
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Architecting Racetrack Memory preshift through
pattern-based prediction mechanisms

Abstract— Racetrack Memories (RM) are a promising
spintronic technology able to provide multi-bit storage in a single
cell (tape-like) through a ferromagnetic nanowire with multiple
domains. This technology offers superior density, non-volatility
and low static power compared to CMOS memories. These
features have attracted great interest in the adoption of RM as a
replacement of RAM technology, from Main memory (DRAM) to
maybe on-chip cache hierarchy (SRAM). One of the main
drawbacks of this technology is the serialized access to the bits
stored in each domain, resulting in unpredictable access time. An
appropriate header management policy can potentially reduce the
number of shift operations required to access the correct position.
Simple policies such as leaving read/write head on the last domain
accessed (or on the next) provide enough improvement in the
presence of a certain level of locality on data access. However, in
those cases with much lower locality, a more accurate behavior
from the header management policy would be desirable. In this
paper, we explore the utilization of hardware prefetching policies
to implement the header management policy. “Predicting” the
length and direction of the next displacement, it is possible to
reduce shift operations, improving memory access time. The
results of our experiments show that, with an appropriate header,
our proposal reduces average shift latency by up to 50% in L2 and
LLC, improving average memory access time by up to 10%.

Keywords—Racetrack Memory, Cache Hierarchy, Header
Management

I. INTRODUCTION
Cache Memories occupy a growing fraction of transistor

count (and chip area) in modern processors. It seems that the
demand for even larger on-chip storage will continue in the near
future, driven by the increasing processor-memory performance
gap and the growing datasets of emerging applications [1].
Consequently, there is a great interest in emerging memory
technologies able to provide higher density and better energy
efficiency. Racetrack memories [2][3][4][5] are promising
spintronic-based non-volatile memories, which combine the
speed of SRAM, the density of DRAM and the non-volatility of
Flash memory. This technology can provide even larger
integration density than alternative emerging technologies, such
as spin-transfer torque random-access memory (STT-RAM) [6]
or phase-change memory (PCM) [7].

A Racetrack Memory cell consists of a ferromagnetic wire
where electron spins are employed to encode binary data
information. Its early implementations, known as Domain Wall
Memories or DWM [2] encoded information by a train of spin-
up or spin-down magnetic domains separated by Domain Walls.
More recently, it has been demonstrated that nanometer-scale
skyrmions [8] can also be employed to encode information in a

metalic racetrack, providing higher package density, lower
energy and more robust data stability [5]. As seen in Fig. 1, each
RM cell is able to store multiple data bits in a single wire
programming domains to a certain direction (DWM) or by the
absence or presence of a skyrmion (SK-RM). Applying a current
through the wire ends, domains or skyrmions can be shifted
left/right at a constant velocity. With such a tape-like operation,
every domain can be aligned with a read/write port,
implemented through a Magnetic Tunnel Junction (MTJ). The
bit-cell structure required for shifting and read/write is shown in
Fig. 1.down. Read/write operations are performed precharging
bitlines (BL and BLB) to the appropriate values and turning on
the access transistors (TRW1 and TRW2). Bit shifting requires an
additional pair of transistors connected to the edges of the
nanowire. During a shift, transistors TS1 and TS2 are turned ON,
while BL and BLB lines are connected to Vdd/ground
(depending on the shift direction. Left shift: BL=Vdd,
BLB=ground).

Fig. 1. (up) Racetrack Memory structure, Domain Wall Memory and
Skyrmion Memory. (down) Bit-cell structure.

From the architecture side, the main drawback of this kind
of memory technology is the variable access time. Accessing a
bit stored in the metalic wire involves two steps: aligning the
domain/skyrmion to an access port and performing the read or
write access. As alignment depends on the current position of

the domain/skyrmion to be accessed relative to the access port,
access latency is variable. Such a property is undesired,
especially in higher levels in the memory hierarchy. It can be
mitigated through the inclusion of additional read/write ports
[9][10], being the main drawback of these solutions the area
overhead [11][12], which could diminish the density benefits.
An alternative solution consists on the utilization of prediction
mechanisms able to proactively perform domain alignment [11],
moving domains/skyrmions prior to memory access. Previous
works have already demonstrated the benefits of simple header
management policies in the presence of data locality [13],
simply leaving access port in a position close to the last access.
However, in the absence of locality these mechanisms might not
be accurate enough to minimize the overhead of header
alignments. In this work, we explore the suitability of techniques
based on pattern recognition for header management, focusing
on Racetrack Memory implementations with single read/write
port. We propose and evaluate a new preshifting policy relying
on correlation-based prefetching. We evaluate multi-domain
racetrack memories as part of the levels of memory hierarchy
above LLC (which correspond to private cache levels),
comparing its performance to state-of-the-art counterparts and
evaluating the proposal through full-system simulation. We
make use of a large number of workloads, belonging to multiple
benchmark suites.

The rest of the paper is organized as follows: Section II
describes related work on RMs, focusing on header management
policies, Section III presents the proposed cache architecture, its
organization and a working example, Section IV explains the
evaluation methodology, Section V explores the optimal
configuration for the proposed mechanism and Section VI is
devoted to the performance evaluation. Finally, Section VII
states our main conclusions.

