request, it sends an unblock message (event: Unblock).

If the request is a GetX, all the caches with a copy of the requesting block will have to
forward their tokens to the requestor, which will send the unblock message when it has
collected all of them and so its request is finished. In this case, the directory controller will add
the requestor as the exclusive sharer of the data (state C_X, event Unblock).

If the coherence information needed is in the directory (state A), all the data locations are
known so the directory only has to forward the request to the appropriate sharer. If it is a read
request (GetS), it sends it to the cache holding the owner token; if it is a write request (GetX), it
sends it to all the sharers of the block.

The directory needs to be informed about all the replacements occurring in the private
levels in order to always have updated information about the sharers. Any private cache
replacing a block sends a request with the tokens (event: PUT Tokens), or if it has the owner
token with the data (event: PUT Data) to the directory. The directory increases the number of
tokens it owns (this is why the entry needs to have a token count field). When receiving a data
replacement, if the entry is not constructed (state I) or there is no pending request (state A),
data and all the tokens are written back to LLC (action: write data in LLC).

Replacements that occur while the line is being constructed (C_X or C_S) or when the
directory is still dealing with a request (A_S or A_X) have to be handled carefully. Write
requests are easier (C_X), because when the directory receives a replaced data block (event:
PUT Data) or replaced tokens (PUT Tokens) it just forwards them to the pending requestor
(action: bounce data to requestor). Read requests on the other hand are a little trickier, because a
lot more possible situations can occur. On some occasions, the directory might be in charge of
solving the pending read request with the replaced data, but it cannot be fully sure about this
without more information, because it does not know whether the request has already been
solved. If the reconstruction request arrived at the owner before it made its replacement, it has
dealt with the pending request. If it arrived after the replacement, it could not do so because it
did not have any tokens.

When the replacement message arrives with all the tokens attached the answer is clear, the
request has not been solved and the directory needs to do so itself. On the contrary, if the
replacement message does not include all the tokens, the directory controller is not able to
know whether one of the missing tokens was sent to the requestor or not. The only way to
know without sending extra control messages or negative acknowledgements is to finish
constructing the whole entry and locate all the tokens. When the reconstruction is over, if the
pending requestor did not send any token information, it means it did not receive any
response and the directory needs to send one.

As the reader may appreciate, all these corner cases require the addition of more states and
more events indicating these situations with their corresponding extra transitions. However,
they were not included in Table 2 to avoid extra complexity for the reader and only the most
common cases are illustrated. The full protocol specification may be found in [32].

In a correct construction of the system, the directory and the LLC for the same address are
side by side. This gives MOSAIC a great opportunity for optimization. When a request is sent
to the directory, the LLC can be accessed in parallel. Although the entry is not present in the
directory, if the data block is found in the LLC with all the tokens, it is possible to avoid the
broadcast reconstruction request because it is known that no other copy of the block is located
in any of the private caches and the directory entry reconstruction will proceed without
broadcast. This speeds up the entry reconstruction and more importantly, it filters most of the
multicast messages sent to the private caches in the CMP. As LLC capacity will be substantially
higher than the number of blocks tracked by the directory, this will be the most habitual
scenario for actively used private data blocks, which is the common case. Therefore, in most
situations the data and all the tokens will be allocated there.

3.2.2 In-cache directory specification
The in-cache implementation of MOSAIC has a substantial number of similarities with the

sparse version. Nevertheless, its different structure means the addition of new states and in
some cases the possibility of some optimizations. A LLC controller working with a MOSAIC
protocol also needs to provide information about the situation each data block is in. For this

MOSAIC: A scalable coherence protocol

reason, it is then not sufficient to define only whether an entry is constructed or not, but it is
also necessary to indicate the state that valid data are in. Therefore, in contrast to the sparse
design, now there are three additional possibilities, which are that a data block can be shared
(S), owned (O) or modified (M). The A state is still necessary, because block sharing
information may be valid (entry constructed), while data copy is not. The C states are now a
group of three different states. As well as distinguishing whether the reconstruction process is
started with a read request (C_S) or a write request (C_X). Additionally, MOSAIC is optimized
to react differently when there is an instruction fetch, in which case the entry is in C_I state. A
brief description of the main states is given in Table 1.

Table 3. Additional transition states of MOSAIC in-cache LLC controller transition table. Shaded cells indicate

control actions, lighter boxes indicate stalling the requests and darker ones error transitions.

 GETS

GETI (GET
Instruction)

GETX
Data
from

Memory
Token Info

Unblock (Last
Token Info

from
Requestor)

PUT
Data

PUT
Tokens

Replacemen
t

· · · · · · · · · · · · · · · ·

C_I wait wait wait
• update

Data

• add sharer
• update

#tokens
known

• add last
sharer

• write data
• bounce data +

1 token to
requestor

• update
tokens

wait

A

• fward req
to Owner

• fward req
to Owner

• mcast req
to sharers

• update data +
tokens • update

tokens

• invalidate
block

 A_S A_S A_X M/O I

S
• forward

request to
Owner

• forward
request to
Owner

• send
tokens

• multicast
request to
all sharers

 • update data
• update

tokens
• replace

Tokens

O
• send Data

+ all
tokens

• send Data
+ 1token

• send Data
+ all
tokens

• mcast req
to all
sharers

 • update
tokens

• replace
Data

M
• send Data

+ all
tokens

• send Data
+ 1token

• send Data
+ all
tokens

• replace

Data

Table 3 shows the main additional transitions occurring in the LLC controller compared to

