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Abstract 

 
This paper introduces a cost-effective technique to 

deal with CMP coherence protocol requirements from 
the interconnection network point of view. A 
mechanism is presented to avoid the end-to-end 
deadlock that arises from the dependency chains 
created at the network interfaces between the different 
message types handled by coherence protocols. Our 
proposal is designed to guarantee a fraction of end-to-
end bandwidth for the highest priority messages and 
makes it unnecessary to employ several virtual 
networks or complex mechanisms for dealing with the 
limited capacity of the endpoint buffers. The presented 
approach uses the Rotary Router as its starting point, 
extending the original mechanism for the routing-
dependent deadlock to the message-dependent 
deadlock. We also propose a solution that guarantees 
point-to-point message ordering in this router, which 
is a common requirement in some coherence 
protocols. Results for synthetic and parallel 
applications show that the proposal improves the 
performance of previous solutions with a much lower 
hardware cost. 
 
1. Introduction 
 

CMP systems usually assume the presence of some 
cache coherency mechanism in order to guarantee the 
communication between processors via shared-
memory. The coherence protocol keeps caches 
transparent to the software, guaranteeing the coherence 
invariants at each cache block.  

In order to ensure coherence invariants, each 
memory controller must react to each coherence 
transaction received from the processor or network, in 
some situations sending new messages to other 
controllers in the system. In consequence, a hierarchy 
of protocol messages must coexist in the network. The 
reactive nature of these different types of messages and 
the limited capacity of consumers can generate end-to-

end deadlock. When a particular class of messages 
overflows the consumption queue in a node, the 
progression of subsequent actions at the memory 
controller cannot be guaranteed because the network 
cannot guarantee the delivery of the associated 
messages. The solutions for this problem vary from 
routing each network-traffic class through different 
virtual [14] [20] or physical networks [10]; extending 
the end-point queues into a main memory buffer [3]; 
employing some deadlock detection-recovery 
technique or a combination of detection and avoidance 
based on virtual networks[21][9]; or even, providing 
enough buffer space in each node’s network interface 
message queues to hold at least as many messages as 
can be supplied, as in [22]. Today, the most common 
technique for dealing with this problem in CMP 
systems [19] or system level multiprocessors [14] is to 
employ different virtual networks for each kind of 
traffic. To be conscious of the cost of this technique, 
let us focus our attention in the Alpha 21364 router 
[14]. This router employs adaptive routing in a bi-
dimensional torus network, which requires three 
virtual channels per physical link in order to avoid 
routing deadlock [7]. In addition, the coherence 
protocol employed requires seven different classes of 
messages, which makes it necessary to employ seven 
different virtual networks. In the end, the router 
employs 19 virtual channels per physical link. This 
configuration requires separate buffering and signaling 
for each channel, besides an increment in the 
arbitration cost even with a multiplexed crossbar. This 
might not be a problem in system level multiprocessor 
systems, such as the Alpha 21364, but it clearly is for a 
CMP system. In a CMP, this approach requires an 
extremely small buffer size if the implementation has 
to be feasible in terms of silicon area. 

In this paper, we propose an effective solution for 
this problem, with an almost zero implementation cost. 
Starting from the Rotary Router [1], the proposed idea 
extends the originally designed to avoid routing 
deadlock to avoid also message-dependent deadlock. 
The idea is based on restricting the amount of 



resources available per router for each kind of traffic. 
The solution does not need to increase neither the 
number of virtual networks nor buffering resources of 
the original router, and it requires only some slight 
modifications in control logic. In contrast to 
conventional solutions, our idea allows a better buffer 
utilization. Thus, the implementation cost is reduced 
and the router performance could be improved.  

Moreover, in some protocols, consecutive messages 
between two different controllers must arrive at their 
destination in the same order as they enter the network. 
This requirement is referred to as in-order delivery or 
point-to-point order. For example, in token coherence 
protocol, persistent request deactivation must arrive at 
destination after the activation [13]. In other situations, 
maintenance traffic must follow a predefined path from 
origin to destination [14][20]. The percentage of 
messages that must follow that order is extremely low 
and usually this is not a difficult problem. 
Deterministic routing solves this problem by 
construction, as the path between any origin-
destination pair is fixed. In the adaptive routing case, 
the messages that require point-to-point ordering could 
be tagged at origin and the use of adaptive resources 
disallowed. Unfortunately, for the Rotary Router the 
solution is not so straightforward. The inherent 
buffering scheme makes it hard, at first sight, to 
achieve point-to-point ordering. However, we have 
found that it is possible to ensure that order with little 
effort and with low performance impact by restricting 
network resources availability combined with a port-
to-port bookkeeping system. 