II. RELATED WORK
The potential benefits of this kind of technology have made

Racetrack Memories an active research field in the recent years.
Multiple works have demonstrated alternative prototypes of this
technology [14][15][4][16] and many efforts have been recently
involved in skyrmion-based RMs research and development
[17][5][8][18], given their unique properties [19]. These
promising results have inspired many authors to explore the
utilization of RMs as a candidate to replace CMOS-based
DRAM/SRAM.

The author in [20] recently presented an extensive survey of
architectural techniques for using RM. For this reason, this
section will only focus on alternative header management
policies found in the literature, more similar to our proposal. The
architectural proposals aimed at mitigating the latency overhead
caused by header alignment follow two different approaches:
moving data closer to the read/write header [21] or
implementing read/write header alignment policies able to
minimize access latency [22][11][13][23][24][25].

A simple and efficient data movement policy relies on the
migration of frequently accessed blocks closer to the access port
[22][11]. Additionally, some RM-oriented cache

1 For SK-RM, we define “Domain” as the fraction of wire required to store a
single skyrmion. This way, the number of domains describes the wire capacity
(number of skyrmions that can be created in the wire).

implementations also make use of data migration as part of their
behavior. In [12], a merged two-level cache is proposed, in
which migration is required to move the LRU block to the
domain closest to the read/write port. Cache banks mixing
single-domain and multi-domain cells [11] make use of similar
migration mechanisms, moving LRU blocks to single-domain
cells.

To the best of our knowledge, the only preshifting proposal
for general purpose architectures consists of next-block
preshifting [13][11]. Our proposal moves one step further and
evaluates more sophisticated mechanisms, making use of past
access patterns (shift size and direction) to predict the next shift
operation.

III. PRESHIFT RM CACHE ARCHITECTURE
This section provides an overview of the architecture

proposed, describing key features such as data organization,
addressing policy and header management. We focus our
attention on a 3-level on-chip cache hierarchy, which is
commonly used by current processors. The configuration used
has two private levels and a last level shared among all system
cores. Data and Instructions are divided at the first level of
private caching, sharing the same storage in the rest of levels.
We assume the utilization of RM technology in all levels. 1-
domain 1 cells [26] are employed in those latency-critical
elements (L1 Instruction cache, Tag Array of those banks with
sequential access). The use of multi-domain cells is limited to
L1D (data and tag arrays) and Data Arrays of L2/LLC cache
blocks.

Fig. 2. Address bits (above) and cache organization (below)

A. Bank/Data Organization
Fig. 2 sketches the data array organization of the architecture

employed for Multi-domain cache banks, similar to the one
proposed in [13]. RMs are arranged “vertically”, assigning each
domain to a different set of the bank. All the RMs in the same
row share the same header alignment and perform shift, read and
write operations simultaneously. To store a cache block 512
cells (64B per block) are used and each domain inside the

nanowire contains a bit from a different block (e.g., domain 0
stores a bit from set 0, domain 1 stores a bit from set 1 and so
on). This implementation makes use of the RM cell described in
Fig. 1.c as the basic building block. The row decoder drives both
Wordlines (WL) and Shiftlines (SL), employing the logic in
Wordline/Shiftline Activation to select the kind of operation to
perform (read/write or shift). Column logic controls Bitlines (BL
and BLB) to carry out read, write and shift operations (only
modifying Voltage values). Tag and offset bits are used in the
same way as a conventional SRAM cache bank. In contrast,
index bits are divided into Cell bits and Domain bits. Cell bits
(labeled as Index) are used to select a RM-cell row and domain
bits are used to select a singular domain inside the RM-cell.
Therefore, each row of RM-cell will store a group of consecutive
sets in the cache. Shift Control Logic is in charge of storing the
header alignment of each RM row and calculating the
appropriate shift operation according to the incoming index bits.

Fig. 3. (a) Hardware structures required for pattern-based prediction. (b)
Pattern table update after each cache access. (c) Next shift prediction according
to Pattern table values.

B. Header Management
The accuracy of the header management policy for state-of-

the-art proposals is highly dependent on the presence of
temporal and spatial locality. In this context, Lazy policy [13],
which leaves the head port in the last accessed domain, exhibits
good performance. Unfortunately, the locality characteristics
vary with application and/or hierarchy level. In order to
compensate for this heterogeneity, we propose a hybrid head

management policy, combining a policy with a preshifting
mechanism based on cache access pattern recognition with the
Lazy approach.

The information employed for pattern identification and
prediction is the distance between consecutive accesses. Shift
distance is always obtained as the difference in steps between
the domains referred to by two consecutive accesses. Shift
information includes both dimension (distance between
domains) and direction (left or right shift). It is also feasible to
define each element of access pattern (such as domain number,
or memory address). For now, we focus on shift patterns for
space exploration, leaving alternative mechanisms for Sub-
Section 5.1.