the sparse case (Table 2). The main difference is the existence of the C_I state whose aim is to
optimize the protocol when receiving an instruction fetch. This optimization is possible
thanks to having the sharing information next to each data block. For loads (non-instructions),
MOSAIC always tries to send the data block along with all the tokens to the requestor in order to
facilitate the following writes on that block, emulating an exclusive (E) state behavior. If the
block has all the tokens, the controller may write in it without sending any request (i.e.
upgrade miss) and the more tokens it has, the easier it will be to collect the remaining ones.
Moreover, avoiding maintaining tokens in LLC favors silent entry evictions in case of
replacements. Therefore, when constructing an entry, if the requested data block is present in
off-chip memory, it is sent with all the tokens to the requestor. However, instructions will not
be written during the execution and they may be part of shared code, so it does not make
sense to initially send them with all tokens to the requestor. Instead, when off-chip memory
receives a reconstruction request for an instruction, it sends a copy of the block with one token
to the requestor and another copy with the rest of the tokens (including the owner) to LLC. In
Table 3, when the entry is in C_I, it may receive a data block from memory (event: data from
Memory) and when it receives the Unblock message from the requestor, it changes its state to O
(owner). Thus, if those instructions are later requested by other cores, they will receive a copy
with a token simply using a 2-hop process: requesting to LLC and LLC sending data to the
requestor.

Another detail to take into account in the in-cache version is that replaced data has to be

Events

States

 L.G. Menezo et al.

distinguished in order to know to which state the block needs to change to after writing it
back. In Table 3, only the event PUT Data appears, but note that with only this event, it is not
possible to know to which state the controller has to go to when the entry is in the I or A state.
Once again, the complete and detailed documentation of the coherence protocol for the in-
cache design can also be found in [33].

One of the main disadvantages of the in-cache structure is that, in some cases, replacements
cannot be silent. When it is necessary to construct a line and there is no available space for it
in the LLC, the coherence protocol needs to replace one block to construct a new one. If the
data block is in the A state, the eviction can be made silently, but if it has some tokens, it has to
replace these tokens writing them back in off-chip memory. Although LLC evictions are done
the same way, in the sparse version of MOSAIC, the construction of a line does not mean an
eviction from the LLC.

 Running Examples
Now that the reader has a vision of the details of the coherence protocol, we can review the

conceptual approach seen at the beginning of this Section, but focusing on precisely
describing what happens with the entry states and the rest of the copies in the system. Figure
2 and figure 3 shows the representation of two consecutive reads in a 4-core CMP with a
MOSAIC sparse directory. We have added one additional processor (P3) to the conceptual
approach example in order to be able to see the behavior when there is a second read after the
line has been reconstructed. The initial situation is with P1 having the data block with all the
tokens except for one, which is in P2’s private cache with another copy of the data block. P0
issues a read request (GetS) to the directory � because it does not have the data block in its
private cache (which might be composed of multiple levels). The directory does not have any
entry allocated for the requested address so it broadcasts a reconstruction message � asking
for all the token information and indicating that P0 needs a copy of the data block with at least
one token. Processors that do not have any token ignore the request (like P3) and processors
with the data block in a shared state (such as P2) send information about how many tokens
they have. The processor holding the owner token (in this case P1) is in charge of dealing with
the initial request, so it sends a copy of the data block with one token to P0 � and sends
information about all the tokens left to the directory.

Figure 2. Example of MOSAIC coherence protocol when a read request arrives at the directory and no entry
for the requested block is allocated. P0 issues a GetS operation and the directory has to initiate the
reconstruction process.

MOSAIC: A scalable coherence protocol

Figure 3. Example of MOSAIC coherence protocol when a read request arrives at the directory and it finds

the entry for the requested block constructed with all the coherence information.

While the directory is receiving messages with the token location information, it updates

the sharers’ vector and it increases the number of known tokens that it has received so far. It
will also receive information about which processor holds the owner token. Thus, when it
knows where all the tokens are and who the owner of the block is, the directory is able to
ensure that the entry information is completed. In our example, this occurs when the last
token information arrives from the requestor �, when the directory can change the state to A
indicating that the entry is allocated with all the information updated.

After this process, any other request for that address arriving at the directory will find the
entry fully reconstructed and it can be dealt with directly, like in a conventional directory
protocol. This situation is shown in Figure 3 where, using the final situation from the previous
figure as the starting point, P3 issues another read request to the directory�. This time, when
the request arrives at the directory, the line is fully constructed and it includes all the
necessary coherence information. Therefore, as it knows that the owner of that data block is P1,
it only has to forward � the read request to P1 and the owner will reply to P3 with a data block
copy and one token �. After P3 finishes its read request, it sends a complete message to the
directory, which will add it as another sharer and set the entry state back to the stable state A
�. Similarly, in the case of a write request, if necessary, the reconstruction process is carried
out in a similar way, with the main difference that each core having a copy of the block sends
all their tokens to the requestor and invalidates its own copy.

Using token counting is a key component in MOSAIC, because it simplifies all the
handshaking used to reconstruct directory entries and it avoids the use of negative
acknowledgements as well as the necessity of timeouts. It also allows corner cases to be
correctly handled as a consequence of data forwarding and ignoring requests. For example, if
the broadcast request going to P3 is delayed and this core gets the data block before receiving
it, P3 will not respond properly. However, this data and token movement will only cause an
efficiency issue and not a correctness one because although MOSAIC ignores requests in the
absence of tokens, it does not ignore data block messages (which include tokens) when they
arrive at a cache which is not expecting it. These unexpected data blocks will be bounced to
their home node, which works as a serialization point and detects the anomaly in the
corresponding entry. This would be silently invalidated (like in a replacement) and the single-
writer and multiple-readers correctness invariant will still be accomplished. Note that this
inefficiency case is highly improbable so we considered that it was better to use it than the
indirection of data and tokens through the directory to keep complete ordering of the network
messages.

Table 4. 8-core and 16-core CMP system configuration

Core Arch.

Functional Units 4×I-ALU/4×FP-ALU/ 4×D-MEM

ROB size / Issue Width 128, 4-way

Frequency / Count 3Ghz, 8 (or 16)

Private (L1)Size/Associativity / 32KB I/D, 2-way, 64B, 1 cycles

 L.G. Menezo et al.

