
Reducing the Interconnection Network Cost of Chip Multiprocessors

Pablo Abad, Valentín Puente, José Ángel Gregorio
Universidad de Cantabria

{abadp, vpuente, monaster}@unican.es

Abstract

This paper introduces a cost-effective technique to

deal with CMP coherence protocol requirements from
the interconnection network point of view. A
mechanism is presented to avoid the end-to-end
deadlock that arises from the dependency chains
created at the network interfaces between the different
message types handled by coherence protocols. Our
proposal is designed to guarantee a fraction of end-to-
end bandwidth for the highest priority messages and
makes it unnecessary to employ several virtual
networks or complex mechanisms for dealing with the
limited capacity of the endpoint buffers. The presented
approach uses the Rotary Router as its starting point,
extending the original mechanism for the routing-
dependent deadlock to the message-dependent
deadlock. We also propose a solution that guarantees
point-to-point message ordering in this router, which
is a common requirement in some coherence
protocols. Results for synthetic and parallel
applications show that the proposal improves the
performance of previous solutions with a much lower
hardware cost.

1. Introduction

CMP systems usually assume the presence of some
cache coherency mechanism in order to guarantee the
communication between processors via shared-
memory. The coherence protocol keeps caches
transparent to the software, guaranteeing the coherence
invariants at each cache block.

In order to ensure coherence invariants, each
memory controller must react to each coherence
transaction received from the processor or network, in
some situations sending new messages to other
controllers in the system. In consequence, a hierarchy
of protocol messages must coexist in the network. The
reactive nature of these different types of messages and
the limited capacity of consumers can generate end-to-

end deadlock. When a particular class of messages
overflows the consumption queue in a node, the
progression of subsequent actions at the memory
controller cannot be guaranteed because the network
cannot guarantee the delivery of the associated
messages. The solutions for this problem vary from
routing each network-traffic class through different
virtual [14] [20] or physical networks [10]; extending
the end-point queues into a main memory buffer [3];
employing some deadlock detection-recovery
technique or a combination of detection and avoidance
based on virtual networks[21][9]; or even, providing
enough buffer space in each node’s network interface
message queues to hold at least as many messages as
can be supplied, as in [22]. Today, the most common
technique for dealing with this problem in CMP
systems [19] or system level multiprocessors [14] is to
employ different virtual networks for each kind of
traffic. To be conscious of the cost of this technique,
let us focus our attention in the Alpha 21364 router
[14]. This router employs adaptive routing in a bi-
dimensional torus network, which requires three
virtual channels per physical link in order to avoid
routing deadlock [7]. In addition, the coherence
protocol employed requires seven different classes of
messages, which makes it necessary to employ seven
different virtual networks. In the end, the router
employs 19 virtual channels per physical link. This
configuration requires separate buffering and signaling
for each channel, besides an increment in the
arbitration cost even with a multiplexed crossbar. This
might not be a problem in system level multiprocessor
systems, such as the Alpha 21364, but it clearly is for a
CMP system. In a CMP, this approach requires an
extremely small buffer size if the implementation has
to be feasible in terms of silicon area.

In this paper, we propose an effective solution for
this problem, with an almost zero implementation cost.
Starting from the Rotary Router [1], the proposed idea
extends the originally designed to avoid routing
deadlock to avoid also message-dependent deadlock.
The idea is based on restricting the amount of

resources available per router for each kind of traffic.
The solution does not need to increase neither the
number of virtual networks nor buffering resources of
the original router, and it requires only some slight
modifications in control logic. In contrast to
conventional solutions, our idea allows a better buffer
utilization. Thus, the implementation cost is reduced
and the router performance could be improved.

Moreover, in some protocols, consecutive messages
between two different controllers must arrive at their
destination in the same order as they enter the network.
This requirement is referred to as in-order delivery or
point-to-point order. For example, in token coherence
protocol, persistent request deactivation must arrive at
destination after the activation [13]. In other situations,
maintenance traffic must follow a predefined path from
origin to destination [14][20]. The percentage of
messages that must follow that order is extremely low
and usually this is not a difficult problem.
Deterministic routing solves this problem by
construction, as the path between any origin-
destination pair is fixed. In the adaptive routing case,
the messages that require point-to-point ordering could
be tagged at origin and the use of adaptive resources
disallowed. Unfortunately, for the Rotary Router the
solution is not so straightforward. The inherent
buffering scheme makes it hard, at first sight, to
achieve point-to-point ordering. However, we have
found that it is possible to ensure that order with little
effort and with low performance impact by restricting
network resources availability combined with a port-
to-port bookkeeping system.

The rest of the paper is organized as follows:
Section 2 summarizes the operating mode of the
Rotary Router. Section 3 explains the solution
proposed to avoid message-dependent deadlock.
Section 4 shows how the Rotary Router is capable of
guaranteeing in-order delivery. Section 5 presents the
performance results and, finally, Section 6 states the
main conclusions of the paper.

