
Interaction of NoC design and Coherence Protocol in

3D-stacked CMPs

Pablo Abad, Pablo Prieto, Lucia G. Menezo, Adrian Colaso, Valentin Puente and Jose Angel Gregorio

University of Cantabria

Santander, Spain

mail: {abadp,prietop,gregoriol,colasoa,vpuente,monaster}@unican.es

Abstract—Computer architectures have evolved to structures

where communication has become an essential part of the system

and most of it currently takes place inside the chip. The number

of on-Chip cores and the available off-chip bandwidth is not

growing at the same rate. This demands for the inclusion of more

sophisticated memory hierarchies inside the chip to deal with off-

chip latency and bandwidth problems in order to keep on

improving performance. The exhaustion of Moore’s law will

accelerate the use of 3D-Stacked on-chip memory hierarchies to

sustain the required scalability of forthcoming CMPs. For this

class of systems’ memory hierarchy, coherence protocol and

interconnection network are two closely related components, but

which are usually designed independently. In this work we will

demonstrate that network components can be coupled to

coherence protocol in order to extract significant performance

benefits. Making use of a well-known snoop coherence protocol,

we will present different network optimizations, better able to

adapt to the communication requirements of this protocol.

Evaluation results show that with minimal hardware changes, for

some real applications, full system performance can be improved

by up to 48%.

Keywords—Network on Chip; Routing; Cache Coherence; Chip

Multiprocessor

I. INTRODUCTION

Processor and memory speed divergence is a well-known
issue to computer architects. Many researchers have come up
with solutions able to reduce this growing gap to enable faster
computers. However, with the advent of chip multiprocessors,
off-chip bandwidth limitations will be the most limiting danger
[34]. As on-chip core count increases, the available off-chip
bandwidth per processor is reduced, adding high contention
delays to the main memory accesses. The work in [34] predicts
that in only a few generations, most on-chip area should be
exclusively devoted to on-chip caches if we want to keep pace
with performance improvements. Traditional memory
technologies are becoming an impediment due to their limited
density, cost, reliability, etc., which has obliged designers to
search for alternative technological and/or architectural
solutions for this problem. Vertical stacking of multiple silicon
layers (i.e. 3D stacking or 3D IC) or alternative non-volatile
memory technologies seem to be two good alternatives able to
alleviate off-chip pressure, significantly increasing on-chip
available cache capacity.

3D stacking not only provides the chance to increase the
number of devices per chip, but also introduces a number of
novel and interesting properties. A particular one, affecting the
communication substrate, is that the characteristics of physical
connectivity vary considerably depending on the dimension.
On the one hand, communication latency along the third
dimension is orders of magnitude lower than in the other two
dimensions. On the other hand, the available connectivity
across layers will allow a substantial on-chip bandwidth
improvement [26]. This means that density problems of SRAM
technology could be relaxed if part of the layers is exclusively
devoted to LLC.

Fig. 1. Three-dimensional CMP sketch.

Among all the 3D stacking techniques, Through Silicon
Vias (TSVs) allow the integration of multiple layers in the
same fabrication process, optimizing vertical communications
in aspects such as latency or energy. Thanks to the
improvements achieved in TSV fabrication, pillar dimensions
have been reduced significantly in recent years [14], increasing
the available bandwidth between layers. Density and low
latency make this technology one of the most promising
solutions for future CMP performance scalability. However,
vertical stacking is not exempt from serious problems that
currently limit its scalability. With the growing power density
derived from smaller transistors, heat dissipation has become a
first-order issue for present and future microprocessor
generations. 3D stacking further complicates this issue, because
the temperature overhead rapidly increases as more CMOS
layers are vertically stacked [33]. This complication might not
allow the stacking of a large number of layers shortly, making

structures with “short stature” more realistic. A reasonable
example of short-to-mid term 3D CMP architectures is
sketched in Fig. 1. In a layer, cores are located next to a small
one or two-level private memory, while the remaining layer is
employed for last-level caching. The Last-Level Cache (LLC)
is accessible from the cores through TSV. This organization is
known as memory-on-logic.

When this kind of architecture is used for general-purpose
processors, the commonly accepted consensus is that shared
memory is the most productive programming paradigm [7]. In
order to avoid the LLC access becoming a system bottleneck,
NUCA [16] structures are the most suitable organization.
NUCA organization is combined with scalable point-to-point
interconnection networks with short ultra-wide links, providing
a large bandwidth within the chip [8]. To maintain system
correctness, coherence invariants for multiple copies of data
blocks must be guaranteed. This can be done by using
protocols originally conceived for off-chip systems, such as
directory-based ones [13], but their utilization increases data
access latency due to the burden of multiple indirections across
the chip. The portion of the chip reachable per clock cycle is
shrinking as the technology advances, making indirections
more expensive. Therefore, taking advantage of bandwidth
availability to avoid adding extra delay makes sense. Snoop-
based protocols running on top of scalable interconnection
networks provide the best design choice for CMP systems if
the number of cores is not very high. In fact, currently, most
commercial aggressive CMPs, such as [21][32], use this
approach.