Caches Block Size / Access Time

(L2)Size / Associativity/
Block Size / Access Time

128KB Unified, 4-way, 64B, 2 cycles, Exclusive with L1

Outstanding Requests per core 16

Shared L3
Size / Associativity / Block Size 16MB (or 32MB), 16 (or 32)×1MB, 16-way, 64B

NUCA Mapping Static, interleaved by LSB
Slice Access Time 6 cycles

Mem. Capacity / Access Time / Memory Controllers / BW 4GB, 240 cycles, 2/32GBs (or 4/64GBs)

Network
Topology / Link Latency / Link Width 4×4 (or 6×6) Mesh, 1 cycle, 16B

4 virtual channels

Router Latency / Flow Control / Routing 1 cycle/ Wormhole/DOR

 EVALUATION METHODOLOGY

 System Configuration and Simulation Stack
To analyze MOSAIC, we will use aggressive out-of-order cores, similar to those used by

commercial systems [7][15][4]. The rationale behind this decision is that instruction-level
parallelism (ILP) performance should not be underestimated [34]. Out-of-order processors
will exert a high pressure on the coherence fabric. Since the number of pending instructions
per core could be large, the concurrent coherence operations could be orders of magnitude
bigger than those observed with a large count of simple in-order cores.

In our particular case, we will use 4-wide issue cores with 128 in-flight instructions and up
to 16 pending memory operations. The numbers of cores chosen in our evaluation are 8 and
16 cores per CMP. The on-chip hierarchy configuration, like in [7][15][4], is composed of three
levels. The first two are private, strictly non-inclusive layers. The third level is similar to the
one proposed in [15], shared following a static NUCA [23] approach. In contrast with this
system, instead of an ultra-wide ring network (which in part, is imposed by the coherence
protocol used) we will use a mesh network, which is characterized by a better on-chip
bandwidth scalability and better performance/cost ratio. In order to avoid protocol deadlock
we will assume four virtual channels. By using Dimension Order Routing (DOR) we avoid
packets from one source to the same destination overtaking each other. The routers in the
network can handle multicast traffic natively [26]. Although for this size of system a broadcast
protocol might obtain better performance [35][17], our objective is to prove that MOSAIC is
capable of overcoming classic directory limitations, which will be a requirement with a much
higher number of cores in the CMP.

Comparing MOSAIC with a conventional protocol, varying the directory properties (i.e.
associativity and capacity) might be enough to understand the advantages of the proposal.
MOSAIC can work in both sparse and in-cache directories. We begin our analysis with the
former and later we will carry out a similar performance analysis with in-cache directory
designs. A summary of the main parameters used in our analysis is shown in Table 4.

The main tool for our evaluation was GEMS [36]. With this tool, it is possible to perform
full-system simulations. Coherence protocols have been implemented using the SLICC
language (Specification Language for Implementing Cache Coherence). For the power
modeling we use CACTI 6.5 [37] for modeling the cache and DSENT [38] as the network
modeling tool.

The workloads considered in our study are ten multi-programmed and multi-threaded
applications (scientific and server) running on top of the Solaris 10 OS. The numerical
applications are three from the NAS Parallel Benchmarks suite (OpenMP implementation
version 3.2 [39]). The server benchmarks correspond to the whole Wisconsin Commercial
Workload suite [40]. The remaining class corresponds to multi-programmed workloads using
part of the SPEC CPU2006 suite running in rate mode (where one core is reserved to run OS
services).

 PERFORMANCE
When the number of cores is large, conventional directory protocols have to face

limitations in two main factors, capacity and associativity. Next we will analyze how sensitive

MOSAIC: A scalable coherence protocol

MOSAIC is to the two parameters and compare its results with those from a conventional
sparse directory implementation. The reference point in this analysis will be a directory with
duplicate tags. Under this configuration there will not be any private cache invalidations due
to directory misses and therefore there should not be performance differences between
MOSAIC and the conventional protocol.

We will start with small private caches of a 2-way 32 KB L1 I/D and unified victim cache of
4-way and 64KB L2. Assuming in both cases a block size of 64 bytes, for these cache sizes the
number of required entries in the directory to avoid capacity misses is 2048*#cores. Until sub-
section 5.5, we will assume that the number of cores in the CMP is eight. Therefore, assuming
8 bytes per directory entry (enough to store tag and sharing information), the total directory
size required to avoid capacity misses will be 128KB. The storage overhead will grow with the
number of cores since the aggregate private cache will increase (the number of entries needed
in the directory) and the sharing vector will be larger (the size of the entries in the directory).

With the aim of minimizing the access time to data in data slices and avoiding bottlenecks
in the accesses, we distribute the directory in 16 slices (as many slices as the LLC) (Figure 1).
The slice interleaving of data and directory entries over LLC uses the least significant bits of
the address. For the same addresses, the directory slice and data slice are 1 cycle away. To
completely avoid conflict misses in the directory, the required associativity will be 64. This
large associativity is necessary because on each entry we need as many ways as the sum of
both of the private levels’ associativity times the number of cores (i.e. (L1I associativity + L1D
associativity + L2 associativity) * #cores). Obviously, any realistic proposal should reduce this
value to be scalable.

 Decreasing Directory Associativity
Initially, we will determine the sensitivity of a conventional directory protocol and MOSAIC

when the associativity is reduced, i.e. how the two protocols react when the number of
conflict misses in the directory is increased. In order to perform this analysis, we keep the
directory capacity fixed at 128KB and modify the associativity from 64-way to 1-way per set.
As associativity goes down the number of conflicts grows, because even though there is space
for all potential blocks stored in private caches, some of them may conflict in the directory.
Obviously, from an implementation point of view it does not make much sense to reduce
associativity to 1. However, this setting allows us to analyze a key aspect of the system
scalability given that when the number of cores, each with its own private cache, is increased,
the number of blocks mapping to the same entry in the directory will also increase.