The proposed mechanism makes use of two hardware
structures, a Pattern Table and a Shift History Register (SHR).
Additionally, the current shift associated to the current access is
available through Current Shift (CS). The SHR register keeps
the W most recent shift operations in the whole bank. There is
one entry in the table for a set of all the possible W most recent
shift patterns. The internal structure of the Pattern Table is
shown in Fig. 3, and contains the following fields that tracks the
recent past access pattern of that group of sets:
• Shift Pattern: information about W past consecutive shifts

accesses (W=3 in Fig 3.a). Each entry is made up of the
Sequence tag (1,3,-1 first entry) and the Predicted Shift (2).
The SHR value (last W bits) is compared to each Sequence
tag values to perform prediction. Predicted shift is the value
used for preshifting. Sequence Tag length depends on pattern
length whereas Predicted shift only stores one value.

• Consolidation: Number of times a pattern repeats.
• Priority: if table size is not enough to store all possible

patterns, policy replacement uses this field to choose the
pattern to evict. This policy mimics the LRU algorithm
employed for way replacement in associative caches.
On every cache access the mechanism will sequentially

perform the following two operations:
Pattern Table Update. Fig. 3.b sketches the steps involved

in the process of updating the Pattern Table after each access.
The current value of SHR is looked up in the Pattern Table. On
a hit, Current Shift and Predicted Shift field values are
compared. If the two match, the Consolidation value is
incremented. If the two values differ, the Predicted Shift value
is removed and replaced by the Current Shift value. In this case,
Consolidation is also reset. If the pattern is not in the table, it
must be inserted, it being necessary to evict an LRU entry. Then,
both the Priority values and the SHR are updated. SHR is shifted
to insert the Current Shift as part of the last N shifts.

Next Shift Prediction. Subsequently, as described inFig. 3.c,
prediction will be performed. A lookup in the Pattern Table with
the updated SHR will be performed. In the case of a Hit and if
the Consolidation threshold is exceeded, the RM header is
shifted to the predicted value. In any other case, the Lazy policy
is applied, i.e. that header remains in its current position.

C. Working Example
To better understand the mechanism, next we will illustrate

it with a greatly simplified configuration (Fig. 4). A nanowire
with 8 domains and the head port initially located in domain 0x4
is used. A two-shift pattern length and single hit for

consolidation are employed. Pattern table contains only 4
entries. The initial status of the Pattern Table, Shift History
Register and Current Shift is shown in the first box in Figure 4.
For the initial state of the Pattern Table, we describe the
evolution of header position, shift prediction and table content
for the following sequence of set accesses (domain number):
0x5, 0x3, 0x4, 0x2, 0x3, 0x1, 0x2.

Fig. 4. Example

a. The head port was initially aligned to the previously
accessed domain (0x4). As the first access is to 0x5 domain,
the header must be shifted one position to the right (CS=1),
adding an extra cycle to cache access. Concerning the Pattern
Table update, the pattern [-1 1] resulting from the
concatenation of the SHR (-1) and the Current Shift (1), is
inserted in Pattern Table (SHR®Sequence Tag, Current
Shift®Predicted Shift). The entry selected for the new
pattern is the one with the lowest priority ([-3 1] in this case).
SHR is updated with CS content (last step in Figure 3.b,
turned arrow). Concerning Next shift prediction, a
coincidence is found in the Sequence Tag (first row, value
1), but no preshift is done because this pattern is not
consolidated remaining the head port aligned to the last
accessed domain.

b. Next access moves the head port 2 positions to the left (CS=-
2) to access domain 0x3. The SHR matches a Sequence tag

of the table (first row, value 1) but Predicted Shift is different
to Current Shift. Therefore, the new pattern [1 -2] (SHR +
CS) replaces the pattern in the table with the same Sequence
Tag. Next, SHR is updated to -2. In this case, there is a
consolidated pattern matching Sequence Tag -2 so the head
port is preshifted according to the predicted shift field (1
domain to the left, red arrow).

c. The speculative preshift turned out to be wrong, since the
head was moved to the domain 0x2 but the new access refers
to the domain 0x4, so the miss-prediction added one cycle to
total latency. As a consequence, the consolidated pattern that
triggered the preshift is replaced with the new pattern made
up of SHR and Current Shift ([-2 -1] replaced with [-2 1].
Every replacement requires resetting the consolidation bit.
Concerning prediction, there is a Sequence Tag with value 1
(matching the SHR updated value) but no preshift is done
because it is not consolidated yet.

d. To access domain 0x2, the head port is shifted two positions
to the left, pattern [1 -2] is consolidated (Sequence Tag and
Predicted Shift match). No preshift is done (no consolidation
of [-2 1] pattern).

e. The head port is shifted one position to the right and pattern
[-2 1] is consolidated. The head port is preshitfted two
positions to the left according to the consolidated pattern [1
-2], aligning the head port to domain 0x1.

f. In this case the preshift was correct and the head port is
properly aligned when the new access arrives, eliminating
the variable part of the access latency. Only priority bits are
updated in the table. After updating the SHR value (-2), a
match with the consolidated pattern [-2 1] is found and
another preshift is done.

g. The preshift was correct again eliminating the need of
shifting the head port. As in the previous access only LRU
bits are updated in the table. After the SHR update (1) the
head port is preshifted to domain 0x0 according to the
consolidated pattern [1 -2].