The rest of the paper is organized as follows: 
Section 2 summarizes the operating mode of the 
Rotary Router. Section 3 explains the solution 
proposed to avoid message-dependent deadlock. 
Section 4 shows how the Rotary Router is capable of 
guaranteeing in-order delivery. Section 5 presents the 
performance results and, finally, Section 6 states the 
main conclusions of the paper. 
 
2. Previous work 
 

A router architecture able to deal with most of the 
requirements of CMP interconnection networks was 
proposed in [1]. The Rotary Router completely 
removes centralized structures, such as global arbiters 
or crossbars, is fully adaptive, and avoids the Head Of 
Line Blocking (HOLB). In addition, the Rotary Router 
is able to deal with some important requirements 
imposed by CMP environments, such as higher wire 
availability [4] and power and area efficiency. The 
capability to make such optimizations comes from the 

way packets are moved inside the router. The 
operation of the Rotary Router is based on two internal 
rings where packets circulate in opposite directions, 
looking for a suitable output port. This movement 
simplifies output arbitration and reduces contention. 
An outline of the Rotary Router can be seen in Figure 
1. The router is built through the replication of three 
different structures named Input Stage, Output Stage 
and Buffering Segment Stage. Packets enter the router 
through the Input Stage, where pre-routing decisions 
are made. Additionally, the ring in which the packet 
will circulate is chosen depending on both the path to 
the closest profitable output port and the ring 
occupancy. After header update, packets start moving 
towards their output port through the Buffering 
Segment Stage. This stage is made up of Dual-ported 
FIFO Buffers (DFB) interconnected forming two 
independent rings and connected to each input and 
output port. Once a packet reaches a buffer connected 
to a profitable output port, there are two possible cases: 
i) if the packet loses arbitration, it will keep on 
circulating the ring until reaching another profitable 
output port; ii) if arbitration is won, the packet will 
move to that Output Stage of the router. This stage is 
in charge of sharing the only physical link between the 
packets coming from the two buffer rings. 
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Figure 1. Rotary Router Sketch 

 
Rotary Router avoids deadlock for any network 

topology, and performs adaptive routing without 
virtual channels. Different flow controls are applied to 
packets entering a buffer ring from a transit port or 
from an injection port. Control applied to in-transit 
packets limits the number of packets that can be in the 
router rings simultaneously, avoiding deadlock 
appearance inside the router. Control applied to 



injection ports guarantees the existence of enough 
holes in the network to move packets between nodes, 
which, added to the capacity of packets to do miss-
routing, makes the network deadlock free. A formal 
proof of this claim can be found in [23].  

The Rotary Router has proved to perform better 
than more classic structures as part of a CMP 
interconnection network. The performance advantage 
and power efficiency of this router is clear. However, 
for the performance study carried out in [1], for the 
sake of simplicity, message dependent deadlocks were 
solved by the network interface assuming unlimited 
storage capacity at consumption queues. In-order 
delivery was unnecessary in the evaluation framework 
employed. These assumptions do not invalidate the 
performance and energetic efficiency achieved, but for 
a practical usage of Rotary Router, these issues must 
be addressed. 

 
3. Message-Dependent Deadlock 
 

In a CMP cache coherence protocol, the messages 
involved in a memory transaction depend one upon the 
other, because the generation of some message types is 
a consequence of the delivery of other types. For 
example, when a cache controller sends a message 
requesting a cache line, this causes at least the answer 
from another cache controller providing that block. 
Therefore, there is a second message subordinate to 
the first one. This relationship is known as the message 
dependency chain [21]. This dependency between 
messages can cause the appearance of a deadlock other 
than the routing deadlock. This new kind of deadlock, 
known as message-dependent deadlock or end-to-end 
deadlock, appears at the endpoints of the 
interconnection network because of the limited 
capacity of the consumption queues. As a simple 
example, consider an interconnection network with a 
request-reply protocol. If an application exhausts 
network resources with request messages due to 
consumption queue overflow, reply messages will not 
be able to make progress, stopping the processing of 
pending requests at consumption queues and blocking 
therefore traffic advance. This cyclic dependency 
could lead to a message deadlock. Coherence protocols 
will have deeper dependencies among messages 
(longer dependency chains) than a request-reply 
communication protocol, because depending on the 
state which a cache line is in, different operations will 
be performed in order to read/write the data. As an 
example, the communication protocol in [14] has a 
dependency chain of seven messages, which means 
that some operations need seven messages to complete. 