Figure 4 shows how the base Directory protocol (to avoid confusion from now on it will be
denoted BASE) and MOSAIC impact on cache level behavior when the number of directory
conflicts is increased. Unsurprisingly, BASE directory has a bad reaction to that change in the
associativity, forcing a large number of misses in private levels due to directory invalidations.
In some applications, such as Omnetpp (where the cores are not sharing any data), the misses
in those levels are multiplied by two. Nevertheless, and as expected, MOSAIC is completely
insensitive to any associativity modifications. These results indicate that the implementation
cost can be the same as the simple directly mapped configuration without any performance
penalty.

 L.G. Menezo et al.

Figure 4. Normalized number of misses at the private levels when sparse directory associativity is changed

for a conventional coherence protocol (BASE) and MOSAIC.

The final performance differences depend on each type of application, i.e. its behavior in
private caches using a duplicate tag directory. Figure 5 (a) shows these results, indicating that
the MOSAIC protocol could be up to 40% faster than the BASE protocol. For the combination of
system size and applications used, the most remarkable effects are found in extreme situations
when even with capacity to track all private blocks, the performance will fall, on average,
12%. Previous works, such as [30], have identified limited associativity as a major issue in
directory coherence protocols. MOSAIC overcomes this problem completely since a simple
directly mapped directory is capable of maintaining the performance.

 Sensitivity to Capacity & Conflict Misses
The second effect that might influence performance is the capacity misses in the sparse

directory. The combination of capacity misses induced by limited directory storage as well as
the associativity reduction previously seen will increase total conflict misses. To compare how
both effects might impact on each protocol, we reproduce the previous analysis but reducing
the directory capability to track only an eighth of the private cache capacity, i.e. up to 2K
blocks. Again, such low values allow us to check the goodness of our proposal under a heavy
pressure with such a tough configuration. In some way, it allows us to forecast what would
happen if a large number cores map their private cache entries to a scalable directory. Figure 5
(b) reproduces the results provided in Figure 5 (a) with the new directory capacity.

Figure 5. (a) MOSAIC execution time normalized to BASE, while varying the associativity of a fully sized

sparse directory (i.e. 16K entries). (b) MOSAIC execution time normalized to BASE, while varying the
associativity for a directory with one eighth of fully sized sparse directory (i.e., 2K entries)

In this new configuration, misses in private cache for BASE, although not shown, are
substantially higher. After reducing the size of the directory, even with an associativity of 64,
capacity conflicts in the directory have a relevant impact on performance, degrading it by up
to 20%. The capacity misses seem to be more relevant in applications with a higher sharing
degree (i.e. commercial workloads [40]). Applications with a reduced working set (such as
hmmer) are less sensitive to capacity misses in the directory. With this directory size, conflicts
are more probable than in the fully sized directory and consequently associativity now has a
greater influence on performance.

0

0,5

1

1,5

2

64 2 64 2 32 1 32 1 64 2 64 2 32 1 32 1 64 2 64 2 32 1 32 1 64 2 64 2 32 1 32 1 64 2 64 2 32 1 32 1

BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASEMOSAIC

Astar Hmmer Omnetpp FT IS LU Apache Jbb OLTP Zeus

Misses L2 Misses L1I Misses L1D

0,5

0,6

0,7

0,8

0,9

1

1,1
64w128KB 32w128KB 2w128KB 1w128KB

0,4
0,5
0,6
0,7
0,8
0,9
1

1,1
64w16KB 32w16KB 2w16KB 1w16KB

MOSAIC: A scalable coherence protocol

 Bandwidth and Energy Overhead of MOSAIC
Since the rationale of MOSAIC is to trade directory cost for on-chip bandwidth and

additional snoops in private caches, we need to analyze the energy overheads. The first step
in this analysis is to quantify how directory cost reduction influences the on-chip bandwidth
consumption. If the network is using routers with support for handling multicast traffic [26],
the real measure of bandwidth and energy consumption for the interconnection network is
given by the average link utilization and not the end-point traffic consumption. Figure 6
shows the average link utilization for the initial configuration (i.e. exclusive 32KB L1 and
64KB L2) when the capacity of the directory or its associativity is reduced. The values are
normalized for a duplicate tag directory, i.e. capacity for 16K entries (128KB) and 64-way
associative. The results show that on average and under the worst conditions (i.e. a 2-way
associative directory, with an eighth of the capacity of the full directory) the traffic is just 5%
higher than a duplicate tag directory.

Figure 6. (a) Average network link utilization of MOSAIC normalized to a duplicate-tag directory varying
directory capacity and associativity. (b) Average network link utilization of MOSAIC normalized to BASE

directory.
Focusing our attention on each class of applications, multi-programmed workloads are

completely insensitive to directory configuration. Since in these applications there is no
information shared between the cores, this is the expected behavior. More noteworthy is the
behavior of scientific applications, where there is a substantial amount of shared and highly
contended data. In such cases, the directory replacement algorithm prevents the eviction of
actively shared data and entries of private blocks are more prone to being replaced.
Consequently, traffic does not change.

Server workloads seem to be the most sensitive, since in this case the amount of shared
data is large, most of them being code. Therefore these blocks will be accessed in read-only
mode and the directory will be less frequently accessed. As a consequence, the chances of
evicting an actively shared entry are higher than in numerical applications and so too are the
chances of requiring a multicast to reconstruct these entries. Nevertheless, even in the most
adverse (and unpractical) directory configurations, this increment is less than 20%, which is
substantially less than in broadcast coherence protocols [35][17][20].

