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Abstract—Computer architectures have evolved to structures 

where communication has become an essential part of the system 

and most of it currently takes place inside the chip. The number 

of on-Chip cores and the available off-chip bandwidth is not 

growing at the same rate. This demands for the inclusion of more 

sophisticated memory hierarchies inside the chip to deal with off-

chip latency and bandwidth problems in order to keep on 

improving performance. The exhaustion of Moore’s law will 

accelerate the use of 3D-Stacked on-chip memory hierarchies to 

sustain the required scalability of forthcoming CMPs. For this 

class of systems’ memory hierarchy, coherence protocol and 

interconnection network are two closely related components, but 

which are usually designed independently. In this work we will 

demonstrate that network components can be coupled to 

coherence protocol in order to extract significant performance 

benefits. Making use of a well-known snoop coherence protocol, 

we will present different network optimizations, better able to 

adapt to the communication requirements of this protocol. 

Evaluation results show that with minimal hardware changes, for 

some real applications, full system performance can be improved 

by up to 48%. 

Keywords—Network on Chip; Routing; Cache Coherence; Chip 

Multiprocessor 

I.  INTRODUCTION 

Processor and memory speed divergence is a well-known 
issue to computer architects. Many researchers have come up 
with solutions able to reduce this growing gap to enable faster 
computers. However, with the advent of chip multiprocessors, 
off-chip bandwidth limitations will be the most limiting danger 
[34]. As on-chip core count increases, the available off-chip 
bandwidth per processor is reduced, adding high contention 
delays to the main memory accesses. The work in [34] predicts 
that in only a few generations, most on-chip area should be 
exclusively devoted to on-chip caches if we want to keep pace 
with performance improvements. Traditional memory 
technologies are becoming an impediment due to their limited 
density, cost, reliability, etc., which has obliged designers to 
search for alternative technological and/or architectural 
solutions for this problem. Vertical stacking of multiple silicon 
layers (i.e. 3D stacking or 3D IC) or alternative non-volatile 
memory technologies seem to be two good alternatives able to 
alleviate off-chip pressure, significantly increasing on-chip 
available cache capacity. 

3D stacking not only provides the chance to increase the 
number of devices per chip, but also introduces a number of 
novel and interesting properties. A particular one, affecting the 
communication substrate, is that the characteristics of physical 
connectivity vary considerably depending on the dimension. 
On the one hand, communication latency along the third 
dimension is orders of magnitude lower than in the other two 
dimensions. On the other hand, the available connectivity 
across layers will allow a substantial on-chip bandwidth 
improvement [26]. This means that density problems of SRAM 
technology could be relaxed if part of the layers is exclusively 
devoted to LLC.  

 

Fig. 1. Three-dimensional CMP sketch. 

Among all the 3D stacking techniques, Through Silicon 
Vias (TSVs) allow the integration of multiple layers in the 
same fabrication process, optimizing vertical communications 
in aspects such as latency or energy. Thanks to the 
improvements achieved in TSV fabrication, pillar dimensions 
have been reduced significantly in recent years [14], increasing 
the available bandwidth between layers. Density and low 
latency make this technology one of the most promising 
solutions for future CMP performance scalability. However, 
vertical stacking is not exempt from  serious problems that 
currently limit its scalability. With the growing power density 
derived from smaller transistors, heat dissipation has become a 
first-order issue for present and future microprocessor 
generations. 3D stacking further complicates this issue, because 
the temperature overhead rapidly increases as more CMOS 
layers are vertically stacked [33]. This complication might not 
allow the stacking of a large number of layers shortly, making 



structures with “short stature” more realistic. A reasonable 
example of short-to-mid term 3D CMP architectures is 
sketched in Fig. 1. In a layer, cores are located next to a small 
one or two-level private memory, while the remaining layer is 
employed for last-level caching. The Last-Level Cache (LLC) 
is accessible from the cores through TSV. This organization is 
known as memory-on-logic. 