Hardware-based cache coherence and more particularly
broadcast-based protocols impose an important set of
characteristics and limitations on network traffic. These special
features include both correctness (end-to-end deadlock or in-
order delivery) and performance ones (broadcast
communications). In this work we analyze how to maximize
the use of the protocol features from the network perspective,
in order to improve system performance. More specifically,
assuming an architecture as the shown in Figure 1, we will
demonstrate that very simple behavioral modifications of the
interconnection network, based on the specific needs of the
coherence protocol, can improve system performance at an
almost negligible cost. Gains have been determined for a
representative (covering different network-utilization
scenarios) set of benchmarks and evaluated in a full system
simulator that accurately models software and hardware
components in the CMP. Even with such localized and simple
architectural modifications, our proposal is able to improve
system performance by up to 50% in some applications.

The rest of the paper is organized as follows. Section II
provides a brief summary of prior work in the same area.
Section III describes in detail the protocol employed in this
work, and how its special features interact with the
communication substrate. Section IV presents the set of
network optimizations proposed in order to take advantage of
coherence protocol. In Section V, an exhaustive evaluation of
our proposals is carried out, through a full-system evaluation
infrastructure. Finally, Section VI states a few conclusions and
future work.

II. RELATED WORK

Tight protocol-network interaction is a well-known issue in
general-purpose computing. Over recent years, researchers
have explored different ways to efficiently combine
communication and coherence invariants. Merging both
components, designing networks to support protocol
requirements or adapting protocols for the network substrate
are the main ways to extract maximum performance from
memory hierarchy. The technical literature is profuse [19], and
the aim of this section is only to provide a brief summary of a
few relevant approaches.

Among the works designed to optimize performance by
integrating the coherence protocol's behavior in the
interconnection network, a good example is that of Eisley et al.
[11]. This approach implements part of the coherence protocol
on each router in the network. This allows actions to be added
during message transit toward the destination that optimize the
protocol and thus improve performance. However, these
solutions create strong relationships between coherence
protocol and interconnection network. Changes in one of them
affect the behavior of the other, complicating even more the
already intricate process of designing and verifying a
coherence protocol.

In contrast to the previous example, most of the works aim
for network modification to support protocol features. There is
a broad range of aspects where network tuning can provide
significant benefits. Concerning correctness, the
interconnection network can release protocols from correctness
issues such as snoop ordering [4] or reduce the hardware
overhead of end-to-end deadlock support [2]. In contrast,
performance-oriented solutions can provide efficient support
for collective communications [18][25][22] or reduce the
penalty of high-latency communications through highly
efficient pipelines [23] or through micro-architectures able to
deal with high congestion levels [15].

Finally, some works have already started moving one step
further, working to understand coherence protocol and system
organization interaction. This way, better component
placement [3] or heterogeneous router configurations [37]
provide relevant performance benefits at minimal cost. This
paper shares the same motivation, but extending it to a
technological environment such as 3D stacking. We will
exploit the 3D properties in order to accelerate coherent
protocol responsiveness through interconnection network
design.

III. PROTOCOL-NETWORK INTERACTION

In this section, we will target our design constraints. Like in
many commercial systems [6][17][21] we will focus our
attention on a broadcast-based coherence protocol. Initially, we
will briefly describe the protocol. Later, we will describe how
some protocol features, in a system like the one described in
the previous section (Fig. 1) can exploit special features of
network traffic.

A. Cache Coherence Technique. TokenB

There are two major groups of techniques to maintain
consistency invariant in multiprocessor systems based on

interconnection networks other than a single bus. On the one
hand, there are techniques based on directory, namely the
existence of a centralized structure (usually distributed in
slices) which contains the information needed to locate any
datum that is within the chip. The main advantage of this
technique is the low bandwidth required and the two main
disadvantages are the increased latency due to the indirection to
this structure and the space required to store the directory itself.
On the other hand, there are broadcast-based coherence
protocols, in which the discovery of shared data is performed
by requesting it from all elements of the system that can store a
copy of it. Thus, cache-to-cache transfers are performed very
efficiently at the expense of increasing bandwidth requirements
and the storage overhead of keeping shared information is
avoided. In on-chip environments, coherence protocols should
use bandwidth availability to avoid indirections, making
broadcast-based techniques preferable [4][6][28].

A technique belonging to the latter group is called tokenB
[28]. This technique associates a fixed number of tokens with
each block. In order to write a block, a processor must acquire
all the tokens. To read a block, only a single token is needed. In
this way, the coherence invariant is directly enforced by
counting and exchanging tokens. In TokenB, coherence
requests are broadcast directly from the requesting processor to
all other coherency controllers in the CMP. Only caches
sharing the block should respond with an acknowledgement
message. The main advantage of this technique is that it
separates correctness from performance. Precisely this
separation helps to improve performance through better use of
the links in the underlying interconnection network, without
compromising the correctness of the protocol.

Fig. 2. Network consumption rate in each CMP Layer (flits/cycle/router).