The key point for this behavior is that multicast is only generated when, after a miss in the
sparse directory, the data and tokens available in LLC are not enough to fully reconstruct the
sharing information. If the block has all the tokens, it can be ensured that there are no copies
in any private caches and consequently the multicast can be avoided. Since LLC can be very
large, the most usual case will be this one and, therefore, multicast will be required only if the
data is really shared. In contrast, if we compare the bandwidth consumption of MOSAIC and
BASE protocols when the directory is simplified, the results are very different. As Figure 6 (b)
indicates, the BASE protocol requires more on-chip bandwidth in most cases, especially when
the directory is highly limited. In the most extreme case, i.e. a 16KB, 2-way associative
directory, BASE requires up to 40% extra bandwidth consumption on average. The main
reason for this is that MOSAIC has fewer misses in the private caches and directory evictions
are silent. For instance, in SPEC applications all processors have mostly independent
executions so the conflicts that occur in the sparse directory with a conventional directory

0

0,2

0,4

0,6

0,8

1

1,2

1,4 64w128KB 64w64KB 64w32KB
64w8KB 2w128KB 2w64KB

0

0,2

0,4

0,6

0,8

1

1,2
2w128KB 2w64KB 2w16KB

 L.G. Menezo et al.

protocol induce a large number of invalidation messages to the private levels. These
invalidation requests replace the data needed by the processors, which may still be useful.
Subsequent misses will require extra communication with the directory. In contrast, MOSAIC
leaves these data in the private levels avoiding extra misses in the sparse directory because
they is private data and so they will not be requested again. In this way it avoids requests and
data travelling back and forward through the network. When the difference in the number of
misses between the two protocols is small and applications have a high sharing degree,
broadcast messages of the reconstruction requests are more noticeable. With highly contended
shared data, such as in numerical applications, the replacement algorithm of the directory
inhibits evictions of actively used data and therefore the external invalidations in caches with
BASE are fewer (at least with directory configurations that are not highly constrained). Under
this configuration MOSAIC memory misses might increase the traffic due to the multicast
traffic required to deal with them. Although this multicast traffic might be avoided using
simple solutions such as [41], it seems irrelevant in most applications. The most relevant case
is IS, which has a large MPKI. Even in these cases, the extra traffic is less than 10%. In server
applications, shared blocks rarely change their state (from S) and they have the same
probability to be evicted as private data blocks. Consequently, the number of invalidations of
useful data in private caches is larger. The result is that the extra traffic required to deal with
this situation is much greater than with MOSAIC.

Figure 7. Total dynamic energy used by caches and network normalized to the directory-based coherence
protocol with aggregate 128KB sparse directory. Different sizes: 128KB, 64KB and 16KB (8, 4 and 1 1KB

per slice).

The previous discussion partially addresses the potential added costs. To complete it, we
need to look at the energy consumption, with emphasis on the cache hierarchy. Results of this
analysis are shown for both protocols in Figure 7 when using a 2-way associative sparse
directory with three different sizes: 128KB, 64KB and 16KB. The results have been normalized
to 128KB and a 2-way directory size of BASE protocol and they are coherent with the traffic
results: MOSAIC reacts in a more energy efficient way than the BASE protocol when the
directory size is constrained.

 Evicting Private Blocks Only
When trying to increase the effectiveness of the directory storage, some recent works

[42][43] have focused their proposals on the deactivation of the coherence only for private
blocks. Unlike MOSAIC, in these proposals shared blocks are still being treated as in a
traditional sparse directory. Even though logic leads us to think that it is not necessary to
maintain coherence in private blocks, there are other situations where shared blocks do not
have to be considered for coherence either. There are many applications with read-only and
shared blocks (like instructions for example), whose exclusion from the directory does not
mean any loss in performance while leaving space for other highly shared data blocks. On the
other hand, many blocks are initially private blocks, but they become shared at some moment
of the execution, causing unnecessary traffic.

The effectiveness of both possibilities has been analyzed by comparing our proposal with
the implementation of Stash [42] whose behavior is very similar to Mosaic, but with the
difference that shared blocks are not retired from the directory. As expected, results are very
similar in those applications with a low-sharing degree as in the SPEC cases. Differences of
between 5% and 10% occur when executing numerical applications; 20% for transactional

0

0,5

1

1,5

2

12
8 64 16 12
8 64 16 12
8 64 16 12
8 64 16 12
8 64 16 12
8 64 16 12
8 64 16 12
8 64 16 12
8 64 16 12
8 64 16 12
8 64 16 12
8 64 16 12
8 64 16 12
8 64 16 12
8 64 16 12
8 64 16 12
8 64 16 12
8 64 16 12
8 64 16 12
8 64 16

BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC

Astar Hmmer Omnetpp FT IS LU Apache Jbb OLTP Zeus

Network Sparse	directory L3 L2 L1

MOSAIC: A scalable coherence protocol

applications which have a large working set with a high-sharing degree of code. The reasons
for these results are clear. First, Stash limits the silent replacements only to the private blocks
which removes the possibility of maintaining in the directory only highly-shared entries,
especially when the pressure on the directory is strong. Therefore, MOSAIC’s capacity to
reduce the directory is obvious. Second, in those applications with a high sharing degree of
read-only blocks, like the transactional ones, the (unnecessary) invalidation of shared data
blocks because of lack of space in Stash is highly costly in terms of time and traffic since each
of the sharers will cause a miss in the next read. Finally, from the energy point of view, the
performance improvement reduces the time dedicated to the application’s execution and so
the EDP as well.

Additionally, although in the results it has not been taken into account, MOSAIC
reconstructions are more efficient because of the use of tokens since only the cores with some
tokens reply, which reduces the reconstruction time and the generated traffic. Only if the
requested data blocks are always shared by all the cores is the amount of traffic and the time
needed the same in the two protocols. The effect of the additional bit of the LLC added in
Stash [42] to avoid unnecessary broadcasts is the same as the effect of the tokens in the LLC in
MOSAIC. Finally, it is convenient to recall the importance of how the applications with large
footprints obtain most benefit from our proposal, since these characteristics are the same as
the increasing needs of the Cloud and Big Data applications.