Most of the previous methods used to avoid 
message-dependent deadlocks are mainly based on the 
replication of traffic paths via the inclusion of extra 
hardware resources, such as extra virtual or physical 
networks able to break resource and message 
dependencies [6][9][14][20]. Different message types 
travel through different hardware resources. This way, 
different message1 traffics never can block each other. 
The complete avoidance of message-dependent 
deadlocks requires a number of replications equal to 
the dependency chain length. The additional hardware 
resources increase network area and arbitration 
complexity and obviously, this could have a significant 
performance and cost impact. In fact, in some real 
machines, like the SGI Origin 2000, with the aim of 
reducing the number of necessary virtual networks 
imposed by the protocol, a detection-recovery 
technique is employed to reduce the three virtual 
networks imposed by the protocol to only two. In other 
cases, like the solution adopted in the Alpha 21364 
router where seven virtual networks are employed 
solely for the purpose of eliminating this anomaly, the 
importance of the problem can be clearly appreciated. 

Fortunately, the special Rotary Router 
characteristics, summarized in the previous Section, 
provide the opportunity to deal with this problem 
without requiring extra hardware resources. This 
technique can only be applied if the buffering strategy 
allows packet overtaking inside the router, as occurs in 
the Rotary Router. 
 
3.1 End-to-end Deadlock avoidance for Rotary 
Router 
 

The Rotary Router is free of Head of Line Blocking 
because a blocked message cannot indefinitely delay 
the access of other messages to an available output 
port. The same property, adequately employed, will 
allow us to avoid message-dependent deadlock without 
hardware replication. This method, named as filling 
control, is explained below. 

It could seem that in order to reserve exclusive 
buffering resources for each message type the Rotary 
Router would need the inclusion of two additional 
DBF rings per type. But it is not the case. To avoid 
buffering replication, every message type is forced to 
move through the same buffering space, and message 
advance is guaranteed through the control of the 
cumulative amount of resources used in all the 

                                                           
1 As we are employing cache coherent protocol, each message is 
composed of just one packet (a command or a command plus a cache 
block) and consequently we will indistinctly employ the terms 
“message” or “packet” 



buffering space. The filling control method does not 
supervise the buffers used by a message type, but 
rather the fraction of the whole buffering resources in 
use. The amount of buffering used by each message 
type will be limited, in accordance with the priority of 
the traffic. Each subordinate message is able to occupy 
a bigger portion of area than its predecessor. The top 
class or terminating class of traffic will be able to 
utilize all the buffering space in the network, with the 
exception of the resources required to guarantee that 
the network is routing-deadlock free. This way, every 
time a message tries to access any buffer ring, the 
number of messages which are already in both router 
rings is checked. If this number is below the limit 
imposed for a particular message type and router input 
port, the message is allowed to enter the ring. 
Otherwise, the message must wait until the necessary 
amount of buffering resources becomes available. 

Let us explain the method with an example. Assume 
we have a protocol with four different message types, 
m1, m2, m3 and m4, being m1 the first message type in 
the dependency chain and m4 the terminating one. 
Filling control will restrict the first message type m1, 
only allowing it to fill up to 25% of a router’s 
buffering resources. When a router exceeds this limit, 
the situation is communicated to the injector and to the 
neighboring routers, through specific stop protocol 
lines. From that moment, no more m1 messages are 
allowed to enter in the router from any input port 
(injection or transit). m1 subordinate messages (m2) 
should be able to advance even if m1 messages are 
stalled due to an overflow of m1 at any consumption 
queue. In a similar way, m2 should not be allowed to 
occupy the whole buffering space, because there are 
still two kinds of messages with higher priority. For 
this reason, it is safe for m2 messages to make use of 
up to 50% of ring buffering. The limit for the third 
message type will rise 75%, and finally, the 
terminating message type will be the only one allowed 
to make use of 100% of buffering resources 
(obviously, this 100% does not include the buffering 
resources needed by the routing-deadlock avoidance 
method). Terminating messages do not generate new 
messages, therefore they will not block any other 
message.  