When this kind of architecture is used for general-purpose 
processors, the commonly accepted consensus is that shared 
memory is the most productive programming paradigm [7]. In 
order to avoid the LLC access becoming a system bottleneck, 
NUCA [16] structures are the most suitable organization. 
NUCA organization is combined with scalable point-to-point 
interconnection networks with short ultra-wide links, providing 
a large bandwidth within the chip [8]. To maintain system 
correctness, coherence invariants for multiple copies of data 
blocks must be guaranteed. This can be done by using 
protocols originally conceived for off-chip systems, such as 
directory-based ones [13], but their utilization increases data 
access latency due to the burden of multiple indirections across 
the chip. The portion of the chip reachable per clock cycle is 
shrinking as the technology advances, making indirections 
more expensive. Therefore, taking advantage of bandwidth 
availability to avoid adding extra delay makes sense. Snoop-
based protocols running on top of scalable interconnection 
networks provide the best design choice for CMP systems if 
the number of cores is not very high. In fact, currently, most 
commercial aggressive CMPs, such as [21][32], use this 
approach.  

Hardware-based cache coherence and more particularly 
broadcast-based protocols impose an important set of 
characteristics and limitations on network traffic. These special 
features include both correctness (end-to-end deadlock or in-
order delivery) and performance ones (broadcast 
communications). In this work we analyze how to maximize 
the use of the protocol features from the network perspective, 
in order to improve system performance. More specifically, 
assuming an architecture as the shown in Figure 1, we will 
demonstrate that very simple behavioral modifications of the 
interconnection network, based on the specific needs of the 
coherence protocol, can improve system performance at an 
almost negligible cost. Gains have been determined for a 
representative (covering different network-utilization 
scenarios) set of benchmarks and evaluated in a full system 
simulator that accurately models software and hardware 
components in the CMP. Even with such localized and simple 
architectural modifications, our proposal is able to improve 
system performance by up to 50% in some applications. 

The rest of the paper is organized as follows. Section II 
provides a brief summary of prior work in the same area. 
Section III describes in detail the protocol employed in this 
work, and how its special features interact with the 
communication substrate. Section IV presents the set of 
network optimizations proposed in order to take advantage of 
coherence protocol. In Section V, an exhaustive evaluation of 
our proposals is carried out, through a full-system evaluation 
infrastructure. Finally, Section VI states a few conclusions and 
future work. 

II. RELATED WORK 

Tight protocol-network interaction is a well-known issue in 
general-purpose computing. Over recent years, researchers 
have explored different ways to efficiently combine 
communication and coherence invariants. Merging both 
components, designing networks to support protocol 
requirements or adapting protocols for the network substrate 
are the main ways to extract maximum performance from 
memory hierarchy. The technical literature is profuse [19], and 
the aim of this section is only to provide a brief summary of a 
few relevant approaches. 

Among the works designed to optimize performance by 
integrating the coherence protocol's behavior in the 
interconnection network, a good example is that of Eisley et al. 
[11]. This approach implements part of the coherence protocol 
on each router in the network. This allows actions to be added 
during message transit toward the destination that optimize the 
protocol and thus improve performance. However, these 
solutions create strong relationships between coherence 
protocol and interconnection network. Changes in one of them 
affect the behavior of the other, complicating even more the 
already intricate process of designing and verifying a 
coherence protocol. 

In contrast to the previous example, most of the works aim 
for network modification to support protocol features. There is 
a broad range of aspects where network tuning can provide 
significant benefits. Concerning correctness, the 
interconnection network can release protocols from correctness 
issues such as snoop ordering [4] or reduce the hardware 
overhead of end-to-end deadlock support [2]. In contrast, 
performance-oriented solutions can provide efficient support 
for collective communications [18][25][22] or reduce the 
penalty of high-latency communications through highly 
efficient pipelines [23] or through micro-architectures able to 
deal with high congestion levels [15]. 