B. Unbalanced traffic distribution

Combining the broadcast-based protocol, TokenB, with a
three-dimensional CMP organization similar to the one
proposed in Fig. 1, every broadcast request with Num_procs
(Num_procs-1 cores and one LLC bank) destinations has an
unbalanced distribution. Every private L1 receives a request, as
well as the bank at LLC where data should be depending on its
address. For this reason, most of the destinations (Num_procs-
1) are within the core layer, while only one destination is in a
different layer. This fact imposes most of the pressure on XY
links in the core layer, keeping other network links unoccupied
most of the time. To prove this, we have performed a simple
experiment measuring destination distribution for every

application from the employed benchmarks depicted in Section
V. All the applications show a similar behavior, providing here
only the results of one of them for the sake of brevity. The
results in Fig. 2 represent the injection/consumption rate of
every router at each layer for the apache workload. As can be
seen, the consumption rate in the core layer is more than twice
as large as the one in the LLC layer. This direct effect of
protocol-organization interaction will obviously cause
unbalanced link utilization and therefore an increase in the
network congestion. Early appearance of congestion has a
negative impact on network performance, causing network
latency to grow significantly in adverse scenarios. This,
ultimately, will increase average access time for memory
operations, which will degrade system performance.

C. End-to-end deadlock

In cache coherent systems, split-transactions are necessary
in order to achieve minimal performance requirements. In a
memory transaction, a chain of messages, each one with a
different purpose or nature, could be involved. For example, in
a simple request-reply protocol, such as the one employed in
Dash [24], two classes of messages can be identified: request
commands and data responses. In more advanced protocols,
such as Quick Path Interconnect [17], there are six types. This
characteristic has to be considered during the network design
process in order to guarantee system correctness.

In cache coherent CMP (cc-CMP) systems, the routers are
connected to coherence or memory controllers. Those
coherence controllers have a limited capacity to store pending
memory transactions. In order to process some transactions, the
controller needs to generate additional network messages (a
reply generated for a request message is the basic example). If
this “reply” buffering is exhausted, there is no way to drain
additional “request” messages from the network, and a cyclic
dependency involving two different controllers could be
generated, permanently blocking message advance. This
anomaly is known as message-dependent deadlock [35] and it
has been widely studied in cache coherent systems since the
initial cc-NUMA prototypes [24].

The most common and cost effective solution to this
problem is to use virtually separated networks for each class of
messages [17]. Thus, request and reply messages do not share
network resources and the cyclic dependency generated at
controllers is broken. This solution is used extensively not only
in cc-CMP but also in application-specific systems where
application traffic is reactive, including peer-to-peer streaming
or slave locking [31][36]. Dividing network resources among
message types means that network traffic seen by different
resources could have distinct characteristics. For example, the
traffic from the virtual network of L1-miss requests never
moves from LLC Layer to Core-L1 layer, because the message
source always belongs to the Core-L1 layer.

IV. NOC SUPPORT FOR COHERENCE PROTOCOLS IN 3D-

STACKED CMPS

On-chip cache levels distributed among different 3D layers
combined with broadcast-based coherence protocols lead to a
scenario where network traffic presents specific features. As
we have described in the previous section, different congestion

0
1

2
3

0

0.1

0.2

0.3

0.4

0 1 2 3
Y-Position

C
o

n
su

m
p

ti
o

n
 R

at
e

 (
f/

c/
r)

X-Position

Core-L1 Layer

0
1

2
3

0

0.1

0.2

0.3

0.4

0 1 2 3
Y-Position X-Position

LLC Layer

levels in each layer and additional correctness requirements
due to the reactive traffic nature determine traffic shape. In this
section we will analyze in more detail certain traffic aspects
derived from these features and explain how to combine them
with network design decisions in order to improve system
performance.

A. Message Class-Aware Routing in a 3D-stacked CMP

In those networks where deterministic routing is employed,
the common assumption is that every message in the network
progresses following the same policy. However, as end-to-end
deadlock avoidance precludes the utilization of different virtual
channels (reserved for different message types), each one could
employ a different routing policy without causing routing-
induced deadlocks. The only condition to ensure correctness is
that each individual routing protocol must be deadlock free. In
those cases where a uniform distribution of network traffic is
common, the utilization of different routing protocols might
not mean substantial performance differences. However, in our
case, where traffic density is highly dependent on Z position,
the combination of different policies can lead to significant
performance benefits.

Due to the implementation cost constraints, the most
extended routing protocol in the NOC environment is
Dimension-Ordered Routing (DOR) [9]. In a 3D memory-on-
logic CMP, forcing every message to follow the same
dimension order could lead to situations where part of the
messages could be unnecessarily delayed due to network
congestion. To explain this, we will assume that every network
message is routed with the following dimension order: X-Y-Z.
Every time a L1-Miss occurs, a request must be sent through
the network in order to obtain the missing block. A request
message is sent to each private L1 controller as well as to the
L2

1
 bank where data might reside. In a configuration like the

one in Fig. 1 this means that 16 messages are generated, the
destination of 15 of them is in the Core-L1 layer and only one
message is sent to the LLC layer. In those cases where L1 miss
rates are significant, network resources belonging to the L1-
Core layer will rapidly become congested. As messages sent
out to the LLC are also forced to move through the X and Y
dimensions first, their delay will be significantly increased due
to congested resources before moving to the Z dimension.