2. Previous work

A router architecture able to deal with most of the
requirements of CMP interconnection networks was
proposed in [1]. The Rotary Router completely
removes centralized structures, such as global arbiters
or crossbars, is fully adaptive, and avoids the Head Of
Line Blocking (HOLB). In addition, the Rotary Router
is able to deal with some important requirements
imposed by CMP environments, such as higher wire
availability [4] and power and area efficiency. The
capability to make such optimizations comes from the

way packets are moved inside the router. The
operation of the Rotary Router is based on two internal
rings where packets circulate in opposite directions,
looking for a suitable output port. This movement
simplifies output arbitration and reduces contention.
An outline of the Rotary Router can be seen in Figure
1. The router is built through the replication of three
different structures named Input Stage, Output Stage
and Buffering Segment Stage. Packets enter the router
through the Input Stage, where pre-routing decisions
are made. Additionally, the ring in which the packet
will circulate is chosen depending on both the path to
the closest profitable output port and the ring
occupancy. After header update, packets start moving
towards their output port through the Buffering
Segment Stage. This stage is made up of Dual-ported
FIFO Buffers (DFB) interconnected forming two
independent rings and connected to each input and
output port. Once a packet reaches a buffer connected
to a profitable output port, there are two possible cases:
i) if the packet loses arbitration, it will keep on
circulating the ring until reaching another profitable
output port; ii) if arbitration is won, the packet will
move to that Output Stage of the router. This stage is
in charge of sharing the only physical link between the
packets coming from the two buffer rings.

FIFO
Buffer

Multiplexer

FIFO
Buffer

Demultiplexer

Injector

Consumer N

S

E

W

INPUT
STAGE

OUTPUT
STAGE

Dual-Port
Fifo Buffer

BUFFERING
SEGMENT

STAGE

Figure 1. Rotary Router Sketch

Rotary Router avoids deadlock for any network

topology, and performs adaptive routing without
virtual channels. Different flow controls are applied to
packets entering a buffer ring from a transit port or
from an injection port. Control applied to in-transit
packets limits the number of packets that can be in the
router rings simultaneously, avoiding deadlock
appearance inside the router. Control applied to

injection ports guarantees the existence of enough
holes in the network to move packets between nodes,
which, added to the capacity of packets to do miss-
routing, makes the network deadlock free. A formal
proof of this claim can be found in [23].

The Rotary Router has proved to perform better
than more classic structures as part of a CMP
interconnection network. The performance advantage
and power efficiency of this router is clear. However,
for the performance study carried out in [1], for the
sake of simplicity, message dependent deadlocks were
solved by the network interface assuming unlimited
storage capacity at consumption queues. In-order
delivery was unnecessary in the evaluation framework
employed. These assumptions do not invalidate the
performance and energetic efficiency achieved, but for
a practical usage of Rotary Router, these issues must
be addressed.

3. Message-Dependent Deadlock

In a CMP cache coherence protocol, the messages
involved in a memory transaction depend one upon the
other, because the generation of some message types is
a consequence of the delivery of other types. For
example, when a cache controller sends a message
requesting a cache line, this causes at least the answer
from another cache controller providing that block.
Therefore, there is a second message subordinate to
the first one. This relationship is known as the message
dependency chain [21]. This dependency between
messages can cause the appearance of a deadlock other
than the routing deadlock. This new kind of deadlock,
known as message-dependent deadlock or end-to-end
deadlock, appears at the endpoints of the
interconnection network because of the limited
capacity of the consumption queues. As a simple
example, consider an interconnection network with a
request-reply protocol. If an application exhausts
network resources with request messages due to
consumption queue overflow, reply messages will not
be able to make progress, stopping the processing of
pending requests at consumption queues and blocking
therefore traffic advance. This cyclic dependency
could lead to a message deadlock. Coherence protocols
will have deeper dependencies among messages
(longer dependency chains) than a request-reply
communication protocol, because depending on the
state which a cache line is in, different operations will
be performed in order to read/write the data. As an
example, the communication protocol in [14] has a
dependency chain of seven messages, which means
that some operations need seven messages to complete.

Most of the previous methods used to avoid
message-dependent deadlocks are mainly based on the
replication of traffic paths via the inclusion of extra
hardware resources, such as extra virtual or physical
networks able to break resource and message
dependencies [6][9][14][20]. Different message types
travel through different hardware resources. This way,
different message1 traffics never can block each other.
The complete avoidance of message-dependent
deadlocks requires a number of replications equal to
the dependency chain length. The additional hardware
resources increase network area and arbitration
complexity and obviously, this could have a significant
performance and cost impact. In fact, in some real
machines, like the SGI Origin 2000, with the aim of
reducing the number of necessary virtual networks
imposed by the protocol, a detection-recovery
technique is employed to reduce the three virtual
networks imposed by the protocol to only two. In other
cases, like the solution adopted in the Alpha 21364
router where seven virtual networks are employed
solely for the purpose of eliminating this anomaly, the
importance of the problem can be clearly appreciated.