Finally, some works have already started moving one step 
further, working to understand coherence protocol and system 
organization interaction. This way, better component 
placement [3] or heterogeneous router configurations [37] 
provide relevant performance benefits at minimal cost. This 
paper shares the same motivation, but extending it to a 
technological environment such as 3D stacking. We will 
exploit the 3D properties in order to accelerate coherent 
protocol responsiveness through interconnection network 
design.  

III. PROTOCOL-NETWORK INTERACTION 

In this section, we will target our design constraints. Like in 
many commercial systems [6][17][21] we will focus our 
attention on a broadcast-based coherence protocol. Initially, we 
will briefly describe the protocol. Later, we will describe how 
some protocol features, in a system like the one described in 
the previous section (Fig. 1) can exploit special features of 
network traffic. 

A. Cache Coherence Technique. TokenB 

There are two major groups of techniques to maintain 
consistency invariant in multiprocessor systems based on 



interconnection networks other than a single bus. On the one 
hand, there are techniques based on directory, namely the 
existence of a centralized structure (usually distributed in 
slices) which contains the information needed to locate any 
datum that is within the chip. The main advantage of this 
technique is the low bandwidth required and the two main 
disadvantages are the increased latency due to the indirection to 
this structure and the space required to store the directory itself. 
On the other hand, there are broadcast-based coherence 
protocols, in which the discovery of shared data is performed 
by requesting it from all elements of the system that can store a 
copy of it. Thus, cache-to-cache transfers are performed very 
efficiently at the expense of increasing bandwidth requirements 
and the storage overhead of keeping shared information is 
avoided. In on-chip environments, coherence protocols should 
use bandwidth availability to avoid indirections, making 
broadcast-based techniques preferable [4][6][28]. 

A technique belonging to the latter group is called tokenB 
[28]. This technique associates a fixed number of tokens with 
each block. In order to write a block, a processor must acquire 
all the tokens. To read a block, only a single token is needed. In 
this way, the coherence invariant is directly enforced by 
counting and exchanging tokens. In TokenB, coherence 
requests are broadcast directly from the requesting processor to 
all other coherency controllers in the CMP. Only caches 
sharing the block should respond with an acknowledgement 
message. The main advantage of this technique is that it 
separates correctness from performance. Precisely this 
separation helps to improve performance through better use of 
the links in the underlying interconnection network, without 
compromising the correctness of the protocol.  

  

Fig. 2. Network consumption rate in each CMP Layer (flits/cycle/router). 

B. Unbalanced traffic distribution 

Combining the broadcast-based protocol, TokenB, with a 
three-dimensional CMP organization similar to the one 
proposed in Fig. 1, every broadcast request with Num_procs 
(Num_procs-1 cores and one LLC bank) destinations has an 
unbalanced distribution. Every private L1 receives a request, as 
well as the bank at LLC where data should be depending on its 
address. For this reason, most of the destinations (Num_procs-
1) are within the core layer, while only one destination is in a 
different layer. This fact imposes most of the pressure on XY 
links in the core layer, keeping other network links unoccupied 
most of the time. To prove this, we have performed a simple 
experiment measuring destination distribution for every 

application from the employed benchmarks depicted in Section 
V. All the applications show a similar behavior, providing here 
only the results of one of them for the sake of brevity. The 
results in Fig. 2 represent the injection/consumption rate of 
every router at each layer for the apache workload. As can be 
seen, the consumption rate in the core layer is more than twice 
as large as the one in the LLC layer. This direct effect of 
protocol-organization interaction will obviously cause 
unbalanced link utilization and therefore an increase in the 
network congestion. Early appearance of congestion has a 
negative impact on network performance, causing network 
latency to grow significantly in adverse scenarios. This, 
ultimately, will increase average access time for memory 
operations, which will degrade system performance. 