However, applying the same occupancy limits to 
injection and in-transit ports could give rise to 
deadlock situations. For instance, if every router in the 
network reaches the limit to inject m1 messages 
simultaneously, this class will not block subordinate 
messages, but it will not be able to advance. To 
circumvent this situation, a solution equivalent to the 
one used in routing-deadlock avoidance mechanism 
has been adopted. In order to reach a situation in which 

every router in the network has reached its limit to 
inject m1 messages, last messages must come from an 
injection queue (in-transit queues move messages 
between routers, but do not increase the total amount 
of messages in the network). Applying a harder limit to 
injection queues we ensure that we will never reach the 
situation described before. This way, in a worst case 
scenario at least one of the routers will have an 
occupation level lower than the limit for m1 messages. 

Notice that this limit difference must be applied to 
each message type independently. For example, if we 
had a network with two message types (m1 and m2) and 
a router capacity of N messages, in-transit queue limits 
will be N/2 for m1 messages and N for m2 , while 
injection queue limits will be N/2-δ and N-δ. The δ 
extra holes generated by the method avoid blocking 
situations.  

The filling control mechanism does not require 
data-path replication to deal with message-dependent 
deadlocks, but some control logic needs to be added. 
This mechanism has to be applied both to the messages 
in transit through the network and to the messages 
injected from a coherence controller. For this reason, 
this flow control has to be handled by a centralized 
structure per router. This structure, made up of a 
counter for each message type, will be in charge of 
sending stop signals to the injector and to the 
neighboring routers. Counters update is performed in 
two phases; first, every new message entering the input 
stage or at the injector will be checked and the 
appropriate counter will be incremented. This 
operation is performed in parallel with the pre-routing 
and ring selection process. In the second phase, 
packets leaving the router rings are also checked, and 
counters decremented. This operation is performed 
when the message is in the output stage. Once every 
counter has the proper value, flow control signals are 
generated and sent to the injector and neighboring 
routers. These control signals are processed by the 
control logic of the DFBs in the neighboring router in 
order to make the message advance inside the ring or 
to the next router.  

It should be noted that this approach requires a 
modest amount of hardware: merely one counter per 
class of traffic, some modification in the DFB control 
and to increase the wiring between routers with a stop 
signal per message type. In contrast, conventional 
solutions need to multiply the virtual channels per link 
by the number of messages types. This implies 
additional buffers per physical channel and complexity 
increment in crossbar arbitration. Besides, independent 
inter-router protocol lines per traffic class are required.  

Moreover, our approach tends to favor the advance 
of high order messages type, being the traffic with the 



biggest advantage the terminating traffic. For a 
coherence protocol, this behavior is the most desirable, 
and in contrast to our router, conventional routers must 
prioritize artificially the traffic at crossbar arbitration 
[14], increasing its cost. 
 
3.2 Correctness in Corner-case situations 
 

To check the correctness of the proposal, specific 
synthetic traffic tests have been developed for 
emulating the environment in which message-
dependent deadlocks are likely to occur.  

Basically, a reactive traffic pattern is applied to the 
network and after the steady state network consumers 
will be enforced to stop accepting one of the message 
types, emulating the behavior of a network interface 
with finite resources. From that moment, no more 
messages subordinated to the type stopped will be 
generated. The filling control method must guarantee 
the delivery as soon as possible of the subordinate 
messages which are actually in transit or waiting at 
injection queues.  