IV. EVALUATION FRAMEWORK
We use Gem5 [27] as the main tool for our evaluation,

modeling full-system activity. We simulate a 4-core CMP with
the configuration parameters provided in TABLE I. .

TABLE I. CORE AND CACHE HIERARCHY CONFIGURATION

C
or

e
A

rc
h.

Functional Units 4´I-ALU/4´FP-ALU/4´D-MEM
ROB size/Issue Width 128, 4-way
Frequency/Count 3Ghz, 4 core

Pr
iv

at
e

C
ac

he
s

(L1)Size/Associativity /
Block Size / Access Time

32KB I/ 32KB D (128KB RM), 4-
way, 64B, 2 cycle

(L2)Size / Associativity/
Block Size / Access
Time/Type

256KB (4MB RM) Unified, 8-way,
64B, 10 cycles, Exclusive with L1

Sh
ar

ed
 L

3 Size / Associativity / Block
Size/Type

16MB (64MB RM), 16-way, 64B,
Mostly inclusive / 24 cycles

Coherence Prot., Consistency
Mod.

MOESI snooping / TSO / Tagged
prefetcher

RM Domains / RW ports / Shift
speed 64 / 1 rw port / 1cycle per domain

Mem. Capacity / Access Time /BW 4GB /250 cycles / 32GB/s
58 diverse workloads, running on top of the Debian 8 OS,

have been considered for evaluation. We make use of three of
the most significant benchmark suites in computer architecture

to generate these workloads: SPEC2006 [28], PARSEC [29] and
NAS Parallel Benchmark [30]. We also make use of the Yahoo!
Cloud Serving Benchmark (YCSB) [31] as interface for four
different database applications: Cassandra [32], MongoDB [33],
OrientDB [34] and Redis [35]. The databases selected cover
alternative NoSQL data models (column, graph and document-
based) and performance optimizations (in-memory storage).
The core package includes a set of pre-defined workloads (WA
to WF) that try to model different scenarios [31]. TABLE II.
summarizes the applications that form our evaluation
framework.

TABLE II. WORKLOADS
SPEC CPU2006 (SINT, SFP)
astar, bzip2, gcc, gobmk, h264ref, hmmer, libquantum, mcf, sjeng,
xalancbmk, bwaves, cactusADM, dealII, games, gromacs, lbm, milc,
namd, soplex, sphinx3, zeusmp.
PARSEC 3.0 (PARSEC)
blackscholes, bodytrack, canneal, facesim, fluidanimate, raytrace
NPB 3.3.1 (NPB)
BT, CG, FT, IS, LU, MG, SP, UA
YCSB (CASS, MON, ORI, RED)
Cassandra (WA-WF), MongoDB (WA-WF), OrientDB (WA-WF),
Redis (WA-WF).

Accurate hardware simulation is employed during the

execution of the Region Of Interest (ROI). The ROI is reached
making use of Virtual Machine (VM) based simulation
acceleration [36]. Once reached, a checkpoint is taken and will
be loaded subsequently in detailed architectural simulation.
Starting from each checkpoint, the memory hierarchy is warmed
up for enough cycles before starting to collect statistics,
minimizing the effect of compulsory (cold) misses and
warming-up non-architectural state (prefetchers, replacement
policy, etc.). For each workload evaluated, multiple runs are
employed to fulfill strict 95% confidence intervals.

V. PARAMETER SENSITIVITY
Next, we will analyze the impact of the configuration on the

behavior of the proposed head-management policy. The main
configuration parameters to study are: head tracking pattern
type, pattern-length, consolidation threshold and table size.
From these results, we will choose the actual values (which will
definitively determine the feasibility of the idea itself). The
results in this section show the process carried out to choose the
appropriate configuration of the L2 cache. Similar analyses have
been performed in each level of the cache-hierarchy.

A. Head Tracking
We evaluate two alternative options to track the header

movement: relative to the current position (including distance
and direction) and absolute (only considering the domain
number). Tracking a pattern based on domain number implies
that a cache access sequence must refer to the same domains at
least twice to form a pattern (e.g., the following domain access
sequence 0x4®0x7®0xC®0x4®0x7®0xC would be
recognized as the pattern [0x4 0x7 0xC]). In contrast, shift-based
patterns track the head port movements instead of the domains
accessed. This means that the identification of a shift-based
pattern may not involve the same domains, only the same shift-
sequence (e.g., the cache access sequence
0x1®0x2®0x4®0x7®0x8®0xA®0xD, which requires the

following head port movements +1 +2 +3 +1 +2 +3, would not
be recognized as a domain pattern because the accesses refer to
different domains, but it would be recognized as the shift pattern
[1 2 3]).