C. End-to-end deadlock 

In cache coherent systems, split-transactions are necessary 
in order to achieve minimal performance requirements. In a 
memory transaction, a chain of messages, each one with a 
different purpose or nature, could be involved. For example, in 
a simple request-reply protocol, such as the one employed in 
Dash [24], two classes of messages can be identified: request 
commands and data responses. In more advanced protocols, 
such as Quick Path Interconnect [17], there are six types. This 
characteristic has to be considered during the network design 
process in order to guarantee system correctness.  

In cache coherent CMP (cc-CMP) systems, the routers are 
connected to coherence or memory controllers. Those 
coherence controllers have a limited capacity to store pending 
memory transactions. In order to process some transactions, the 
controller needs to generate additional network messages (a 
reply generated for a request message is the basic example). If 
this “reply” buffering is exhausted, there is no way to drain 
additional “request” messages from the network, and a cyclic 
dependency involving two different controllers could be 
generated, permanently blocking message advance. This 
anomaly is known as message-dependent deadlock [35] and it 
has been widely studied in cache coherent systems since the 
initial cc-NUMA prototypes [24]. 

The most common and cost effective solution to this 
problem is to use virtually separated networks for each class of 
messages [17]. Thus, request and reply messages do not share 
network resources and the cyclic dependency generated at 
controllers is broken. This solution is used extensively not only 
in cc-CMP but also in application-specific systems where 
application traffic is reactive, including peer-to-peer streaming 
or slave locking [31][36]. Dividing network resources among 
message types means that network traffic seen by different 
resources could have distinct characteristics. For example, the 
traffic from the virtual network of L1-miss requests never 
moves from LLC Layer to Core-L1 layer, because the message 
source always belongs to the Core-L1 layer. 

IV. NOC SUPPORT FOR COHERENCE PROTOCOLS IN 3D-

STACKED CMPS 

On-chip cache levels distributed among different 3D layers 
combined with broadcast-based coherence protocols lead to a 
scenario where network traffic presents specific features. As 
we have described in the previous section, different congestion 
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levels in each layer and additional correctness requirements 
due to the reactive traffic nature determine traffic shape. In this 
section we will analyze in more detail certain traffic aspects 
derived from these features and explain how to combine them 
with network design decisions in order to improve system 
performance. 

A. Message Class-Aware Routing in a 3D-stacked CMP 

In those networks where deterministic routing is employed, 
the common assumption is that every message in the network 
progresses following the same policy. However, as end-to-end 
deadlock avoidance precludes the utilization of different virtual 
channels (reserved for different message types), each one could 
employ a different routing policy without causing routing-
induced deadlocks. The only condition to ensure correctness is 
that each individual routing protocol must be deadlock free. In 
those cases where a uniform distribution of network traffic is 
common, the utilization of different routing protocols might 
not mean substantial performance differences. However,  in our 
case, where traffic density is highly dependent on Z position, 
the combination of different policies can lead to significant 
performance benefits. 

Due to the implementation cost constraints, the most 
extended routing protocol in the NOC environment is 
Dimension-Ordered Routing (DOR) [9]. In a 3D memory-on-
logic CMP, forcing every message to follow the same 
dimension order could lead to situations where part of the 
messages could be unnecessarily delayed due to network 
congestion. To explain this, we will assume that every network 
message is routed with the following dimension order: X-Y-Z. 
Every time a L1-Miss occurs, a request must be sent through 
the network in order to obtain the missing block. A request 
message is sent to each private L1 controller as well as to the 
L2

1
 bank where data might reside. In a configuration like the 

one in Fig. 1 this means that 16 messages are generated, the 
destination of 15 of them is in the Core-L1 layer and only one 
message is sent to the LLC layer. In those cases where L1 miss 
rates are significant, network resources belonging to the L1-
Core layer will rapidly become congested. As messages sent 
out to the LLC are also forced to move through the X and Y 
dimensions first, their delay will be significantly increased due 
to congested resources before moving to the Z dimension. 

 

Fig. 3. (a) Different dimension-order routing according to source-destination 
pair. (b) Message missrouting due to L1-Core layer congestion. 