The main network parameters will be the same for 
every simulation. The topology considered will be a 2-
Dimensional torus with 64 nodes (8×8). For this 
experiment, every message-type will have a fixed 
length of 5 phits. The router buffering space will be 
kept constant at a value of 60 packets per router. 
Traffic analyzed will be reactive with uniform 
destination pattern. The simulator generates the first 
message type in the dependency chain at a rate of one 
phit/cycle/router. The generation of the rest of 
subordinate messages is done automatically upon 
completion of servicing messages at end nodes. Six 
different protocols will be simulated, each of them 
with a different dependency chain length, varying from 
two to seven. Each protocol will be evaluated, stopping 
the consumption of different message types at a fixed 
simulation cycle. For every simulation, we will analyze 
the throughput obtained for the last class of messages 
in the dependency chain. To do so, the time the last 
terminating message takes to reach its destination will 
be measured. Simulations were repeated several times 
with different seeds for traffic generation, and for 
every simulation done, every terminating message 
reached its destination. If a deadlock had happened, 
some terminating messages would have never reached 
their destination. The results of the experiment are 
shown in Figure 2. The X-axis represents the message 
type stopped for each simulation and the Y-axis 
represents the throughput of terminating messages 
remaining in the network, normalized to each 
protocol’s total throughput. Note that while for a 7-

type protocol we can stop 6 different message types, 
for a 2-type there is only one message type that can be 
stopped. As can be seen in the graph, terminating 
messages throughput remains constant independently 
of the message type stopped. As the protocol has a 
higher number of message types, less buffering space 
is assigned to each type and obviously terminating 
traffic will have lower throughput, but every message 
belonging to the highest priority type arrives at its 
destination. 
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Figure 2. Terminating messages throughput 
when consumers of intermediate message 

classes are artificially blocked 
 
4. In-Order delivery support 
 

Some memory coherence protocols or maintenance 
tasks require in-order delivery support for a small 
fraction of the network traffic. Fulfilling this requisite 
is extremely simple for input buffered routers. A 
specific routing algorithm can be applied to ordered 
messages, forcing them to follow a fixed path to 
destination. As the buffers in this type of routers do not 
allow packet reordering inside each router, in-order 
delivery will be guaranteed. The Rotary Router can 
forward packets between different router buffering 
elements, which imply a chance of reordering. 
Consequently, in the Rotary Router some special 
actions need to be taken to ensure the correct order at 
packet delivery.  

The routing deadlock avoidance mechanism in the 
Rotary Router is based on the ability of packets to be 
miss-routed and on the injection restriction. In-order 
messages cannot make use of that approach, so they 
need a different methodology to avoid routing-
deadlock. As the Rotary Router does not divide 
network resources into multiple virtual channels, the 
routing algorithm chosen for in-order messages has to 
be deadlock free when no virtual channels are 
available. We could guarantee in-order delivery for 
that traffic if the network resource availability is 



restricted to a sub-topology. Although the Rotary 
Router is topology agnostic, in this work we will 
assume a suitable topology for CMP systems, such as 
bi-dimensional torus. Under these circumstances, it is 
enough that the in-order messages do not make use of 
the wraparound links and that they must be routed 
following a strict dimension order, to guarantee 
deadlock freedom for in-order traffic. Although sub-
optimal, in general it is possible to keep the in-order 
delivery implementation topology agnostic, employing 
up/down* routing algorithm. 

In an input buffered router, messages traveling in 
opposite directions of the same dimension use 
independent resources. However, in the Rotary Router 
every direction and dimension can share the buffering 
space (originally, there is no restriction to using both 
internal rings). This could produce a deadlock between 
two neighboring routers if a router is full of in-order 
traffic and all the messages try to advance towards a 
neighbor where the same situation is happening. To 
avoid this circumstance, the two buffer rings inside the 
Rotary Router will be used for in-order traffic flowing 
in opposite directions. The selection of the router ring 
in which a packet will advance will be based on the 
packet direction. Packets traveling in opposite 
directions will make use of different rings, never 
sharing the same buffering space. This way, this kind 
of deadlock is avoided because no cyclic dependences 
between buffers will occur. 

Under the above conditions, it can be ensured that 
packets with the same source and destination will 
advance through the same path. But we still need to 
ensure that packets do not change their order while 
moving inside the buffer rings of the routers. A 
mechanism based on table lookup is proposed for this 
purpose. The operation of this mechanism is shown in 

Figure 4. Each input stage will hold a small table with 
the order value (named exit index) for each output of 
the router. Once pre-routing is computed and it is 
determined that the packet is tagged for in-order 
delivery, the table value corresponding to the 
profitable output port is copied to the header of the 
packet, and the value in the table is incremented by one 
unit. This value at the header of the packet indicates 
the exit order. At every output stage, there will be a 
complementary table with information about the exit 
index expected for the next in-order packet that must 
leave the router, coming from each input port. In this 
way, when a packet is being arbitrated at a DFB, the 
index at the header of the packet pi must coincide with 
the value in the output stage table corresponding to the 
input port where the packet came from. If both fields 
match, the packet pi can leave the router ring, and the 
corresponding output port table will be updated. 
Otherwise, the other packet pj that entered the ring 
before pi is still in the ring and consequently pi must be 
kept on in the current router, and will be forwarded to 
the next DFB of the ring, even when its profitable 
output port is available. 