Fortunately, the special Rotary Router
characteristics, summarized in the previous Section,
provide the opportunity to deal with this problem
without requiring extra hardware resources. This
technique can only be applied if the buffering strategy
allows packet overtaking inside the router, as occurs in
the Rotary Router.

3.1 End-to-end Deadlock avoidance for Rotary
Router

The Rotary Router is free of Head of Line Blocking
because a blocked message cannot indefinitely delay
the access of other messages to an available output
port. The same property, adequately employed, will
allow us to avoid message-dependent deadlock without
hardware replication. This method, named as filling
control, is explained below.

It could seem that in order to reserve exclusive
buffering resources for each message type the Rotary
Router would need the inclusion of two additional
DBF rings per type. But it is not the case. To avoid
buffering replication, every message type is forced to
move through the same buffering space, and message
advance is guaranteed through the control of the
cumulative amount of resources used in all the

1 As we are employing cache coherent protocol, each message is
composed of just one packet (a command or a command plus a cache
block) and consequently we will indistinctly employ the terms
“message” or “packet”

buffering space. The filling control method does not
supervise the buffers used by a message type, but
rather the fraction of the whole buffering resources in
use. The amount of buffering used by each message
type will be limited, in accordance with the priority of
the traffic. Each subordinate message is able to occupy
a bigger portion of area than its predecessor. The top
class or terminating class of traffic will be able to
utilize all the buffering space in the network, with the
exception of the resources required to guarantee that
the network is routing-deadlock free. This way, every
time a message tries to access any buffer ring, the
number of messages which are already in both router
rings is checked. If this number is below the limit
imposed for a particular message type and router input
port, the message is allowed to enter the ring.
Otherwise, the message must wait until the necessary
amount of buffering resources becomes available.

Let us explain the method with an example. Assume
we have a protocol with four different message types,
m1, m2, m3 and m4, being m1 the first message type in
the dependency chain and m4 the terminating one.
Filling control will restrict the first message type m1,
only allowing it to fill up to 25% of a router’s
buffering resources. When a router exceeds this limit,
the situation is communicated to the injector and to the
neighboring routers, through specific stop protocol
lines. From that moment, no more m1 messages are
allowed to enter in the router from any input port
(injection or transit). m1 subordinate messages (m2)
should be able to advance even if m1 messages are
stalled due to an overflow of m1 at any consumption
queue. In a similar way, m2 should not be allowed to
occupy the whole buffering space, because there are
still two kinds of messages with higher priority. For
this reason, it is safe for m2 messages to make use of
up to 50% of ring buffering. The limit for the third
message type will rise 75%, and finally, the
terminating message type will be the only one allowed
to make use of 100% of buffering resources
(obviously, this 100% does not include the buffering
resources needed by the routing-deadlock avoidance
method). Terminating messages do not generate new
messages, therefore they will not block any other
message.

However, applying the same occupancy limits to
injection and in-transit ports could give rise to
deadlock situations. For instance, if every router in the
network reaches the limit to inject m1 messages
simultaneously, this class will not block subordinate
messages, but it will not be able to advance. To
circumvent this situation, a solution equivalent to the
one used in routing-deadlock avoidance mechanism
has been adopted. In order to reach a situation in which

every router in the network has reached its limit to
inject m1 messages, last messages must come from an
injection queue (in-transit queues move messages
between routers, but do not increase the total amount
of messages in the network). Applying a harder limit to
injection queues we ensure that we will never reach the
situation described before. This way, in a worst case
scenario at least one of the routers will have an
occupation level lower than the limit for m1 messages.

Notice that this limit difference must be applied to
each message type independently. For example, if we
had a network with two message types (m1 and m2) and
a router capacity of N messages, in-transit queue limits
will be N/2 for m1 messages and N for m2 , while
injection queue limits will be N/2-δ and N-δ. The δ
extra holes generated by the method avoid blocking
situations.

The filling control mechanism does not require
data-path replication to deal with message-dependent
deadlocks, but some control logic needs to be added.
This mechanism has to be applied both to the messages
in transit through the network and to the messages
injected from a coherence controller. For this reason,
this flow control has to be handled by a centralized
structure per router. This structure, made up of a
counter for each message type, will be in charge of
sending stop signals to the injector and to the
neighboring routers. Counters update is performed in
two phases; first, every new message entering the input
stage or at the injector will be checked and the
appropriate counter will be incremented. This
operation is performed in parallel with the pre-routing
and ring selection process. In the second phase,
packets leaving the router rings are also checked, and
counters decremented. This operation is performed
when the message is in the output stage. Once every
counter has the proper value, flow control signals are
generated and sent to the injector and neighboring
routers. These control signals are processed by the
control logic of the DFBs in the neighboring router in
order to make the message advance inside the ring or
to the next router.

It should be noted that this approach requires a
modest amount of hardware: merely one counter per
class of traffic, some modification in the DFB control
and to increase the wiring between routers with a stop
signal per message type. In contrast, conventional
solutions need to multiply the virtual channels per link
by the number of messages types. This implies
additional buffers per physical channel and complexity
increment in crossbar arbitration. Besides, independent
inter-router protocol lines per traffic class are required.