                                                           
1
 We will assume two levels of cache in the on-chip hierarchy, 

so we will employ indistinctly the term LLC and L2 cache 

A straightforward solution to this problem would be simply 
to interchange the order in which dimensions are traversed, 
moving from X-Y-Z to Z-X-Y. However, if this change is 
applied to every message type, the problem is not solved. If we 
firstly move request messages to the Z dimension, LLC 
requests avoid the congestion at L1-Core layer, but in this case 
reply messages from a LLC Bank to a L1 cache will suffer L1-
Core layer congestion unnecessarily.  In the previous case (X-
Y-Z), replies only employ X-Y links from LLC-Layer, 
performing their last hop in Z dimension to reach their 
destination in L1-Cache Layer. Moving routing protocols to Z-
X-Y, we are forcing replies to traverse most of the network 
through the most congested layer, increasing latency and 
congestion in that layer. 

Supported by VC separation, a solution to this problem is to 
employ a different routing protocol depending on the source-
destination pair of the messages belonging to that virtual 
channel. The way to decide the routing for a virtual channel is 
decided as follows: 

 If Source is in congested layer and Destination is in free 
layer then Routing=Z-X-Y. 

 If Source is in free layer and Destination is in congested 
layer then Routing=X-Y-Z. 

 In any other case routing selection is not relevant. 

In the case of the broadcast-based coherence protocol this 
means that the virtual channel devoted to requests caused by 
L1 misses will be routed in Z-X-Y order. In this virtual 
channel, the message destination can be in either layers, but the 
source is always in the L1-Core layer. In contrast, any reply 
from LLC to an L1 Cache (routed through a different virtual 
channel) will make use of the opposite dimension order. This 
kind of reply is always generated in the LLC layer and the 
destination is in the L1-Core Layer. An example of this 
message-dependant routing is depicted in Fig. 3.a. Other 
messages such as LLC requests to main memory, where source 
and destination are in the same layer, can be routed with any 
dimension order, because they do not make use of the Z 
dimension. 

The hardware overhead required to implement per-VC 
routing is minimal. For a fixed topology and routing strategy, 
algorithmic routing is often more efficient in terms of area and 
latency [9]. Inside the router, a circuit accepts information 
concerning direction and distance for each dimension and 
generates a vector indicating which outputs advance the packet 
to destination. A secondary circuit selects the appropriate 
output from the vector according to routing policy. The only 
additional logic required must modify output selection in order 
to consider message virtual channel to calculate destination 
vector. A few gates are enough for the implementation, which 
makes the area/latency/power overhead negligible. 

B. Congestion-aware missrouting 

The previous solution is applicable to those messages that 
change layer, but there is still a significant amount of traffic 
traveling only in the X and Y dimensions through the 
congested L1-Core layer. In the case of a broadcast-based 
coherence protocol, such as the one employed here, this traffic 



corresponds mainly to the L1-miss requests that ask for the 
data from the private cache levels of the rest of CMP cores. 
With a Dimension-Ordered routing policy these messages will 
not be able to take advantage of the under-utilized resources of 
the LLC Layer. 

In this case, we will exploit another feature of this 
coherence protocol, which is the non-utilization of certain 
routing directions in a given virtual channel. We will take the 
L1 broadcast requests as an example. In this case, all source 
routers are placed in the same layer (L1-Core), while 
destinations can be found in any layer. This means that this 
kind of messages makes use of the X-Y links in both 
dimensions, but only employs the Z links to move from L1-
Cache to LLC layer (ZDOWN in Fig. 3.b). A message through 
this virtual channel never moves from an LLC to a L1 cache, 
eliminating ZUP→X or ZUP→Y turns from message routes. 