Fig. 3. (a) Different dimension-order routing according to source-destination
pair. (b) Message missrouting due to L1-Core layer congestion.

1
 We will assume two levels of cache in the on-chip hierarchy,

so we will employ indistinctly the term LLC and L2 cache

A straightforward solution to this problem would be simply
to interchange the order in which dimensions are traversed,
moving from X-Y-Z to Z-X-Y. However, if this change is
applied to every message type, the problem is not solved. If we
firstly move request messages to the Z dimension, LLC
requests avoid the congestion at L1-Core layer, but in this case
reply messages from a LLC Bank to a L1 cache will suffer L1-
Core layer congestion unnecessarily. In the previous case (X-
Y-Z), replies only employ X-Y links from LLC-Layer,
performing their last hop in Z dimension to reach their
destination in L1-Cache Layer. Moving routing protocols to Z-
X-Y, we are forcing replies to traverse most of the network
through the most congested layer, increasing latency and
congestion in that layer.

Supported by VC separation, a solution to this problem is to
employ a different routing protocol depending on the source-
destination pair of the messages belonging to that virtual
channel. The way to decide the routing for a virtual channel is
decided as follows:

 If Source is in congested layer and Destination is in free
layer then Routing=Z-X-Y.

 If Source is in free layer and Destination is in congested
layer then Routing=X-Y-Z.

 In any other case routing selection is not relevant.

In the case of the broadcast-based coherence protocol this
means that the virtual channel devoted to requests caused by
L1 misses will be routed in Z-X-Y order. In this virtual
channel, the message destination can be in either layers, but the
source is always in the L1-Core layer. In contrast, any reply
from LLC to an L1 Cache (routed through a different virtual
channel) will make use of the opposite dimension order. This
kind of reply is always generated in the LLC layer and the
destination is in the L1-Core Layer. An example of this
message-dependant routing is depicted in Fig. 3.a. Other
messages such as LLC requests to main memory, where source
and destination are in the same layer, can be routed with any
dimension order, because they do not make use of the Z
dimension.

The hardware overhead required to implement per-VC
routing is minimal. For a fixed topology and routing strategy,
algorithmic routing is often more efficient in terms of area and
latency [9]. Inside the router, a circuit accepts information
concerning direction and distance for each dimension and
generates a vector indicating which outputs advance the packet
to destination. A secondary circuit selects the appropriate
output from the vector according to routing policy. The only
additional logic required must modify output selection in order
to consider message virtual channel to calculate destination
vector. A few gates are enough for the implementation, which
makes the area/latency/power overhead negligible.

B. Congestion-aware missrouting

The previous solution is applicable to those messages that
change layer, but there is still a significant amount of traffic
traveling only in the X and Y dimensions through the
congested L1-Core layer. In the case of a broadcast-based
coherence protocol, such as the one employed here, this traffic

corresponds mainly to the L1-miss requests that ask for the
data from the private cache levels of the rest of CMP cores.
With a Dimension-Ordered routing policy these messages will
not be able to take advantage of the under-utilized resources of
the LLC Layer.

In this case, we will exploit another feature of this
coherence protocol, which is the non-utilization of certain
routing directions in a given virtual channel. We will take the
L1 broadcast requests as an example. In this case, all source
routers are placed in the same layer (L1-Core), while
destinations can be found in any layer. This means that this
kind of messages makes use of the X-Y links in both
dimensions, but only employs the Z links to move from L1-
Cache to LLC layer (ZDOWN in Fig. 3.b). A message through
this virtual channel never moves from an LLC to a L1 cache,
eliminating ZUP→X or ZUP→Y turns from message routes.

This traffic characteristic allows us to perform non-minimal
routing (i.e. misrouting) under certain conditions without
causing a routing deadlock. The only condition that must be
fulfilled by non-minimal routes is to eliminate any cyclic
dependency among network resources [10]. We will make use
of this feature to misroute to LLC layer those request messages
moving through the L1-Core layer that find congested
resources. The mechanism is simple and can be easily
explained through the example in Fig. 3.b. In any L1-Core
layer network router, any time a packet arbitration for a X or Y
link is rejected, the ZDOWN link is also requested. If the ZDOWN
link is granted, the message is misrouted to the lower layer.
From this moment, the message advances following an XY
route through the LLC layer until reaching the router just
below its destination. The final hop in the ZUP direction returns
the message to the upper layer and to its destination router.
Thus, the pressure on congested links is relaxed, and network
resource utilization will be more uniform.

As mentioned before, the way to guarantee that this new
routing is deadlock free is avoiding ZUP→X or ZUP→Y turns.
This is achieved by only letting misrouted messages return to
their original layer once they have consumed the X and Y
dimensions. The last hop is performed following a ZUP link and
the message reaches its destination, always requesting the
consumption port and eliminating the possibility of cyclic
dependencies.