In Fig. 5 we show the average shift values obtained for both
approaches. Each column represents a different benchmark
suite. The results are normalized to the ones obtained with
domain-based patterns and the last column represents the
geometric mean values. The preshifting policy clearly works
better when shift-based patterns are employed. This is especially
true for NPB suite and also for some benchmarks from SPEC
(SINT and SFP). There are only three workloads (milc from
SPEC (12%), canneal (1%) and facesim (2,5%) from PARSEC)
which exhibit better performance working with domains.
NoSQL applications (specially MON, RED and ORI) present a
much lower sensitivity to this configuration parameter. In
general, we observed that the number of patterns identified is
lower when the policy works with domain-based patterns,
moreover, the number of incorrect predictions is significantly
higher.

Fig. 5. Normalized average shift observed comparing shift-based tracking
with domain-based tracking

In contrast, shift-based patterns are much more frequent and,
moreover, the same pattern seems to be valid for different cache
access sequences involving different domains (the distance
between accesses remains for different addresses). These results
guide our first design decision, shift-based preshifting being the
choice for the remaining experiments of this paper.

B. Pattern Length
This might be the most critical parameter, because it affects

prediction accuracy, prediction frequency and implementation
cost. The trade-off between prediction accuracy and frequency
must be analyzed. The use of short Pattern Length values harms
accuracy, but longer patterns also reduce the frequency of
pattern detection. Concerning implementation cost, short
patterns are desirable, in order to reduce area and energy on
Pattern Table implementation.

We analyze this parameter for four different values,
increasing pattern length from 2 to 5. Fig. 6 shows the results
obtained, evaluating both the accuracy and frequency of
predictions (above) and the effect on average access latency
(below). In both cases results have been normalized to those
obtained for the shortest pattern. As expected, longer patterns
improve prediction accuracy but reduce the number of preshifts
(since it will be harder to have a hit on Pattern Table). For the
longest pattern analyzed preshift operations are nearly halved,

0

0,2

0,4

0,6

0,8

1

SINT SFP NPB PARSEC CASS MON RED ORI AVG

A
ve

ra
ge

 S
hi

ft

Domains Shifts

but accuracy only improves by 20%. This imbalance has a direct
effect on performance, and the smaller number of preshift
operations degrades the average latency observed. The latency
results indicate that short patterns are desirable, in order to
maximize the number of predictions performed. As pattern
length also affects Pattern Table size, we choose the shortest
value (length=2) for the remaining experiments of this work.

Fig. 6. (above) Preshift accuracy (correct preshifts) and frequency for
different pattern lengths. (below) Normalized average shift observed for
different pattern lengths.

C. Consolidation
The term consolidation refers to the number of repetitions of

a pattern that are required to consider performing a preshift
operation. Similarly to Pattern Length, this parameter has a
direct influence on prediction accuracy and frequency. A larger
consolidation value increases the probability of performing
correct predictions, but also reduces the frequency of preshift
operations.

Fig. 7 shows the sensitivity to consolidation. A value of 0 for
consolidation means that the pattern is consolidated after only
one occurrence. Whereas a value of 1 or higher for consolidation
means that the pattern must appear at least twice to be
consolidated. The first time it is inserted in the table, it being
consolidated after the appropriate number of appearances is
satisfied. Once consolidated, the next repetitions of the same
pattern trigger a preshift operation. As can be seen, the most
appropriate value for consolidation is 1. A value of 0 makes the
policy very aggressive, degrading accuracy and increasing shift
latency. Values larger than 1 make the policy to be conservative
and also increase the average latency to access the cache bank.
A noticeable degradation is observed when two or three
repetitions are required for consolidation, especially for SPEC
and PARSEC suites. Consequently, we will require a single
pattern repetition before enabling preshift operations.

D. Pattern Table
The last parameter considered in this design space

exploration is the size of the Pattern Table. Even for the smallest
pattern length, storing all the possible pattern combinations

would require a table with an unaffordable size. We implement
a Pattern Table of limited size, limiting the number of patterns
stored to only the last N detected (N represents the number of
rows in the Pattern Table). In those cases where a replacement
becomes necessary (an old pattern must be erased to include a
new one), a LRU policy is implemented, similar to the one in
charge of controlling cache-block replacement.

Fig. 7. Average shift for a growing consolidation threshold. Results
normalized to the lowest consolidation value.

The experiment in Fig. 8 analyzes the capacity required by
the proposed preshift policy. This analysis is done varying the
number of entries in the Pattern Table, ranging from 4 to 128
entries. The results are again normalized to the ones with the
smallest capacity (4 patterns stored). As expected, all
benchmark suites undergo a shift latency decrease as the
capacity increases but to a different degree. PARSEC reduces
the average shift when varying the capacity from 4 to 128 entries
by 5% approximately, SPEC goes further reducing it by 10%.
The increase in capacity has little effect for NPB workloads, the
average shift latency is only reduced by 2% approximately.
Taking into account that the number of table entries is
proportional to the cost, we have chosen a capacity value of 32,
trying to balance performance and cost. In any case, it should be
noticed that, if the cost is affordable, it is possible to increase the
size of the Pattern Table to keep on improving performance.

Fig. 8. Average shift evolution as the number of stored patterns increases.
Results normalized to a single-pattern table.