This traffic characteristic allows us to perform non-minimal 
routing (i.e. misrouting) under certain conditions without 
causing a routing deadlock. The only condition that must be 
fulfilled by non-minimal routes is to eliminate any cyclic 
dependency among network resources [10]. We will make use 
of this feature to misroute to LLC layer those request messages 
moving through the L1-Core layer that find congested 
resources. The mechanism is simple and can be easily 
explained through the example in Fig. 3.b. In any L1-Core 
layer network router, any time a packet arbitration for a X or Y 
link is rejected, the ZDOWN link is also requested. If the ZDOWN 
link is granted, the message is misrouted to the lower layer. 
From this moment, the message advances following an XY 
route through the LLC layer until reaching the router just 
below its destination. The final hop in the ZUP direction returns 
the message to the upper layer and to its destination router. 
Thus, the pressure on congested links is relaxed, and network 
resource utilization will be more uniform. 

As mentioned before, the way to guarantee that this new 
routing is deadlock free is avoiding ZUP→X or ZUP→Y turns. 
This is achieved by only letting misrouted messages return to 
their original layer once they have consumed the X and Y 
dimensions. The last hop is performed following a ZUP link and 
the message reaches its destination, always requesting the 
consumption port and eliminating the possibility of cyclic 
dependencies. 

Again, the hardware overhead to implement misrouting 
functionality is minimal. In this case, those messages that have 
not been misrouted (one bit at header indicates this) and that 
belong to the requested virtual channel activate two outputs 
from the destination vector, the one corresponding to 
conventional DOR and ZDOWN. Then a double request is 
performed to arbitration logic. If the conventional port is not 
granted but ZDOWN is, the Z distance is updated and the 
message marked as misrouted. Once a message is marked, only 
conventional DOR requests are generated. Since the vertical 
distance is very short, energy or delay penalization of this 
misrouting would be minimal. 

C. Critical Flit First 

Processors usually need one word of a block at a time. In 
order to make the L1 load miss latency independent of block 

size, most processors employ strategies to avoid waiting for the 
full block to be loaded before restarting the processor. A well-
known technique, named critical word first (CWF), requests 
the missed word from memory in first place, sending it to the 
processor as soon as it arrives. The processor continues 
execution while the rest of the words in the block are being 
filled into L1 cache. 

As network messages are normally broken into smaller 
pieces due to the limited on-chip bandwidth, this block re-
ordering could be implemented by communication components 
with very low overhead. In the first place, L1 Load misses 
must indicate, in request messages, where the missed word is in 
the block. In those cases where the memory address of a miss 
already specifies the word offset inside the block, the word 
position in the block can be inferred from the address directly. 
According to the position, the flit in which this word would 
reside with conventional ordering is calculated. This flit 
number is the information coded in the request message header, 
requiring only log2[flit-number] bits to encode it. Once the 
LLC or Memory controller provides the network interface with 
the missing block, this flit number is employed to rotate flit 
position in the network message, putting the one with the 
critical word in the first place. The reply message only needs to 
carry information about the original position of the first 
message flit. The same number of bits as in the request 
message is required to encode this information. After reaching 
the destination, this additional flit is detected by the network 
controller, forwarding the flit to the cache controller before the 
whole packet is re-assembled. 

As re-assembling hardware is a necessity in network 
interfaces (i.e., coherence controller), the implementation of flit 
re-ordering at this point reduces the logic overhead required, 
reducing the complexity of the finite state machine in the 
coherence controllers. In an environment where low 
communication latencies are essential and on-chip bandwidth 
is usually not enough to move a whole block at a time, this 
mechanism can have a significant effect.  

V. EVALUATION 

The framework employed for evaluation allows us to 
perform full-system simulation with complex workloads 
running on top of the Solaris 10 O.S. The simulator is based on 
SIMICS [27], extended with different modules capable of 
faithfully modeling the architecture of the cores and the 
memory hierarchy. GEMS [29] provides detailed timing 
models for state-of-the-art processor (OPAL) and memory 
hierarchy (RUBY). GEMS module for interconnection network 
simulation have been replaced with TOPAZ [1], which models 
network architecture accurately and allows the simulation of 
3D topologies. 