Again, the hardware overhead to implement misrouting
functionality is minimal. In this case, those messages that have
not been misrouted (one bit at header indicates this) and that
belong to the requested virtual channel activate two outputs
from the destination vector, the one corresponding to
conventional DOR and ZDOWN. Then a double request is
performed to arbitration logic. If the conventional port is not
granted but ZDOWN is, the Z distance is updated and the
message marked as misrouted. Once a message is marked, only
conventional DOR requests are generated. Since the vertical
distance is very short, energy or delay penalization of this
misrouting would be minimal.

C. Critical Flit First

Processors usually need one word of a block at a time. In
order to make the L1 load miss latency independent of block

size, most processors employ strategies to avoid waiting for the
full block to be loaded before restarting the processor. A well-
known technique, named critical word first (CWF), requests
the missed word from memory in first place, sending it to the
processor as soon as it arrives. The processor continues
execution while the rest of the words in the block are being
filled into L1 cache.

As network messages are normally broken into smaller
pieces due to the limited on-chip bandwidth, this block re-
ordering could be implemented by communication components
with very low overhead. In the first place, L1 Load misses
must indicate, in request messages, where the missed word is in
the block. In those cases where the memory address of a miss
already specifies the word offset inside the block, the word
position in the block can be inferred from the address directly.
According to the position, the flit in which this word would
reside with conventional ordering is calculated. This flit
number is the information coded in the request message header,
requiring only log2[flit-number] bits to encode it. Once the
LLC or Memory controller provides the network interface with
the missing block, this flit number is employed to rotate flit
position in the network message, putting the one with the
critical word in the first place. The reply message only needs to
carry information about the original position of the first
message flit. The same number of bits as in the request
message is required to encode this information. After reaching
the destination, this additional flit is detected by the network
controller, forwarding the flit to the cache controller before the
whole packet is re-assembled.

As re-assembling hardware is a necessity in network
interfaces (i.e., coherence controller), the implementation of flit
re-ordering at this point reduces the logic overhead required,
reducing the complexity of the finite state machine in the
coherence controllers. In an environment where low
communication latencies are essential and on-chip bandwidth
is usually not enough to move a whole block at a time, this
mechanism can have a significant effect.

V. EVALUATION

The framework employed for evaluation allows us to
perform full-system simulation with complex workloads
running on top of the Solaris 10 O.S. The simulator is based on
SIMICS [27], extended with different modules capable of
faithfully modeling the architecture of the cores and the
memory hierarchy. GEMS [29] provides detailed timing
models for state-of-the-art processor (OPAL) and memory
hierarchy (RUBY). GEMS module for interconnection network
simulation have been replaced with TOPAZ [1], which models
network architecture accurately and allows the simulation of
3D topologies.

The main parameters of the simulated system are shown in
Table 1. The simulated CMP has 16 aggressive OOO
processors with static shared S-NUCA L2. The system layout
uses a 3D Mesh to connect the 16 cores and 16 L2 banks. The
cores operate at 4GHz and the memory subsystem at 2GHz.
The selected protocol was a well-known snoop coherence
protocol (Token B) [28] with six different message types,
because commercial products such as AMD’s Hypertransport
[6] or Intel’s QPI [17] employ protocols with similar

characteristics and requirements. The workloads used in this
study, listed in Table 2, are multi-threaded; four commercial
and five scientific programs. The numerical applications are
part of the NAS Parallel Benchmark (OpenMP
implementation) [20], while the commercial benchmarks
correspond to the Wisconsin Commercial Workload suite [5],
released by the authors of GEMS in version 2.1.

Table 1. Main parameters of the simulated system.

P
ro

ce
ss

o
r

C
o

n
fi

g
.

Number of Cores 16@4GHz

Functional Units
4xI-ALU / 4xFP-ALU /

4xD-MEM

IWin Size / Issue Width 128 / 4-way

Fetch-to-Dispatch 7 cycles

L
1

C
ac

h
e

Size / Associativity /

Block Size / Access Time

32KB, 2-way, 64B block, 2-

cycle

Max Outstanding Mem.

Operations
16

L
2

 C
ac

h
e

Size / Associativity /

Block Size

16MB / 16-way, 16 banks, 1

bank per router / 64B

NUCA Mapping
Static, interlieved across

slices

Slice Access Time 5 cycle

M
em

o

ry

Capacity / Access Time /

Memory Controllers / BW

4GB / 250 cycles / 4

centered / 320GB/s

N
et

w
o

rk
 Topology / Link Latency

Link Width

4x4x2 Mesh / 1 cycle / 128

bits (or 64)

Router Latency / Buffer

Size / Routing

3 cycles / 10 flits per VC /

DOR

A. Performance Results

The results of the graphs in this section are obtained
through a variable number of runs for each application with
pseudo-random perturbation (adding a small random delay to
each memory access) in order to estimate workload variability
[5]. All the results provided have a 95% confidence interval.
The y axis represents execution time values, normalized against
the baseline case where no optimization is applied to the
communication substrate.