 Scalability
One important aspect of our proposal is the scalability. Although the full-system simulation

of a realistic architecture, including the OS, like the one used in this work limits the size of the
system, we have doubled the whole system size to check the trend of each of the results
shown until now. Obviously, when increasing the number of cores to 16, the number of LLC
banks also has to be scaled and consequently the size of the interconnection network has to be
scaled too. We used a 6x6 mesh which means an increase of 50% in the bisection bandwidth.
The rest of the parameters have not been modified.

Figure 8. Link utilization of MOSAIC normalized to a Duplicate Tag Directory (128-way associative, 256KB)

varying directory capacity and associativity in a 16-core CMP.

The main obstacle that will limit the scalability of our proposal is undoubtedly the
interconnection network, which will have to manage the increased traffic of the new system.
Figure 8 shows the link utilization of MOSAIC normalized to a duplicate tag directory when
varying the directory capacity and associativity. As can be seen, even having increased the
bisection from 4 to 6 links (50%), the increment in traffic is far from the bisection increment,
even with the most unfavorable directory configurations.

If these results are compared to the corresponding results with 8 cores Figure 6 the
difference compared with the duplicate tag directory is even greater. Even in extreme
situations, such as the one corresponding to a 2-way set associative directory with capacity to
track an eighth of the private caches, only 7% more on average is consumed than with a
Duplicate Tag Directory. The rationale for this is that misses (due to directory invalidations) in
private caches take longer to be resolved in LLC due to the larger size of the system.

Therefore, it seems reasonable to say that MOSAIC will scale up to systems with tens of out-
of-order cores, such as those considered in this work. Note that this represents approximately

0
0,2
0,4
0,6
0,8
1

1,2
1,4
1,6

Astar Hmmer Omnetpp FT IS LU Apache Jbb OLTP Zeus	 Gmean

128w256KB 128w128KB 128w64KB 128w32KB 2w256KB 2w128KB 2w64KB 2w32KB

 L.G. Menezo et al.

an order of magnitude when considering in-order cores.

 Realistic Private Cache Configuration
Up to now, we have been using limited private cache capacity and associativity. If we

consider the configuration of commercial systems [7][4][15], L2 caches have between 1/8 and
1/4 of L3 capacity and both L1 and L2 have a larger associativity. Therefore, we will next
carry out a sensitivity analysis for the size of the directory with a realistic configuration for
private caches.

Figure 9. (a) MOSAIC execution time normalized to Duplicate Tag Directory, for a Nehalem-like private

caches configuration varying directory capacity. (b) The same experiment for the BASE protocol.

In this particular case, we try to mimic the L2 cache configuration in Intel’s Nehalem (4-way
32 KB of L1s and 8-way 256 KB of L2). We will keep the associativity fixed at 16 ways (like in
the data banks) and vary the capacity of the directory, from double [13] the full directory (i.e.
640KB) to a tenth of full directory (i.e. 32KB). Figure 9 presents the average execution time for
each application normalized to the double-sized directory where, even with the smallest
capacity, there is no performance impact. When reproducing the same experiment for the
BASE protocol, the performance impact is greater than 20% in some cases.

 IN-CACHE ANALYSIS
Although the previous results have been focused on a sparse directory configuration,

MOSAIC has also been implemented on in-cache configuration architecture. It is well-known
that introducing coherence information into the LLC under specific requirements has some
advantages. The most important one is to avoid having to duplicate the cache block tags and
the associated logic in an extra directory. It is only necessary to add the sharing information of
each block to each entry in the LLC. However, this space saving decreases as the relation
between the aggregate private cache capacity and the total LLC size increases. For a Nehalem-
like structure where the LLC is 4 times larger than the aggregate private cache capacity, when
needing more than 32 bits per block, it is more area-efficient to use a sparse directory structure
separated from the LLC.

In any case, in-cache MOSAIC has the same advantages over BASE as the ones seen in the
sparse design analysis supporting the same arguments. When the relation between the total
amount of private cache capacity and the LLC size is closer to 1, i.e. the same size in both of
them, MOSAIC’S advantages are greater. This happens because, as almost all the entries in the
LLC are used to track blocks in the private caches and so there are not too many victim
entries, whenever there is a replacement in the LLC, MOSAIC will not invalidate any data
block allocated in private cache while the BASE directory will.

As the relation between private and shared capacities gets further from 1 and so the
number of invalidations of blocks in the private caches decreases, so does the performance
difference between the two protocols. Figure 10 shows the execution time of BASE and
MOSAIC normalized to the BASE directory with two different size relations: 1/16 and 1.

0

0,2

0,4

0,6

0,8

1

1,2
16w512KB 16w256KB 16w128KB 16w64KB 16w32KB

(a)

0

0,2

0,4

0,6

0,8

1

1,2

16w1MB 16w512KB 16w256KB 16w128KB 16w64KB

(b)

MOSAIC: A scalable coherence protocol

Figure 10. Execution time of MOSAIC normalized to BASE directory when using in-cache MOSAIC in an 8-

core CMP and varying the LLC size.

In spite of the better performance of in-cache and the inconvenience of the necessary logic
for maintaining separate structures, the sparse directory allows the size of the directory itself
and the size of the LLC to be decoupled. This gives an important advantage to this
architecture design from a scalability point of view, because as the number of cores increases,
the total capacity of the private caches also increases and so it will be necessary to increase the
LLC size to maintain the off-chip traffic bounded. Even though neither in-cache or sparse
MOSAIC requires a quadratic increase in the storage space needed for keeping the coherence
information, the sparse solution does not limit the size of the LLC as the in-cache does.
Anyway, if the number of cores is not very large and the private/shared size ratio is low, the
in-cache MOSAIC is as efficient as the sparse solution and with a lower complexity.