Moreover, our approach tends to favor the advance
of high order messages type, being the traffic with the

biggest advantage the terminating traffic. For a
coherence protocol, this behavior is the most desirable,
and in contrast to our router, conventional routers must
prioritize artificially the traffic at crossbar arbitration
[14], increasing its cost.

3.2 Correctness in Corner-case situations

To check the correctness of the proposal, specific
synthetic traffic tests have been developed for
emulating the environment in which message-
dependent deadlocks are likely to occur.

Basically, a reactive traffic pattern is applied to the
network and after the steady state network consumers
will be enforced to stop accepting one of the message
types, emulating the behavior of a network interface
with finite resources. From that moment, no more
messages subordinated to the type stopped will be
generated. The filling control method must guarantee
the delivery as soon as possible of the subordinate
messages which are actually in transit or waiting at
injection queues.

The main network parameters will be the same for
every simulation. The topology considered will be a 2-
Dimensional torus with 64 nodes (8×8). For this
experiment, every message-type will have a fixed
length of 5 phits. The router buffering space will be
kept constant at a value of 60 packets per router.
Traffic analyzed will be reactive with uniform
destination pattern. The simulator generates the first
message type in the dependency chain at a rate of one
phit/cycle/router. The generation of the rest of
subordinate messages is done automatically upon
completion of servicing messages at end nodes. Six
different protocols will be simulated, each of them
with a different dependency chain length, varying from
two to seven. Each protocol will be evaluated, stopping
the consumption of different message types at a fixed
simulation cycle. For every simulation, we will analyze
the throughput obtained for the last class of messages
in the dependency chain. To do so, the time the last
terminating message takes to reach its destination will
be measured. Simulations were repeated several times
with different seeds for traffic generation, and for
every simulation done, every terminating message
reached its destination. If a deadlock had happened,
some terminating messages would have never reached
their destination. The results of the experiment are
shown in Figure 2. The X-axis represents the message
type stopped for each simulation and the Y-axis
represents the throughput of terminating messages
remaining in the network, normalized to each
protocol’s total throughput. Note that while for a 7-

type protocol we can stop 6 different message types,
for a 2-type there is only one message type that can be
stopped. As can be seen in the graph, terminating
messages throughput remains constant independently
of the message type stopped. As the protocol has a
higher number of message types, less buffering space
is assigned to each type and obviously terminating
traffic will have lower throughput, but every message
belonging to the highest priority type arrives at its
destination.

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7

Message type blocked

T
er

m
in

at
io

n
g

 m
es

sa
g

es
 T

h
ro

u
g

h
p

u
t 2 MSG TYPES 3 MSG TYPES

4 MSG TYPES 5 MSG TYPES

6 MSG TYPES 7 MSG TYPES

Figure 2. Terminating messages throughput
when consumers of intermediate message

classes are artificially blocked

4. In-Order delivery support

Some memory coherence protocols or maintenance
tasks require in-order delivery support for a small
fraction of the network traffic. Fulfilling this requisite
is extremely simple for input buffered routers. A
specific routing algorithm can be applied to ordered
messages, forcing them to follow a fixed path to
destination. As the buffers in this type of routers do not
allow packet reordering inside each router, in-order
delivery will be guaranteed. The Rotary Router can
forward packets between different router buffering
elements, which imply a chance of reordering.
Consequently, in the Rotary Router some special
actions need to be taken to ensure the correct order at
packet delivery.

The routing deadlock avoidance mechanism in the
Rotary Router is based on the ability of packets to be
miss-routed and on the injection restriction. In-order
messages cannot make use of that approach, so they
need a different methodology to avoid routing-
deadlock. As the Rotary Router does not divide
network resources into multiple virtual channels, the
routing algorithm chosen for in-order messages has to
be deadlock free when no virtual channels are
available. We could guarantee in-order delivery for
that traffic if the network resource availability is

restricted to a sub-topology. Although the Rotary
Router is topology agnostic, in this work we will
assume a suitable topology for CMP systems, such as
bi-dimensional torus. Under these circumstances, it is
enough that the in-order messages do not make use of
the wraparound links and that they must be routed
following a strict dimension order, to guarantee
deadlock freedom for in-order traffic. Although sub-
optimal, in general it is possible to keep the in-order
delivery implementation topology agnostic, employing
up/down* routing algorithm.

In an input buffered router, messages traveling in
opposite directions of the same dimension use
independent resources. However, in the Rotary Router
every direction and dimension can share the buffering
space (originally, there is no restriction to using both
internal rings). This could produce a deadlock between
two neighboring routers if a router is full of in-order
traffic and all the messages try to advance towards a
neighbor where the same situation is happening. To
avoid this circumstance, the two buffer rings inside the
Rotary Router will be used for in-order traffic flowing
in opposite directions. The selection of the router ring
in which a packet will advance will be based on the
packet direction. Packets traveling in opposite
directions will make use of different rings, never
sharing the same buffering space. This way, this kind
of deadlock is avoided because no cyclic dependences
between buffers will occur.