E. Final Configuration & Cost Estimation
Each cache hierarchy level requires a similar set of

experiments to figure out the most suitable configuration of the
preshifting policy. For L1 and L2 levels, our mechanism
implements the detection of shift-based patterns with a length of

0,4

0,6

0,8

1

1,2

1,4

2 3 4 5Pattern	length

Number	of	Pre-shifts

Pre-shift	Accuracy

0,9

1

1,1

2 3 4 5

A
ve

ra
ge

 S
hi

ft

SPEC PARSEC NAS CASS MON RED ORI AVG 0,8

0,9

1

1,1

1,2

0 1 2 3

N
or

m
al

iz
ed

 A
ve

ra
ge

 S
hi

ft

Consolidation Value

SPEC PARSEC NAS CASS MON RED ORI AVG

0,8

0,85

0,9

0,95

1

4 8 16 32 64 128

N
or

m
al

iz
ed

 A
ve

ra
ge

 S
hi

ft

Pattern Table Size

SPEC PARSEC NAS CASS MON RED ORI AVG

2-elements, consolidated after the first repetition. The Table
stores a total number of 32 patterns simultaneously, 16 in the
case of L1. The Table size is increased to 64 patterns in LLC,
while pattern length and consolidation maintain the same values
as in the rest of cache levels. A RM with 64 domains requires 7
bits to encode each shift (two’s-complement). Therefore, each
Table Entry consists of 14 bits for the pattern, 4 bits for priority
and one more for consolidation, making a total table size of 38
bytes. One single table is required per RM row (64 ´ 64 ´ 8 total
bytes, or Domains ´ Block Size ´ Associativity) in the cache,
which implies a storage overhead of 0.1159% for both L2 and
LLC (in LLC the increased number of Table rows is
compensated by the larger associativity).

TABLE III. ENERGY AND AREA ESTIMATION
 2MB RM Bank Pattern Table
Area (mm2) 0.2007 0.0058
Read Energy (nJ) 0.3506 0.0056
Write Energy (nJ) 0.1491 0.0032
Shift Energy (nJ) 0.2310 --
Leakage (mW) 207 7.12
We have modeled the hardware structure that implements

the Pattern Table making use of DESTINY [37], a design space
exploration tool for SRAM, eDRAM and Non-volatile
technologies similar to CACTI [38] and NVSim [39]. We obtain
area, read/write energy and leakage power values for both the
Pattern Table and the associated cache bank. Despite not being
in the critical cache access path, we assume a performance
oriented implementation based on a CAM-like structure (fully
associative cache), which provides a worst-case scenario in
terms of energy and area. The value obtained are summarized in
TABLE III. . On the RM cache side the energy per access,
assuming an average shift value of 5 domains (chosen according
to the results observed in the next section), increases to 1.5nJ. In
contrast, the dynamic energy consumed by the Pattern Table on
each cache access (hit) is 0.0088nJ, which means a 0.58%
energy overhead per hit. It should be noted that misses only
consume energy on the Cache side, so the energy overhead per
access would be even lower. Finally, concerning area values we
observe that the Pattern Table only requires a 2.45% area
overhead to be implemented.

VI. PERFORMANCE EVALUATION
In this Section we compare the proposed mechanism

(PRESHIFT) to the header management policies previously
proposed. As well as Pattern-Preshift, the remaining results
include the following counterparts:
• EAGER [13]: This policy restores the head port to a default

location after each access. In the case of RM with a single
read/write port the default position selected is the domain in
the middle of the wire in order to reduce the worst-case shift
latency.

• LAZY [13]: This policy leaves the head port in the position
of the last access, trying to exploit both temporal and spatial
locality. Shift penalty is zero when two or more consecutive
accesses refer to the same domain.

• NEXT-BLOCK preshift [26]: The last policy performs static
prediction. The head port is preshifted to the adjacent domain
(+1) before the next access arrives.

A. Average shift operations at each cache level
The first set of results in this Performance Evaluation section

is devoted to testing the latency overhead of a RM operating
with each header management policy. To do so, we analyze the
average shift length (variable part of RM access latency)
required at each cache level to complete the execution of the
workloads proposed in TABLE II. . The results are shown in Fig.
9, where the potential advantages of PRESHIFT over the other
counterparts are summarized. To facilitate the interpretation of
the results, they have been normalized to the ones obtained by
LAZY policy and applications are ordered from best to worst
performance.

Fig. 9. Average shift latency for the policies evaluated. Results normalized to
LAZY policy. One graph per cache level, workloads ordered from best to worst
performance.

The results show a different behavior of the proposed
counterparts at each cache level. In L1, NEXT-BLOCK preshift
is not able to improve on the LAZY results for any workload. At
this level there is a high degree of locality, which clearly benefits
the LAZY policy. PRESHIFT preshift has a limited margin for

0,8

0,9

1

1,1

1,2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
N

or
m

al
iz

ed
 S

hi
ft

La
te

nc
y

L1 Data

LAZY

EAGER

NEXT-BLOCK

PRESHIFT

0,4

0,6

0,8

1

1,2

1,4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

N
or

m
al

iz
ed

 S
hi

ft
La

te
nc

y

L2

LAZY
EAGER
NEXT-BLOCK
PRESHIFT

0,4

0,6

0,8

1

1,2

1,4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

N
or

m
al

iz
ed

 S
hi

ft
La

te
nc

y

LLC

LAZY
EAGER
NEXT-BLOCK
PRESHIFT

improvement and only eight workloads show a shift-length
improvement over 5%. However, PRESHIFT preshift can
improve the average shift length by up to 12% in a few cases,
being slightly worse than LAZY in 6 workloads.