Table 2. Workloads considered for evaluation

Benchmark Description

Wisconsin Commercial Workload Suite

Apache Task-parallel web server

Jbb Java middleware application

Zeus Pipelined web server

Oltp Pseudo TCP-C on-line trans. processing

NAS Parallel benchmark

FT 3-D partial diff. eq. solution using FFTs

IS Integer sort

SP Scalar Pentadiagonal solver

MG Multi-grid on a sequence of meshes

LU LU solver

The results in Fig. 4 represent the performance
improvement obtained when the first of the proposed
improvements is applied. The OPT-RTG column represents the
results obtained when the contention-aware dimension order is

applied according to the source-destination pair of each virtual
channel. In this particular case, normal and persistent requests
are routed in Z→X→Y order (virtual channels 1 and 6) and
replies in X→Y→Z order (virtual channel 5). The rest of the
virtual channels only move through one layer, the order being
irrelevant. The performance benefits are strongly dependent on
the congestion levels reached in the L1-Core cache Layer. In
the case of those transactional applications where network
traffic is low, benefits are less than 5% performance
improvement. However, demanding applications such as FT or
SP can benefit more from this simple optimization, reducing
execution time by 25% in the case of the FT application. The
average value strongly depends on the mix of applications
selected. For our two benchmark suites this value is ~6%,
which is a significant result for an almost cost-free
modification.

Fig. 4. BASE-normalized execution time. Traffic-Aware Routing results.

Fig. 5. BASE-normalized execution time. Congestion-aware missrouting

results.

Fig. 5 represents the results obtained when message
misrouting through LLC layer is applied to CMP network
traffic. In this case, we obtain a similar tendency as in our
previous set of results, the performance benefits being more
significant for more network-demanding applications.
However, the improvement is less for this mechanism. The
reason for this result is the latency overhead induced by
misrouting. Every time a message is misrouted, it is forced to
traverse a longer path to its destination. These messages must
traverse two additional routers and two additional links
compared to messages following a minimal route. In our
particular case, with a 4x4 mesh topology, a router pipeline of
3 cycles and a link delay of 1 cycle, this means a base latency
overhead of more than 20%. Even with this handicap, none of
the applications evaluated has obtained worse performance

0.6

0.7

0.8

0.9

1

OLTP ZEUS APACHE JBB IS LU FT SP MG GMEAN

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

BASE OPT-RTG

0.6

0.7

0.8

0.9

1

OLTP ZEUS APACHE JBB IS LU FT SP MG GMEAN

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

BASE MISS

results than the BASE implementation. In cases such as JBB,
APACHE or MG, the improvement is negligible, but again
other applications are able to improve their execution time. It
should be noted that these performance improvements have
been obtained by very simple modifications in the network.

Finally, we have also performed a third experiment
analyzing the impact of flit re-ordering in order to avoid
message spooling latency in load misses. While previous
results have been obtained for 128-bit links, in this case we
have employed two different link widths for our evaluation,
128 and 64-bit wires. Depending on link width, reply messages
containing a cache block must be broken into a different
number of flits. For a 64-Byte block, 5-flit messages will be
necessary for 128-bit links and 10-Flit for 64 bits (or using 128
byte blocks with 128-bit wires). Results for these two message
lengths are shown in Fig. 6. The first noteworthy aspect is the
big difference between 5 and 10-Flit results. In the first case
benefits extracted from flit re-ordering are minimal, while
results for 10 flits are completely different. Spooling latency of
5-Flit messages seems to be insignificant compared to network
and contention latencies, which minimizes benefits. However,
it seems that the benefits of spooling avoidance rapidly become
significant as message length increases. As can be seen, for 10-
Flit messages we are able to obtain a 10% performance benefit
on average. Therefore, this should be taken into account if the
relationship between cache block size and the width of the
network links is modified. Note that we are using a
conservative 3-cycle router pipeline. Using a single cycle
pipeline [30], the results would be much more relevant.

Fig. 6. BASE-normalized (independently for each message size) execution

time. Critical Flit First results.

B. Putting it all together

The previous section provides some insight into the effect
of each technique on overall system performance. For this final
experiment, we have included all the mechanisms proposed in
this work in the same router micro-architecture, comparing it
against the baseline case. The final set of results is shown in
Fig. 7. Average values show a performance improvement of
10% in the case of 5-Flit reply messages, while this
improvement grows to 20% when network link width is
reduced from 128 to 64 bits. Applications with large
communication demands can obtain significant performance
benefits from the solutions proposed in this work. With a
minimal overhead, we have been able to halve the execution
time of the FT application. Even in those cases where network

pressure is less relevant, benefits are still extracted from
protocol-aware routing and flit re-ordering.

Fig. 7. BASE-normalized (independently for each message size) execution

time results. All mechanisms together.