Under the above conditions, it can be ensured that
packets with the same source and destination will
advance through the same path. But we still need to
ensure that packets do not change their order while
moving inside the buffer rings of the routers. A
mechanism based on table lookup is proposed for this
purpose. The operation of this mechanism is shown in

Figure 4. Each input stage will hold a small table with
the order value (named exit index) for each output of
the router. Once pre-routing is computed and it is
determined that the packet is tagged for in-order
delivery, the table value corresponding to the
profitable output port is copied to the header of the
packet, and the value in the table is incremented by one
unit. This value at the header of the packet indicates
the exit order. At every output stage, there will be a
complementary table with information about the exit
index expected for the next in-order packet that must
leave the router, coming from each input port. In this
way, when a packet is being arbitrated at a DFB, the
index at the header of the packet pi must coincide with
the value in the output stage table corresponding to the
input port where the packet came from. If both fields
match, the packet pi can leave the router ring, and the
corresponding output port table will be updated.
Otherwise, the other packet pj that entered the ring
before pi is still in the ring and consequently pi must be
kept on in the current router, and will be forwarded to
the next DFB of the ring, even when its profitable
output port is available.

Note that this ordering method does not order the
packets according to the pair source-destination, but to
their router input-output ports. This can introduce
unnecessary delay to some packets, because they have
to maintain the order with respect to packets from
different traffic flows. The main reason for applying
this method is to minimize implementation cost. If
packets are classified according to their source and
destination, table sizes will be increased in an
unsustainable way with the network size. With this
method, tables size is proportional to the number of
input ports of the router. As an example, if we have a
router with five input ports and a buffering space of 60

OUTPUT
 STAGE

Y-

X+

INPUT

BUFFERING
SEGMENT

STAGE
0

IN TABLE

NODE

Y+

Y-

X-

0

0

0

0

OUT TABLE

NODE

X-

Y+

X+

0

0

0

0

OUTPUT
 STAGE

Y-

X+

INPUT

BUFFERING
SEGMENT

STAGE

0

IN TABLE

NODE

Y+

Y-

X-

0

0

0

1

OUT TABLE

NODE

X-

Y+

X+

0

0

0

0

OUTPUT
 STAGE

Y-

X+

INPUT

BUFFERING
SEGMENT

STAGE

0

IN TABLE

NODE

Y+

Y-

X-

0

0

0

2

OUT TABLE

NODE

X-

Y+

X+

0

1

0

0

.
1

1

P1 header

P2 header

X+
X+

X+
X+

X+

(a) (b) (c)
Figure 3. In-order routing, with two packets from the same traffic class. (a) Entering packet p1 exit
index is updated using input table value and X+ input port (b) Input table is updated, subsequent

packet p2 exit index is updated. Exit index of p1 is compared against output table value for packet
input port, (c) p1 is allowed to leave the router, next exit index in output table is updated for X+

inputs after the message leaves the ring.

packets in the rings, we will only need ten tables with
four rows each (it is not possible for an in-order packet
to leave the router through the entering port). The exit
index on each row does not need to grow indefinitely;
it is enough to let it reach a value equal to the buffering
space (in packets). Thus, for this example each row
would only need six bits to store a maximum value of
60. Therefore, each table needed would have a size of
24 bits (30 bytes per router).

The Rotary Router was not conceived to deal with
in-order packet routing, and therefore its performance
falls when this kind of traffic predominates. For these
packets, the output port accessibility is much more
challenging than in conventional traffic, and can
produce router performance degradation for in-order
traffic. This method is only useful when in-order
packets represent a small portion of the whole network
traffic. Under this condition, the method guarantees in-
order delivery without using solutions with a higher
implementation cost. In-order packets are able to share
resources with the rest of the packets, only routing and
arbitration needs to be modified.

Note that the combination of this method with the
end-to-end deadlock avoidance mechanism is not
completely orthogonal. This means that if we have in-
order traffic belonging to different classes of traffic,
we need to expand the size of the tables, maintaining
an exit index per class (the cost increment is
proportional to the number of message classes that
could require in-order delivery). Otherwise, low
priority in-order traffic can block point-to-point
ordered packets with higher priority, which can
generate deadlock. Each class of traffic must be in-
order only with packets belonging to its own class. In
most cases, the in-order traffic is restricted to only one
or a few message classes [13][14].