Note that this ordering method does not order the 
packets according to the pair source-destination, but to 
their router input-output ports. This can introduce 
unnecessary delay to some packets, because they have 
to maintain the order with respect to packets from 
different traffic flows. The main reason for applying 
this method is to minimize implementation cost. If 
packets are classified according to their source and 
destination, table sizes will be increased in an 
unsustainable way with the network size. With this 
method, tables size is proportional to the number of 
input ports of the router. As an example, if we have a 
router with five input ports and a buffering space of 60 
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packets in the rings, we will only need ten tables with 
four rows each (it is not possible for an in-order packet 
to leave the router through the entering port). The exit 
index on each row does not need to grow indefinitely; 
it is enough to let it reach a value equal to the buffering 
space (in packets). Thus, for this example each row 
would only need six bits to store a maximum value of 
60. Therefore, each table needed would have a size of 
24 bits (30 bytes per router). 

The Rotary Router was not conceived to deal with 
in-order packet routing, and therefore its performance 
falls when this kind of traffic predominates. For these 
packets, the output port accessibility is much more 
challenging than in conventional traffic, and can 
produce router performance degradation for in-order 
traffic. This method is only useful when in-order 
packets represent a small portion of the whole network 
traffic. Under this condition, the method guarantees in-
order delivery without using solutions with a higher 
implementation cost. In-order packets are able to share 
resources with the rest of the packets, only routing and 
arbitration needs to be modified.  

Note that the combination of this method with the 
end-to-end deadlock avoidance mechanism is not 
completely orthogonal. This means that if we have in-
order traffic belonging to different classes of traffic, 
we need to expand the size of the tables, maintaining 
an exit index per class (the cost increment is 
proportional to the number of message classes that 
could require in-order delivery). Otherwise, low 
priority in-order traffic can block point-to-point 
ordered packets with higher priority, which can 
generate deadlock. Each class of traffic must be in-
order only with packets belonging to its own class. In 
most cases, the in-order traffic is restricted to only one 
or a few message classes [13][14]. 
 
5. Performance Evaluation 
 

The solutions presented for message-dependent 
deadlock and in-order routing must be evaluated to see 
how they affect performance. For this purpose, three 
counterpart router architectures were compared against 
the Rotary Router. The first one was the Adaptive 
Bubble Router (BADA) [17]. This router will have 
higher buffer requirements than the rest of the routers, 
because it needs two virtual channels to avoid routing-
deadlock. Adaptive Bubble Router has proved to be a 
good off-chip proposal and in fact its deadlock 
avoidance methodology is used in the interconnection 
network of the BlueGene/L supercomputer [2]. The 
second router evaluated was the Deterministic Bubble 
Router (BDOR). This router shares the same flow 

control as the one above, but does not perform 
adaptive routing, making unnecessary the employment 
of virtual channels to avoid deadlock. Finally, the last 
router evaluated (LOW-LAT) makes use of speculative 
arbitration and buffer bypass to achieve a base latency 
of a single cycle, similar to the router presented in 
[15]. This is a deterministic router, where packets 
traveling in the same dimension have a latency of one 
cycle, while injected, consumed or turning packets 
have to go through the whole router pipeline. As link 
traversal is also made in the same cycle, in order to 
achieve a reasonable cycle time this last router is only 
suitable for topologies with low link lengths, such as 
mesh networks. Message-dependent deadlocks are 
avoided in the three routers using different virtual 
channels for each message type. In-order messages do 
not need special actions in the second and third routers. 
For the Adaptive Bubble Router, in-order messages 
will not be routed through adaptive paths. To carry out 
this evaluation, no implementation based on recovery 
methods for message dependent deadlock, such as 
[21], was employed because this method cannot 
support the in-order delivery required by the real 
system evaluation carried out in subsequent sub-
sections. 