The main reason for these results is the more efficient
utilization of network resources. Through a more intelligent
routing policy we are able to distribute traffic volume in a more
uniform way. To prove this, we have measured the link
utilization in each layer for both BASE and FINAL
configurations. In the results presented in Fig. 8, the y-axis
represents the fraction of time that the links of each layer are
occupied by a message in transit. It can be seen that the routing
techniques proposed in this work are able to reduce the initial
difference in link utilization, partially reducing the pressure
exerted on L1-Core layer.

Fig. 8. Fraction of time network links are busy in each layer. (above) BASE

configuration, (below) FINAL configuration.

VI. CONCLUSIONS AND FUTURE WORK

We present a set of network enhancements that take
advantage of 3D stacking properties in order to improve cache
coherent CMP performance. Through these solutions, network
resources are utilized more efficiently, distributing protocol
messages among the different network layers. With a
negligible hardware modification, the router is able to
implement per-virtual channel routing policies and also miss-
routing strategies that help to alleviate congestion in the L1-
Core CMP Layer. Results show that for some real applications,

0.6

0.7

0.8

0.9

1

OLTP ZEUS APACHE JBB IS LU FT SP MG GMEAN

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

BASE-5Flit CFF-5Flit BASE-10Flit CFF-10Flit

0.4

0.5

0.6

0.7

0.8

0.9

1

OLTP ZEUS APACHE JBB IS LU FT SP MG GMEAN

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

BASE-5Flit FINAL-5Flit BASE-10Flit FINAL-10Flit

0

0.2

0.4

0.6

0.8

1

OLTP ZEUS APACHE JBB IS LU FT SP MG

Li
n

k
U

ti
liz

at
io

n
 L1-Core Layer

LLC Layer

0

0.2

0.4

0.6

0.8

1

OLTP ZEUS APACHE JBB IS LU FT SP MG

Li
n

k
U

ti
liz

at
io

n
 L1-Core Layer

LLC Layer

our proposals can improve overall system performance by up
to 48%.

This paper has provided a set of routing modifications
favored by protocol peculiarities. Different strategies, such as
adaptive routing policies, could be evaluated for this
environment, analyzing whether the improved performance
outweighs the increased coherence protocol complexity by
eliminating the restriction of in-order delivery. Finally, special
routing features could also be implemented with an alternative
final target to performance, such as temperature control, a first
order design constraint in three-dimensional environments.

ACKNOWLEDGMENT

The authors would like to thank Jose-Angel Herrero for his
valuable assistance with computing environment, and the
anonymous reviewers for many useful suggestions. This work
has been supported by the Spanish Ministry of Science and
Innovation, under contract TIN2010-18159, and by the
HiPEAC European Network of Excellence.

REFERENCES

[1] P.Abad, P. Prieto, L.G. Menezo, A. Colaso, V. Puente, and J.A.
Gregorio, “TOPAZ: An Open-Source Interconnection Network
Simulator for Chip Multiprocessors and Supercomputers”, NOCS 2012.

[2] P.Abad, V. Puente, J.A. Gregorio, “Reducing the Interconnection
Network Cost of Chip Multiprocessors”, International Symposium on
Networks-on-Chip (NOCS), March 2008.

[3] D. Abts, N.E. Jerger, J. Kim, D. Gibson, M. Lipasti, “Achieving
predictable performance through better memory controller placement in
many-core CMPs”, International Symposium on Computer Architecture
(ISCA), June 2009.

[4] N. Agarwal, L.S. Peh, N.K. Jha, “In-Network Snoop Ordering (INSO):
Snoopy Coherence on Unordered Interconnects”, International
Symposium on High Performance Computer Architecture (HPCA),
February 2009.

[5] A.R. Alameldeen, et. al., “Simulating a $2M Commercial Server on a
$2K PC”, IEEE Computer, February 2003.

[6] A. Ahmed, P. Conway, B. Hughes, F. Weber, "AMD OpteronTM
Shared Memory MP Systems," Conference Record of Hot Chips 14,
Stanford, Aug. 2003.

[7] K. Asanovic, R. Bodik, and B. Catanzaro, “The landscape of parallel
computing research: A view from Berkeley,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2006-183.

[8] W.J. Dally, B. Towles, “Route Packets, Not Wires: On-Chip
Interconnection Networks”, Design Automation Conference, June 2001.

[9] W.J. Dally, B. Towles, “Principles and Practices of Interconnection
Networks”, Morgan Kaufmann Publishers, Inc. , 2004.

[10] J. Duato, “A theory of deadlock-free adaptive multicast routing in
wormhole networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 6, pp. 976-987, 1995

[11] N. Eisley, Li-Shiuan Peh. and Li Shang, “In-Network Cache
Coherence”, IEEE Computer Architecture Letters, 5 no.1 2006.

[12] P. Gratz, C. Kim, R. McDonald, S.W. Keckler, D. Burger,
“Implementation and Evaluation of On-Chip Network Architectures”,
International Conference on Computer Design (ICCD), October 2006.

[13] A. Gupta, W. Weber, and T. Mowry, “Reducing memory and traffic
requirements for scalable directory-based cache coherence schemes,”
International Conference on Parallel Processing, 1990.