5. Performance Evaluation

The solutions presented for message-dependent
deadlock and in-order routing must be evaluated to see
how they affect performance. For this purpose, three
counterpart router architectures were compared against
the Rotary Router. The first one was the Adaptive
Bubble Router (BADA) [17]. This router will have
higher buffer requirements than the rest of the routers,
because it needs two virtual channels to avoid routing-
deadlock. Adaptive Bubble Router has proved to be a
good off-chip proposal and in fact its deadlock
avoidance methodology is used in the interconnection
network of the BlueGene/L supercomputer [2]. The
second router evaluated was the Deterministic Bubble
Router (BDOR). This router shares the same flow

control as the one above, but does not perform
adaptive routing, making unnecessary the employment
of virtual channels to avoid deadlock. Finally, the last
router evaluated (LOW-LAT) makes use of speculative
arbitration and buffer bypass to achieve a base latency
of a single cycle, similar to the router presented in
[15]. This is a deterministic router, where packets
traveling in the same dimension have a latency of one
cycle, while injected, consumed or turning packets
have to go through the whole router pipeline. As link
traversal is also made in the same cycle, in order to
achieve a reasonable cycle time this last router is only
suitable for topologies with low link lengths, such as
mesh networks. Message-dependent deadlocks are
avoided in the three routers using different virtual
channels for each message type. In-order messages do
not need special actions in the second and third routers.
For the Adaptive Bubble Router, in-order messages
will not be routed through adaptive paths. To carry out
this evaluation, no implementation based on recovery
methods for message dependent deadlock, such as
[21], was employed because this method cannot
support the in-order delivery required by the real
system evaluation carried out in subsequent sub-
sections.

5.1 Synthetic Scenario

In this first phase of the evaluation, we will show
the effect of synthetic traffic on network performance.
The tool used for this evaluation will be the
interconnection network simulator SICOSYS [18].
Two different networks have been considered for the
experiment. The topology chosen for LOW-LAT
router is an 8x8 mesh, and 8x8 torus for the rest of the
routers.

As we are trying to emulate a memory coherency
protocol, we will simulate a workload in which data
transactions are started at every injector and measure
the time required to complete a fixed number of
transactions. This will provide more useful information
about how the network will behave when making a full
system evaluation. Data transactions will be generated
as follows; the simulator generates the first message
type in the dependency chain at a rate of 1
phit/router/cycle, and subordinate messages are
generated automatically as messages arrive at their end
nodes. Messages are classified in classes and these are
numbered (starting from 1) according to their position
in the dependence chain. The packet size selected for
the experiment has a bimodal distribution, being 5
phits (128 bits links and 64+16 bytes messages) for
messages belonging to odd classes and 2 phits for
those belonging to even classes (128 bits links and 16

bytes messages). To mimic the reactive characteristic
of the traffic, destination of an odd-class message is
chosen according to the pattern traffic selected,
whereas those messages from even classes are sent
back to the sources from which the originating
messages were received.

0

1

2

3

4

5

RAND BIT-REV. MAT-TR PERM

ROTARY BADA

BDOR LOW-LAT

Figure 4. Normalized required time for

consuming 32,000 terminating messages.
The first experiment is designed to observe the raw

performance of all routers. Assuming only three
message classes, synthetic patterns Random, Transpose
Matrix, Perfect Shuffle and Bit Reversal [8] are
employed for the destination of class-1 and class-3
messages. Results have been obtained simulating the
traffic triggered by 32,000 messages (500 from each
router) belonging to the class 1 and similar buffer
capacity is assumed in each router. The BADA router
has 15 phits FIFO queues, BDOR and LOW-LAT
routers have 30 phits per FIFO. In the Rotary Router,
buffer capacity is 20 phits in DFB and 10 phits in each
one the input and output stages. In this way, the total
storage capacity per router is 320 phits in conventional
routers and 300 phits in the Rotary Router. The sizes
chosen are those where no significant improvements in
throughput were observed for larger sizes.

As can be seen in Figure 4, the Rotary Router
reduces the time required to finish every data
transaction for almost all traffic pattern analyzed. Both
adaptive routers obtain close results, the two
deterministic ones employ up to four times more
execution time in the presence of non-uniform traffic
patterns. The differences between the BDOR and the
LOW-LAT router are mainly caused by the different
network topology chosen for each router. The small
link length restriction present in the LOW-LAT router
harms its performance.

The second experiment is designed to show how
each router performs when the number of message
classes vary form 2 to 4, keeping the router storage
capacity constant at 300/320 phits. In order to meet
this requirement, we must modify the phits per FIFO to
20 (2 classes) and 10 (4 classes) phits respectively in
BADA and 40 (2 classes) and 20 (4 classes) phits for

BDOR and LOW-LAT. No change is required in the
Rotary Router storage distribution. We are considering
no implementation cost increment in any of the routers,
which is true for the Rotary Router but false in the
conventional routers, harming our proposal in this
comparison. Anyway, even without taking into account
this important fact, the performance advantage of the
Rotary Router, as it can be seen in Figure 5, is clear.
For every traffic pattern and every protocol analyzed,
the Rotary Router obtains better throughput results. In
addition, the number of message types in the network
does not affect Rotary Router performance, and
maximum throughput remains nearly constant.
Deterministic routers also maintain their maximum
throughput levels constant, but at much lower levels.
The BADA router suffers important throughput losses
when moving from 3 to 4 message types. The reason
behind this behavior is the reduction of buffer size. As
buffering space was kept constant, buffers in the
BADA are extremely small (2 packets) for a 4-types
protocol, which reduces router throughput, being even
worse than the deterministic routers in some cases.