The main parameters of the simulated system are shown in 
Table 1. The simulated CMP has 16 aggressive OOO 
processors with static shared S-NUCA L2. The system layout 
uses a 3D Mesh to connect the 16 cores and 16 L2 banks. The 
cores operate at 4GHz and the memory subsystem at 2GHz. 
The selected protocol was a well-known snoop coherence 
protocol (Token B) [28] with six different message types, 
because commercial products such as AMD’s Hypertransport 
[6] or Intel’s QPI [17] employ protocols with similar 



characteristics and requirements. The workloads used in this 
study, listed in Table 2, are multi-threaded; four commercial 
and five scientific programs. The numerical applications are 
part of the NAS Parallel Benchmark (OpenMP 
implementation) [20], while the commercial benchmarks 
correspond to the Wisconsin Commercial Workload suite [5], 
released by the authors of GEMS in version 2.1. 

Table 1. Main parameters of the simulated system. 
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3 cycles / 10 flits per VC / 
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A. Performance Results 

The results of the graphs in this section are obtained 
through a variable number of runs for each application with 
pseudo-random perturbation (adding a small random delay to 
each memory access) in order to estimate workload variability 
[5]. All the results provided have a 95% confidence interval. 
The y axis represents execution time values, normalized against 
the baseline case where no optimization is applied to the 
communication substrate. 

Table 2. Workloads considered for evaluation 

Benchmark Description 

Wisconsin Commercial Workload Suite 

Apache Task-parallel web server 

Jbb Java middleware application 

Zeus Pipelined web server 

Oltp Pseudo TCP-C on-line trans. processing 

NAS Parallel benchmark 

FT 3-D partial diff. eq. solution using FFTs 

IS Integer sort 

SP Scalar Pentadiagonal solver 

MG Multi-grid on a sequence of meshes 

LU LU solver 

The results in Fig. 4 represent the performance 
improvement obtained when the first of the proposed 
improvements is applied. The OPT-RTG column represents the 
results obtained when the contention-aware dimension order is 

applied according to the source-destination pair of each virtual 
channel. In this particular case, normal and persistent requests 
are routed in Z→X→Y order (virtual channels 1 and 6) and 
replies in X→Y→Z order (virtual channel 5). The rest of the 
virtual channels only move through one layer, the order being 
irrelevant. The performance benefits are strongly dependent on 
the congestion levels reached in the L1-Core cache Layer. In 
the case of those transactional applications where network 
traffic is low, benefits are less than 5% performance 
improvement. However, demanding applications such as FT or 
SP can benefit more from this simple optimization, reducing 
execution time by 25% in the case of the FT application. The 
average value strongly depends on the mix of applications 
selected. For our two benchmark suites this value is ~6%, 
which is a significant result for an almost cost-free 
modification. 

 

Fig. 4. BASE-normalized execution time. Traffic-Aware Routing results. 

  

Fig. 5. BASE-normalized execution time. Congestion-aware missrouting 

results. 

Fig. 5 represents the results obtained when message 
misrouting through LLC layer is applied to CMP network 
traffic. In this case, we obtain a similar tendency as in our 
previous set of results, the performance benefits being more 
significant for more network-demanding applications. 
However, the improvement is less for this mechanism. The 
reason for this result is the latency overhead induced by 
misrouting. Every time a message is misrouted, it is forced to 
traverse a longer path to its destination. These messages must 
traverse two additional routers and two additional links 
compared to messages following a minimal route. In our 
particular case, with a 4x4 mesh topology, a router pipeline of 
3 cycles and a link delay of 1 cycle, this means a base latency 
overhead of more than 20%. Even with this handicap, none of 
the applications evaluated has obtained worse performance 

0.6 

0.7 

0.8 

0.9 

1 

OLTP ZEUS APACHE JBB IS LU FT SP MG GMEAN 

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

 

BASE OPT-RTG 

0.6 

0.7 

0.8 

0.9 

1 

OLTP ZEUS APACHE JBB IS LU FT SP MG GMEAN 

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

 

BASE MISS 



results than the BASE implementation. In cases such as JBB, 
APACHE or MG, the improvement is negligible, but again 
other applications are able to improve their execution time. It 
should be noted that these performance improvements have 
been obtained by very simple modifications in the network. 