[14] S. Gupta, M. Hilbert, S. Hong and R. Patti, “Techniques for Producing
3D ICs with High-Density Interconnect” International VLSI Multilevel
Interconnection Conference, September 2004.

[15] Y. Hoskote, et. al., “A 5-GHz Mesh Interconnect for a Teraflops
Processor”, IEEE Micro, vol. 27, issue 5, November 2007.

[16] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, S.W. Keckler, “A NUCA
Substrate for Flexible CMP Cache Sharing”, International Conference
on Supercomputing (ICS), June 2005.

[17] Intel Corporation, “An Introduction to the Intel Quickpath Interconnect”,
White paper, Document Number 320412-001US, 2009.

[18] N.E. Jerger, L.S. Peh, M. Lipasti, “Virtual Circuit Tree Multicasting: A
Case for On-Chip Hardware Multicast Support”, International
Symposium on Computer Architecture (ISCA), June 2008.

[19] N.E. Jerger, L.S. Peh, “On-Chip Networks, Synthesis Lectures on
Computer Architecture”, Morgan & Claypool Publishers, 2009.

[20] H. Jin, M. Frumkin, J. Yan, “The OpenMP Implementation of NAS
Parallel Benchmarks and its Performance”, NAS Tech. Report, 1999.

[21] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd, “Power7: IBM’s
Next-Generation Server Processor” IEEE Micro, vol. 30, no. 2, 7-15,
2010.

[22] T. Krishna, L.S. Peh, B.M. Beckmann, S.K. Reinhardt, “Towards the
Ideal On-Chip Fabric for 1-to-Many and Many-to-1 Communications”
International Symposium on Microarchitecture (MICRO), 2011.

[23] A. Kumar, et. al., “A 4.6 Tbits/s 3.6GHz Single-cycle NoC Router with
a Novel Switch Allocator in 65nm CMOS” International Conference on
Computer Design (ICCD), October 2007.

[24] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J.
Hennessy, M. Horowitz, M.S. Lamet, “The Stanford Dash
Multiprocessor”, Computer, vol. 25 no. 3, March 1992.

[25] M. Lodde, J. Flich, M. Acacio, “Heterogeneous NoC Design for
Efficient Broadcast-Based Coherence Protocol Support”, International
Symposium on Networks-on-Chip (NOCS), May 2012.

[26] G. H. Loh and Y. Xie, “3D Stacked Microprocessor: Are We There
Yet?,” IEEE Micro, vol. 30, no. 3, pp. 60–64, May 2010.

[27] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgen, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, B. Werner, “Simics: A Full System
Simulation Platform”, IEEE Computer, Vol. 35, no. 2, February 2002.

[28] M.M.K. Martin, M.D. Hill, D.A. Wood, “Token Coherence: Decoupling
Performance and Correctness”, International Symposium on Computer
Architecture (ISCA), June 2003.

[29] M.M.K. Martin, et. al., “Multifacet´s General Execution-driven
Multiprocessor Simulator (GEMS) Toolset”, Computer Architecture
News (CAN), September 2005.

[30] R. Mullins, A. West, S. Moore, “Low-Latency Virtual-Channel Routers
for On-Chip Networks”, International Symposium on Computer
Architecture (ISCA), June 2004.

[31] S. Murali, P. Meloni, F. Angiolini, D. Atienza, S. Carta, L. Benini, G.
Micheli, and L. Raffo, “Designing Message-Dependent Deadlock Free
Networks on Chips for Application-Specific Systems on Chips,”
International Conference on Very Large Scale Integration, 2006.

[32] C. Park et al. “A 1.2 TB/s on-chip ring interconnect for 45nm 8-core
enterprise Xeon® processor” In 2010 IEEE International SolidState
Circuits Conference(ISSCC), 180-181, 2010.

[33] K. Puttaswamy, G.H. Loh, “Thermal analysis of a 3D die-stacked high-
performance microprocessor” ACM Great Lakes symposium on VLSI,
2006.

[34] B. Rogers, A. Krishna, G. Bell, K. Vu, X. Jiang, Y. Solihin, “Scaling the
Bandwidth Wall: Challenges in and Avenues for CMP Scaling”,
Proceedings of the 36th annual international symposium on Computer
architecture (ISCA 09), pp 371-382, 2009.

[35] Y.H. Song, T.M. Pinkston, “A Progressive Approach to Handling
Message-Dependent Deadlock in Parallel Computer Systems”, IEEE
Transactions on Parallel and Distributed Systems, Vol. 14, no. 3, 2003.

[36] P. van der Stok, “Dynamic and Robust Streaming in and between
Connected Consumer-Electronic Devices”, Kluwer, Dordrecht, 2005.

[37] S. Volos, C. Seiculescu, B. Grot, N.K. Pour, B. Falsafi, G. De Michelli,
“CCNoC: Specializing On-Chip Interconnects for Energy Efficiency in
Cache-Coherent Servers”, International Symposium on Networks-on-
Chip (NOCS), May 2012.