 CONCLUSIONS
A new coherence protocol that addresses the challenges of complex multilevel cache

hierarchies in future many-core systems has been implemented. In order to limit coherence
protocol complexity, inclusiveness is required to track coherence information throughout
levels in this type of systems, but this might introduce unsustainable costs for directory
structures. Cost reduction decisions taken to reduce this complexity may introduce artificial
inefficiencies in the on-chip cache hierarchy, especially when the number of cores and private
cache size is large. The coherence protocol presented in this paper, denoted MOSAIC,
introduces a new approach to tackle this problem. In energy terms, the protocol scales like a
conventional directory coherence protocol, but relaxes the shared information inclusiveness.
This allows the performance implications of directory size and associativity reduction to be
overcome. MOSAIC demonstrates that inclusiveness is avoidable and can be removed from a
directory coherence protocol, while maintaining the complexity constrained. In fact, MOSAIC is
even simpler than a conventional directory. The results of our evaluation show that the
approach is quite insensitive, in terms of performance and energy expenditure, to the size and
associativity of the directory.

 REFERENCES
[1] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin, “Scaling the bandwidth wall:

challenges in and avenues for CMP scaling,” in International Symposium on Computer
Architecture (ISCA), 2009, vol. 37, no. 3, p. 371.

[2] ITRS, “‘Roadmap 2012,’ 2012. [Online]. Available:
http://www.itrs.net/links/2012itrs/home2012.htm.” 2012.

[3] P. Prieto, V. Puente, and J.-A. Gregorio, “Multilevel Cache Modeling for Chip-Multiprocessor
Systems,” IEEE Comput. Archit. Lett., vol. 10, no. 2, pp. 49–52, Feb. 2011.

[4] M. Butler, “AMD ‘Bulldozer’ Core - a new approach to multithreaded compute performance for
maximum efficiency and throughput,” in Symposium on High-Performance Chips (HotChips),
2010.

[5] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor, H. Jiang, M. Dixon, M. Derr,
M. Hunsaker, R. Kumar, R. B. Osborne, R. Rajwar, R. Singhal, R. D’Sa, R. Chappell, S. Kaushik,
S. Chennupaty, S. Jourdan, S. Gunther, T. Piazza, and T. Burton, “Haswell: The Fourth-
Generation Intel Core Processor,” IEEE Micro, vol. 34, no. 2, pp. 6–20, 2014.

[6] J. Feehrer, S. Jairath, P. Loewenstein, R. Sivaramakrishnan, D. Smentek, S. Turullols, and A.
Vahidsafa, “The oracle sparc T5 16-core processor scales to eight sockets,” IEEE Micro, vol. 33, no.

0,7

0,8

0,9

1

1,1

Astar Hmmer Omnetpp FT IS LU Apache Jbb OLTP Zeus Gmean

16MB 1MB

 L.G. Menezo et al.

2, pp. 48–57, 2013.
[7] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd, “Power7: IBM’s Next-Generation Server

Processor,” IEEE Micro, vol. 30, no. 2, pp. 7–15, 2010.
[8] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller, “Memory Performance and Cache

Coherency Effects on an Intel Nehalem Multiprocessor System,” in 2009 18th International
Conference on Parallel Architectures and Compilation Techniques, 2009, pp. 261–270.

[9] F. Busaba, M. A. Blake, B. Curran, M. Fee, C. Jacobi, P.-K. Mak, B. R. Prasky, and C. R. Walters,
“IBM zEnterprise 196 microprocessor and cache subsystem,” IBM J. Res. Dev., vol. 56, no. 1, pp.
1:1–1:12, Jan. 2012.

[10] W. J. Starke, J. Stuecheli, D. M. Daly, J. S. Dodson, F. Auernhammer, P. M. Sagmeister, G. L.
Guthrie, C. F. Marino, M. Siegel, and B. Blaner, “The cache and memory subsystems of the IBM
POWER8 processor,” IBM J. Res. Dev., vol. 59, no. 1, pp. 3:1–3:13, 2015.

[11] A. W. Topol, D. C. La Tulipe, L. Shi, D. J. Frank, K. Bernstein, S. E. Steen, A. Kumar, G. U.
Singco, A. M. Young, K. W. Guarini, and M. Ieong, “Three-dimensional integrated circuits,” IBM
J. Res. Dev., vol. 50, no. 4, pp. 491–506, 2006.

[12] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V. Adve, V. S. Adve, N. P.
Carter, and C.-T. Chou, “DeNovo: Rethinking the Memory Hierarchy for Disciplined Parallelism,”
in 2011 Int.Conf. on Parallel Architectures and Compilation Techniques, 2011, pp. 155–166.

[13] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla, M. Konow, M.
Riepen, M. Gries, G. Droege, T. Lund-Larsen, S. Steibl, S. Borkar, V. K. De, and R. Van Der
Wijngaart, “A 48-Core IA-32 Processor in 45 nm CMOS Using On-Die Message-Passing and DVFS
for Performance and Power Scaling,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 173–183, Jan.
2011.

[14] M. M. K. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache coherence is here to stay,”
Commun. ACM, vol. 55, no. 7, p. 78, Jul. 2012.

[15] N. Kurd, J. Douglas, P. Mosalikanti, and R. Kumar, “Next generation Intel® micro-architecture
(Nehalem) clocking architecture,” in IEEE Symp. on VLSI Circ., 2008, pp. 62–63.

[16] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes, “Cache Hierarchy and
Memory Subsystem of the AMD Opteron Processor,” IEEE Micro, vol. 30, no. 2, pp. 16–29, Mar.
2010.

[17] A. Raghavan, C. Blundell, and M. M. K. Martin, “Token tenure: PATCHing token counting using
directory-based cache coherence,” 2008 41st IEEE/ACM Int. Symp. Microarchitecture, no.
November, pp. 47–58, Nov. 2008.