Finally, we have also performed a third experiment 
analyzing the impact of flit re-ordering in order to avoid 
message spooling latency in load misses. While previous 
results have been obtained for 128-bit links, in this case we 
have employed two different link widths for our evaluation, 
128 and 64-bit wires. Depending on link width, reply messages 
containing a cache block must be broken into a different 
number of flits. For a 64-Byte block, 5-flit messages will be 
necessary for 128-bit links and 10-Flit for 64 bits (or using 128 
byte blocks with 128-bit wires). Results for these two message 
lengths are shown in Fig. 6. The first noteworthy aspect is the 
big difference between 5 and 10-Flit results. In the first case 
benefits extracted from flit re-ordering are minimal, while 
results for 10 flits are completely different. Spooling latency of 
5-Flit messages seems to be insignificant compared to network 
and contention latencies, which minimizes benefits. However, 
it seems that the benefits of spooling avoidance rapidly become 
significant as message length increases. As can be seen, for 10-
Flit messages we are able to obtain a 10% performance benefit 
on average. Therefore, this should be taken into account if the 
relationship between cache block size and the width of the 
network links is modified. Note that we are using a 
conservative 3-cycle router pipeline. Using a single cycle 
pipeline [30], the results would be much more relevant. 

 

Fig. 6. BASE-normalized (independently for each message size) execution 

time. Critical Flit First results.  

B. Putting it all together 

The previous section provides some insight into the effect 
of each technique on overall system performance. For this final 
experiment, we have included all the mechanisms proposed in 
this work in the same router micro-architecture, comparing it 
against the baseline case. The final set of results is shown in 
Fig. 7. Average values show a performance improvement of 
10% in the case of 5-Flit reply messages, while this 
improvement grows to 20% when network link width is 
reduced from 128 to 64 bits. Applications with large 
communication demands can obtain significant performance 
benefits from the solutions proposed in this work. With a 
minimal overhead, we have been able to halve the execution 
time of the FT application. Even in those cases where network 

pressure is less relevant, benefits are still extracted from 
protocol-aware routing and flit re-ordering. 

 

Fig. 7. BASE-normalized (independently for each message size) execution 

time results. All mechanisms together. 

The main reason for these results is the more efficient 
utilization of network resources. Through a more intelligent 
routing policy we are able to distribute traffic volume in a more 
uniform way. To prove this, we have measured the link 
utilization in each layer for both BASE and FINAL 
configurations. In the results presented in Fig. 8, the y-axis 
represents the fraction of time that the links of each layer are 
occupied by a message in transit. It can be seen that the routing 
techniques proposed in this work are able to reduce the initial 
difference in link utilization, partially reducing the pressure 
exerted on L1-Core layer. 

  

Fig. 8. Fraction of time network links are busy in each layer. (above) BASE 

configuration, (below) FINAL configuration. 

VI. CONCLUSIONS AND FUTURE WORK 

We present a set of network enhancements that take 
advantage of 3D stacking properties in order to improve cache 
coherent CMP performance. Through these solutions, network 
resources are utilized more efficiently, distributing protocol 
messages among the different network layers. With a 
negligible hardware modification, the router is able to 
implement per-virtual channel routing policies and also miss-
routing strategies that help to alleviate congestion in the L1-
Core CMP Layer. Results show that for some real applications, 
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our proposals can improve overall system performance by up 
to 48%. 

This paper has provided a set of routing modifications 
favored by protocol peculiarities. Different strategies, such as 
adaptive routing policies, could be evaluated for this 
environment, analyzing whether the improved performance 
outweighs the increased coherence protocol complexity by 
eliminating the restriction of in-order delivery. Finally, special 
routing features could also be implemented with an alternative 
final target to performance, such as temperature control, a first 
order design constraint in three-dimensional environments. 
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