Fig. 10. Average shift latency for a RM with different number of domains.
Results normalized to LAZY policy. One grapth per cache level, workloads
ordered from best to worst performance.

Moving to L2 and LLC, part of the locality has been filtered,
reducing the potential benefits of the LAZY policy.
Additionally, the storage area is shared by data and instructions
and in the case of the LLC, all cores within the chip make use of
its banks simultaneously. For these reasons, the variability of
cache accesses is increased, harming static policies (both LAZY
and NEXT-BLOCK preshift). Comparing LAZY and NEXT-
BLOCK, the shift latency clearly depends on the workload and
its access pattern, it being hard to opt for any of the proposals.
At L2 level LAZY seems to perform better than NEXT-BLOCK
(only 7 workloads behave better with NEXT-BLOCK), but in
LLC these results are much more balanced. Focusing on
PRESHIFT preshift results at L2 and LLC caches, we observe
how this policy outperforms its counterparts in both cases. In L2
cache half of the workloads improve on LAZY results by
approximately 5%, reaching a shift-latency reduction up to 50%.
In Last Level cache a similar behavior is observed. The only

difference in this case is the significant improvement of NEXT-
BLOCK preshift, which can achieve results close to
PRESHIFT’s. From this set of results we can conclude that the
PRESHIFT preshift mechanism proposed can consistently
outperform all of its counterparts, independently of the level in
the cache hierarchy analyzed. The following section evaluates
the effects of shift-latency reduction on system performance.

B. Number of Domains
The proposed evaluation process makes use of a fixed RM

configuration, consisting of a racetrack with 64 domains and a
single port. This set up tries to maximize storage density, one of
the main advantages of the proposed technology. However, the
literature provides examples where RMs are configured with a
lower number of domains or multiple read/write ports. For this
reason, we consider necessary the evaluation of the proposed
prefetch policy for a variable number of domains. We conduct a
similar evaluation to the one performed in previous section with
different number of domains: 64, 32 and 16. Fig. 11 shows the
results obtained for each cache level. We only include
PRESHIFT results normalized to LAZY, being the counterpart
with the closest performance. As can be seen, PRESHIFT
improvement is consistent for every RM length analyzed. In
fact, as the number of domains decreases, PRESHIFT improves
its results. Our proposal is able to detect even more patterns in
the presence of less domains, reducing the number of shifts
required to reach the access port.

C. Overall memory latency
The previous experiments have demonstrated that the

proposed policy can reduce the average shift latency when
applied to any of the different cache levels. Thanks to the head
port alignment policy, the variable part of the access latency can
be significantly reduced. In this section we move one step
forward toward measuring the impact of this reduction on the
average memory latency. We employ multi-domain cells (64
domains) for both L2 and LLC. We discard the utilization of RM
cells for the first level of cache. In this level, access latency is
critical and shift latency harms performance significantly. As L1
hit latency has a fixed value, this metric does not provide
relevant information about the performance of the different
header management policies. For this reason, we choose the
average memory observed to access the RM levels (equivalent
to L1 miss latency) as a performance metric for the evaluated
policies.

Fig. 11. Average latency observed to access the RM elements of the cache
hierarchy. Results normalized to LAZY values.

0,6

0,7

0,8

0,9

1

1,1

1,2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

N
or

m
al

iz
ed

 S
hi

ft
La

te
nc

y L1 Data

LAZY
PRESHIFT-16
PRESHIFT-32
PRESHIFT-64

0,2

0,4

0,6

0,8

1

1,2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

N
or

m
al

iz
ed

 S
hi

ft
La

te
nc

y L2

LAZY
PRESHIFT-16
PRESHIFT-32
PRESHIFT-64

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

1,2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

N
or

m
al

iz
ed

 S
hi

ft
La

te
nc

y LLC

LAZY
PRESHIFT-16
PRESHIFT-32
PRESHIFT-64

0,9

1

1,1

1,2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

A
ve

ra
ge

 M
em

or
y

La
te

nc
y

LAZY

EAGER

NEXT-BLOCK

PREFETCH

In Fig. 11, we show the average latency observed to access
the RM elements of the cache hierarchy. Main Memory latency
is also taken into account to calculate these average latency
results. We evaluate the same header management policies as in
the previous section. Y-axis is again normalized to LAZY
results, the best performer of all the counterparts. Applications
are arranged according to PRESHIFT results, from best (left
side) to worst (right side). The simulated system is configured
according to the parameters inTABLE I. .