Figure 5. Normalized Maximum Sustained
Throughput for different number of types

5.2 Real Scenario

In this section, we will show the effect of the
message dependent deadlock avoidance mechanism
and in-order packet routing under a realistic situation.
For this purpose, the complete system simulator Simics
[11] will be used, extended with the GEMS timing
infrastructure [12]. GEMS provides detailed models of
both the memory system and a state-of-the-art
processor. SICOSYS has been integrated into the
simulator GEMS, replacing its original network
simulator. The simulated system is a 16-processor

0

0.2

0.4

0.6

0.8

2 Types 3 Types 4 Types 2 Types 3 Types 4 Types

0

0.2

0.4

0.6

0.8

2 Types 3 Types 4 Types 2 Types 3 Types 4 Types

ROTARY BADA

BDOR LOW-LAT

 (a) (b)

 (c) (d)

CMP with shared S-NUCA L2 based on [5]. The
protocol, based on Token Coherence [13], requires a
hierarchy of five classes of messages to be
implemented. In this protocol, persistent request
activation and deactivations must be point-to-point
ordered. In this way, we will expose the advantages
and correctness of our proposal in terms of
performance, with a large number of message classes,
and correctness, requiring in-order traffic. Main
parameters of the simulated system are shown in Table
1.

Table 1. Main simulation parameters

The applications considered in this study are four
transactional and three scientific workloads. The server
workloads used are a Static Serving Web server
benchmark based on SURGE running on top of an
Apache web server (HTTP1) and Zeus web server
(HTTP2), SPECjbb2000 (Java), and an online-
transactions processing TPC-C like benchmark
(OLTP). The numerical workloads used are LU, FT
and IS from NAS Parallel Benchmark, using the
OpenMP implementation, Version 3.3. In all
applications, a variable number of runs are performed
with pseudo-random perturbation in access memory
times in order to estimate workload variability.

Figure 6 presents the results with expected average
execution time. The confidence interval is 95%. As can
be seen, the Rotary Router outperforms the rest of the
routers in all the applications simulated. The adaptive
and deterministic Bubble Routers obtain similar results
for every application. This means that each virtual
network is not stressed enough to take advantage of
adaptive routing. The LOW-LAT router exhibits a
very low latency under low traffic conditions. As can

be seen in some applications, especially server based
ones, it outperforms bubble routers, because of its
smaller low load pipeline length. Notwithstanding,
with other applications this router has a poor
performance. This behavior is mainly due to the
topology employed (it is the only mesh topology) and
routing simplicity. Both factors will cause a low
maximum achievable throughput. It should be pointed
out here that in the experiments carried out, the LOW-
LAT router has an unfair advantage because we are
assuming the same cycle time for all the routers. For
example, according to [1], the Rotary Router cycle
time will be approximately 20FO4 whereas LOW-LAT
router will have 35FO4 [16].

0

50

100

150

200

IS LU FT OLTP Java HTTP1 HTTP2

ROTARY BADA

BDOR LOW-LAT

Figure 6. Normalized execution time of real

workloads.
The reason behind the better results of the Rotary is

the lower latency of the protocol messages with
highest priority. Due to the special flow control of in-
transit messages in the Rotary Router, messages with
high priority advance faster, because they can occupy a
bigger portion of router buffering resources. In the
case of input buffered structures, an amount of
buffering space is fixed for each message type, so
latencies are not able to adapt to message priority. In
some cases, the advantage is close to 30% with respect
to the closest alternative.

6. Conclusions

In this work, we have presented efficient solutions
for well-known network problems. The mechanism
designed to alleviate the HOL blocking in the Rotary
Router has been extended to implement a mechanism
able to deal with message-dependent deadlocks
without hardware replication. This proposal allows us
to keep router complexity constant, independently of
the number of message classes of the coherence
protocol and we consider this to be of great importance
for current and future CMP architectures. In addition, a
solution for point-to-point ordering was presented. An

Number of Cores 16

Window Size /
outstanding req. per CPU

256 / 16

Issue Width 4

L1 I/D cache
Private, 32KB, 2-way, 64Bytes

block, 1-cycle

Direct Branch Predictor 4KB YAGS

Indirect Branch Pred. 256 entries (cascaded)

L2 cache
SNUCA, token coherence protocol,

16x16 banks, 4 per router

L2 cache bank
128KB, 16-way, 3-cycles, Pseudo

LRU, 64 Bytes block

Main Memory 4GB, 260 cycles, 320 GB/s

Command size 16 bytes

Network Topology 8×8 torus

Network Link 128 bits / 1 cycle latency

efficient mechanism able to deal with in-order
messages with few control logic add-ons has been
developed. The idea allows ordered messages to use
the same resources as the rest of message types.