[18] L. G. Menezo, V. Puente, and J. A. Gregorio, “The Case for a Scalable Coherence Protocol for
Complex On-Chip Cache Hierarchies in Many-Core Systems,” in 22nd International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2013, pp. 279–288.

[19] A. Gupta, W. Weber, and T. Mowry, “Reducing memory and traffic requirements for scalable
directory-based cache coherence schemes,” Int. Conf. Parallel Process., 1990.

[20] M. M. K. Martin, M. D. Hill, and D. a. Wood, “Token Coherence: decoupling performance and
correctness,” 30th Annu. Int. Symp. Comput. Archit. 2003. Proceedings., pp. 182–193, 2003.

[21] J.-L. Baer and W.-H. Wang, “On the inclusion properties for multi-level cache hierarchies,” ACM
SIGARCH Comput. Archit. News, vol. 16, no. 2, pp. 73–80, May 1988.

[22] A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely, and J. Emer, “Achieving non-inclusive cache
performance with inclusive caches: Temporal Locality Aware (TLA) cache management policies,”
in Proceedings of the Annual International Symposium on Microarchitecture, MICRO, 2010, pp.
151–162.

[23] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler, “A NUCA substrate for flexible
CMP cache sharing,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 8, pp. 1028–1040, 2007.

[24] K. Lee, S. J. Lee, and H. J. Yoo, “Low-power network-on-chip for high-performance SoC design,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 14, no. 2, pp. 148–160, Feb. 2006.

[25] N. Agarwal, L. S. L.-S. Peh, and N. K. N. K. Jha, “In-network snoop ordering (INSO): Snoopy
coherence on unordered interconnects,” in High Performance Computer Architecture, 2009. HPCA
2009. IEEE 15th International Symposium on, 2009, pp. 67–78.

[26] N. E. Jerger, L. S. Peh, and M. Lipasti, “Virtual circuit tree multicasting: A case for on-chip
hardware multicast support,” in International Symposium on Computer Architecture (ISCA),
2008, pp. 229–240.

[27] P. Abad, V. Puente, L. G. Menezo, and J. A. Gregorio, “Adaptive-Tree Multicast: Efficient
Multidestination Support for CMP Communication Substrate,” IEEE Trans. Par. Distrib. Syst.,
vol. 23, no. 11, pp. 2010–2023, Nov. 2012.

[28] J. Zebchuk, V. Srinivasan, M. K. M. K. Qureshi, and A. Moshovos, “A tagless coherence directory,”
in International Symposium on Microarchitecture (MICRO), 2009, pp. 423–434.

[29] OpenSPARC, “OpenSPARC TM T2 system-on-chip (SoC) microarchitecture specification,” 2008.
[30] D. Sanchez and C. Kozyrakis, “SCD: A scalable coherence directory with flexible sharer set

encoding,” in Proceedings - International Symposium on High-Performance Computer
Architecture, 2012, pp. 129–140.

MOSAIC: A scalable coherence protocol

[31] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling Ways and Associativity,” in International
Symposium on Microarchitecture (MICRO), 2010, pp. 187–198.

[32] L. G. Menezo, “Mosaic Protocol Specification,” 2016. .
[33] L. G. Menezo, “Mosaic Protocol Specification ‘http://www.atc.unican.es/galerna/mosaic/,’” 2015.
[34] J. L. Shin, H. Park, H. Li, A. Smith, Y. Choi, H. Sathianathan, S. Dash, S. Turullols, S. Kim, R.

Masleid, G. Konstadinidis, R. Golla, M. J. Doherty, G. Grohoski, and C. McAllister, “The next-
generation 64b SPARC core in a T4 SoC processor,” IEEE J. Solid-State Circuits, vol. 48, no. 1,
pp. 82–90, Feb. 2013.

[35] L. G. Menezo, V. Puente, P. Abad, and J. A. Gregorio, “Improving coherence protocol reactiveness
by trading bandwidth for latency,” in ACM International Conference on Computing Frontiers
(CF’12), 2012, pp. 143–152.

[36] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen, K. E.
Moore, M. D. Hill, and D. A. Wood, “Multifacet’s General Execution-driven Multiprocessor
Simulator (GEMS) Toolset,” ACM SIGARCH Comput. Archit. News, vol. 33, no. 4, pp. 92–99,
2005.

[37] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing NUCA Organizations and
Wiring Alternatives for Large Caches with CACTI 6.0,” in 40th IEEE/ACM International
Symposium on Microarchitecture, 2007, pp. 3–14.

[38] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S. Peh, and V. Stojanovic,
“DSENT - A Tool Connecting Emerging Photonics with Electronics for Opto-Electronic Networks-
on-Chip Modeling,” in International Symposium on Networks-on-Chip (NOCS), 2012, pp. 201–210.

[39] H. Jin, M. Frumkin, and J. Yan, “The OpenMP implementation of NAS parallel benchmarks and
its performance,” Natl. Aeronaut. Sp. Adm. (NASA), Tech. Rep. NAS-99-011, Moffett Field, USA,
no. October, 1999.

[40] A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K. E. Moore, M. D. Hill, D. A. Wood, and D. J.
Sorin, “Simulating a $2M Commercial Server on a $2K PC,” Computer (Long. Beach. Calif)., vol.
36, no. 2, pp. 50–57, Feb. 2003.

[41] G. H. Loh and M. D. Hill, “Efficiently enabling conventional block sizes for very large die-stacked
DRAM caches,” in International Symposium on Microarchitecture (MICRO), 2011, p. 454.

[42] S. Demetriades and S. Cho, “Stash Directory: A Scalable Directory for Many-Core Coherence,” in
Int. Symp. on High Perf. Computer Architecture (HPCA), 2014.

[43] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. F. Duato, “Increasing the effectiveness of
directory caches by deactivating coherence for private memory blocks,” in Int. Symposium on
Computer Architecture (ISCA), 2011, p. 93.