 
5.1 Synthetic Scenario 
 

In this first phase of the evaluation, we will show 
the effect of synthetic traffic on network performance. 
The tool used for this evaluation will be the 
interconnection network simulator SICOSYS [18]. 
Two different networks have been considered for the 
experiment. The topology chosen for LOW-LAT 
router is an 8x8 mesh, and 8x8 torus for the rest of the 
routers. 

As we are trying to emulate a memory coherency 
protocol, we will simulate a workload in which data 
transactions are started at every injector and measure 
the time required to complete a fixed number of 
transactions. This will provide more useful information 
about how the network will behave when making a full 
system evaluation. Data transactions will be generated 
as follows; the simulator generates the first message 
type in the dependency chain at a rate of 1 
phit/router/cycle, and subordinate messages are 
generated automatically as messages arrive at their end 
nodes. Messages are classified in classes and these are 
numbered (starting from 1) according to their position 
in the dependence chain. The packet size selected for 
the experiment has a bimodal distribution, being 5 
phits (128 bits links and 64+16 bytes messages) for 
messages belonging to odd classes and 2 phits for 
those belonging to even classes (128 bits links and 16 



bytes messages). To mimic the reactive characteristic 
of the traffic, destination of an odd-class message is 
chosen according to the pattern traffic selected, 
whereas those messages from even classes are sent 
back to the sources from which the originating 
messages were received. 
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Figure 4. Normalized required time for 

consuming 32,000 terminating messages. 
The first experiment is designed to observe the raw 

performance of all routers. Assuming only three 
message classes, synthetic patterns Random, Transpose 
Matrix, Perfect Shuffle and Bit Reversal [8] are 
employed for the destination of class-1 and class-3 
messages. Results have been obtained simulating the 
traffic triggered by 32,000 messages (500 from each 
router) belonging to the class 1 and similar buffer 
capacity is assumed in each router. The BADA router 
has 15 phits FIFO queues, BDOR and LOW-LAT 
routers have 30 phits per FIFO. In the Rotary Router, 
buffer capacity is 20 phits in DFB and 10 phits in each 
one the input and output stages. In this way, the total 
storage capacity per router is 320 phits in conventional 
routers and 300 phits in the Rotary Router. The sizes 
chosen are those where no significant improvements in 
throughput were observed for larger sizes. 

As can be seen in Figure 4, the Rotary Router 
reduces the time required to finish every data 
transaction for almost all traffic pattern analyzed. Both 
adaptive routers obtain close results, the two 
deterministic ones employ up to four times more 
execution time in the presence of non-uniform traffic 
patterns. The differences between the BDOR and the 
LOW-LAT router are mainly caused by the different 
network topology chosen for each router. The small 
link length restriction present in the LOW-LAT router 
harms its performance. 

The second experiment is designed to show how 
each router performs when the number of message 
classes vary form 2 to 4, keeping the router storage 
capacity constant at 300/320 phits. In order to meet 
this requirement, we must modify the phits per FIFO to 
20 (2 classes) and 10 (4 classes) phits respectively in 
BADA and 40 (2 classes) and 20 (4 classes) phits for 

BDOR and LOW-LAT. No change is required in the 
Rotary Router storage distribution. We are considering 
no implementation cost increment in any of the routers, 
which is true for the Rotary Router but false in the 
conventional routers, harming our proposal in this 
comparison. Anyway, even without taking into account 
this important fact, the performance advantage of the 
Rotary Router, as it can be seen in Figure 5, is clear. 
For every traffic pattern and every protocol analyzed, 
the Rotary Router obtains better throughput results. In 
addition, the number of message types in the network 
does not affect Rotary Router performance, and 
maximum throughput remains nearly constant. 
Deterministic routers also maintain their maximum 
throughput levels constant, but at much lower levels. 
The BADA router suffers important throughput losses 
when moving from 3 to 4 message types. The reason 
behind this behavior is the reduction of buffer size. As 
buffering space was kept constant, buffers in the 
BADA are extremely small (2 packets) for a 4-types 
protocol, which reduces router throughput, being even 
worse than the deterministic routers in some cases. 