Performance results from a wide range of loads
demonstrate that the mechanism used for deadlock
avoidance presents advantages over conventional
approaches. The buffer utilization of our proposal is
more flexible, which implies a performance boost and
messages with a higher priority travel faster through
the network, thus accelerating application execution
times.

7. Acknowledgements

This work has been supported by the Ministry of
Education and Science of Spain, under contracts
TIN2004-07440-C01-01 and TIN2007-68023-C02-01
and by the HiPEAC European Network of Excellence.

8. References

[1] P. Abad, V. Puente, P. Prieto, J.A. Gregorio, “Rotary
Router: An Efficient Architecture for CMP Interconnection
Networks”, International Symposium on Computer
Architecture (ISCA), 2007.
[2] N.R. Adiga, et al., “An Overview of the BlueGene/L
Supercomputer”, Supercomputing 2002.
[3] A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D.
Kranz, J. Kubiatowicz, B.H. Lim, K. Mackenzie, D. Yeung,
“The MIT Alewife Machine: Architecture and Performance”,
International Symposium on Computer Architecture (ISCA),
1995.
[4] J. Balfour, W. Dally, “Design Tradeoffs for Tiled CMP
On-Chip Networks”, International Conference on
Supercomputing (ICS) 2006.
[5] B. Beckmann and D. Wood, “Managing Wire Delay in
Large Chip-Multiprocessor Caches”, 37th International
Symp. on Microarchitecture (MICRO), December 2004.
[6] D. Burger, S. Keckler, K. McKinley, M. Dahlin, L.
John, C. Lin, C. Moore, J. Burrill, R. McDonald, W. Yoder
“Scaling to the end of Silicon with EDGE Architectures”
IEEE Computer. Volume 37, No 7, pp.44-55, July 2004.
[7] W. Dally, B. Towles, “Route Packets, Not Wires: On-
Chip Interconnection Networks”, Design Automation
Conference (DAC) 2001.
[8] W. Dally, B. Towles, “Principles and Practices of
Interconnection Networks”. Morgan Kaufmann, 2004.

[9] J. Laudon, D. Lenosky, “The SGI Origin: A ccNUMA
Highly Scalable Server”, International Symposium on
Computer Architecture (ISCA), 1997.
[10] D. Lenoski et al., “The Directory-Based Cache
Coherence Protocol for the DASH Multiprocessor”,
International Symposium on Computer Architecture (ISCA),
1990.
[11] P. S. Magnusson, M. Christensson, J. Eskilson, D.
Forsgren, F. Larsson, A. Moestedt, B. Werner, “Simics: A
Full System Simulation Platform”. Computer, Vol. 35, No.2,
pp. 50-58, February 2002.
[12] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu,
A. Alameldeen, K. Moore, M. Hill, D. Wood, “Multifacet’s
General Execution-driven Multiprocessor Simulator (GEMS)
Toolset”, SIGARCH Comput. Archit. News, Vol.33, No.4,
pp.92–99, November 2005.
[13] M. Martin, M. Hill, and D. Wood, “Token Coherence:
Decoupling Performance and Correctness”, International
Symposium on Computer Architecture (ISCA), June 2003.
[14] S. Mukherjee, P. Bannon, S. Lang, A. Spink, D. Webb,
“The Alpha 21364 Network Architecture”, IEEE Micro, vol.
22, no. 1, pp 26-35, Jan-Feb 2002.
[15] R. Mullins, A. West, S. Moore “Low-Latency Virtual-
Channel Routers for On-Chip Networks”, International
Symposium on Computer Architecture (ISCA), 2004.
[16] R. Mullins, A. West, S. Moore, “The design and
implementation of a low-latency on-chip network”, ASP-
DAC 2006
[17] V. Puente, C. Izu, R. Beivide, J.A. Gregorio, F. Vallejo,
J.M. Prellezo, “The Adaptive Bubble Router”, Journal of
Parallel and Distributed Computing, Vol. 61, No. 9,
September 2001.
[18] V. Puente, J.A. Gregorio, R. Beivide, “SICOSYS: An
Integrated Framework for studying Interconnection Network
in Multiprocessor Systems”, Euromicro Workshop on
Parallel and Distributed Processing, 2002.
[19] K. Sankaralingam et. al. “Distributed Microarchitectural
Protocols in the TRIPS Prototype Processor”, International
Symposium on Microarchitecture (MICRO), 2006.
[20] S. Scott and G. Thorson, “The Cray T3E Network:
Adaptive Routing in a High Performance 3D Torus”, Hot
Interconnects IV, August 1996.
[21] Y.H. Song, T.M. Pinkston, “A Progressive Approach to
Handling Message-Dependent Deadlock in Parallel
Computer Systems”, IEEE Trans. on Parallel and Distributed
Systems, Vol. 14, No. 3, pp 259-275, March 2003.
[22] C.B. Stunkel et al. “The SP2 High-Performance
Switch”, IBM Systems J. Vol. 34, No. 2, pp. 185-204, 1995.
[23] http://rotaryformalproof.googlepages.com/publ_109.pdf