 
Figure 5. Normalized Maximum Sustained 
Throughput for different number of types 

 
5.2 Real Scenario 
 

In this section, we will show the effect of the 
message dependent deadlock avoidance mechanism 
and in-order packet routing under a realistic situation. 
For this purpose, the complete system simulator Simics 
[11] will be used, extended with the GEMS timing 
infrastructure [12]. GEMS provides detailed models of 
both the memory system and a state-of-the-art 
processor. SICOSYS has been integrated into the 
simulator GEMS, replacing its original network 
simulator. The simulated system is a 16-processor 
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CMP with shared S-NUCA L2 based on [5]. The 
protocol, based on Token Coherence [13], requires a 
hierarchy of five classes of messages to be 
implemented. In this protocol, persistent request 
activation and deactivations must be point-to-point 
ordered. In this way, we will expose the advantages 
and correctness of our proposal in terms of 
performance, with a large number of message classes, 
and correctness, requiring in-order traffic. Main 
parameters of the simulated system are shown in Table 
1.  

Table 1. Main simulation parameters 

The applications considered in this study are four 
transactional and three scientific workloads. The server 
workloads used are a Static Serving Web server 
benchmark based on SURGE running on top of an 
Apache web server (HTTP1) and Zeus web server 
(HTTP2), SPECjbb2000 (Java), and an online-
transactions processing TPC-C like benchmark 
(OLTP). The numerical workloads used are LU, FT 
and IS from NAS Parallel Benchmark, using the 
OpenMP implementation, Version 3.3. In all 
applications, a variable number of runs are performed 
with pseudo-random perturbation in access memory 
times in order to estimate workload variability. 

Figure 6 presents the results with expected average 
execution time. The confidence interval is 95%. As can 
be seen, the Rotary Router outperforms the rest of the 
routers in all the applications simulated. The adaptive 
and deterministic Bubble Routers obtain similar results 
for every application. This means that each virtual 
network is not stressed enough to take advantage of 
adaptive routing. The LOW-LAT router exhibits a 
very low latency under low traffic conditions. As can 

be seen in some applications, especially server based 
ones, it outperforms bubble routers, because of its 
smaller low load pipeline length. Notwithstanding, 
with other applications this router has a poor 
performance. This behavior is mainly due to the 
topology employed (it is the only mesh topology) and 
routing simplicity. Both factors will cause a low 
maximum achievable throughput. It should be pointed 
out here that in the experiments carried out, the LOW-
LAT router has an unfair advantage because we are 
assuming the same cycle time for all the routers. For 
example, according to [1], the Rotary Router cycle 
time will be approximately 20FO4 whereas LOW-LAT 
router will have 35FO4 [16]. 
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Figure 6. Normalized execution time of real 

workloads. 
The reason behind the better results of the Rotary is 

the lower latency of the protocol messages with 
highest priority. Due to the special flow control of in-
transit messages in the Rotary Router, messages with 
high priority advance faster, because they can occupy a 
bigger portion of router buffering resources. In the 
case of input buffered structures, an amount of 
buffering space is fixed for each message type, so 
latencies are not able to adapt to message priority. In 
some cases, the advantage is close to 30% with respect 
to the closest alternative. 
 
6. Conclusions 
 

In this work, we have presented efficient solutions 
for well-known network problems. The mechanism 
designed to alleviate the HOL blocking in the Rotary 
Router has been extended to implement a mechanism 
able to deal with message-dependent deadlocks 
without hardware replication. This proposal allows us 
to keep router complexity constant, independently of 
the number of message classes of the coherence 
protocol and we consider this to be of great importance 
for current and future CMP architectures. In addition, a 
solution for point-to-point ordering was presented. An 

Number of Cores 16 
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256 / 16 
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L1 I/D cache 
Private, 32KB, 2-way, 64Bytes 
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Direct Branch Predictor 4KB YAGS 
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128KB, 16-way, 3-cycles, Pseudo 

LRU, 64 Bytes block 

Main Memory 4GB, 260 cycles, 320 GB/s 

Command size 16 bytes 

Network Topology 8×8 torus 
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efficient mechanism able to deal with in-order 
messages with few control logic add-ons has been 
developed. The idea allows ordered messages to use 
the same resources as the rest of message types. 

Performance results from a wide range of loads 
demonstrate that the mechanism used for deadlock 
avoidance presents advantages over conventional 
approaches. The buffer utilization of our proposal is 
more flexible, which implies a performance boost and 
messages with a higher priority travel faster through 
the network, thus accelerating application execution 
times. 
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