These results confirm the behavior observed in the previous
section. EAGER and NEXT-BLOCK policies are unable to
outperform LAZY latency for most of the applications
evaluated. Despite NEXT-BLOCK showing a similar result to
PRESHIFT in LLC (see Fig. 9), its poor results in L2 degrade
the overall latency observed. In contrast, the consistent behavior
of our proposal across the different cache levels leads better
behavior of PRESHIFT results when compared to LAZY. For
the set of applications analyzed, PRESHIFT obtains better
latency results in 34 out of 35 workloads. This improvement
exceeds 5% for 5 workloads, being close to 10% for the most
favorable application.

A reduction in improvement margin is observed comparing
Fig. 9 to Fig. 11 results. It should be noted that the achievable
latency improvement is highly dependent on the combination of
pattern location in both L2 and LLC levels, as well as on the
miss rate observed in LLC (frequent Main memory accesses
could hide the benefits of any header management policy). This
means that in order to maximize the benefit of the PRESHIFT
policy, both cache levels should present favorable predictions
simultaneously and LLC misses should be minimal. In any case,
for the set of workloads analyzed, the PRESHIFT policy never
degrades latency results and we have been able to observe peak
IPC improvement close to 5% for applications such as lbm.

VII. CONCLUSIONS
Domain Wall Memory is a promising storage technology

that provides more density and requires less energy than other
memory technologies such as SRAM or DRAM. The main
drawback is the non-static access latency due the need of
aligning the head port to the accessed one. We propose a new
preshift header management policy that makes use of pattern-
based prefetching mechanisms. We have carried out a detailed
evaluation of the proposal, looking for its optimal
parametrization and comparing it to state-of-the-art
counterparts. Our results show that with minimal storage
overhead, our proposal is able to obtain the shortest shift latency.
We improve on previous policies in the literature by up to 50%
in some cases. Additionally, our policy is as good as the best of
the counterparts in those cases where it cannot take advantage
of pattern detection. Finally, we have observed that the reduction
in shift latency translates into a latency improvement up to 10%
even in the set of workloads evaluated.

ACKNOWLEDGEMENTS

REFERENCES
[1] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M.
Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki,
and B. Falsafi, “Clearing the Clouds: A Study of Emerging

Scale-out Workloads on Modern Hardware,” in ASPLOS’12,
2012, vol. 40, no. Asplos, pp. 37–48.
[2] S. S. P. Parkin, M. Hayashi, and L. Thomas,
“Magnetic Domain-Wall Racetrack Memory,” Science (80-.).,
vol. 320, no. 5873, pp. 190–194, 2008.
[3] Y. Zhang, W. S. Zhao, D. Ravelosona, J. O. Klein, J.
V. Kim, and C. Chappert, “Perpendicular-magnetic-anisotropy
CoFeB racetrack memory,” J. Appl. Phys., vol. 111, no. 9,
2012.
[4] L. Thomas, B. Hughes, C. Rettner, and S. S. P. Parkin,
“Racetrack Memory: A high-performance, low-cost, non-
volatile memory based on magnetic domain walls,” in 2011
International Electron Devices Meeting, 2011, p. 24.2.1-24.2.4.
[5] W. Kang, Y. Huang, X. Zhang, Y. Zhou, and W. Zhao,
“Skyrmion-Electronics: An Overview and Outlook,” Proc.
IEEE, vol. 104, no. 10, pp. 2040–2061, 2016.
[6] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho,
Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C.
Fukumoto, H. Nagao, and H. Kano, “A novel nonvolatile
memory with spin torque transfer magnetization switching:
spin-ram,” IEEE Int. Devices Meet. 2005 IEDM Tech. Dig., vol.
0, no. c, pp. 459–462, 2005.
[7] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E.
Ipek, O. Mutlu, and D. Burger, “Phase-change technology and
the future of main memory,” IEEE Micro, vol. 30, no. 1, pp.
131–141, 2010.
[8] R. Wiesendanger, “Nanoscale magnetic skyrmions in
metallic films and multilayers: A new twist for spintronics,”
Nature Reviews Materials, vol. 1, no. 7. 2016.
[9] G. Sun, C. Zhang, H. Li, Y. Zhang, W. Zhang, and Y.
Gu, “From Device to System : Cross-layer Design Exploration
of Racetrack Memory,” Des. Autom. Test Eur. Conf. Exhib.
(DATE), 2015, pp. 1018–1023, 2015.
[10] M. Mao, W. Wen, Y. Zhang, Y. Chen, and H. (Helen)
Li, “Exploration of GPGPU Register File Architecture Using
Domain-wall-shift-write based Racetrack Memory,” in
Proceedings of the The 51st Annual Design Automation
Conference on Design Automation Conference - DAC ’14,
2014, pp. 1–6.
[11] R. Venkatesan, V. J. Kozhikkottu, M. Sharad, C.
Augustine, A. Raychowdhury, K. Roy, and A. Raghunathan,
“Cache Design with Domain Wall Memory,” IEEE Trans.
Comput., vol. 65, no. 4, pp. 1010–1024, 2016.
[12] H. Xu, Y. Alkabani, R. Melhem, and A. K. Jones,
“FusedCache: A Naturally Inclusive, Racetrack Memory, Dual-
Level Private Cache,” IEEE Trans. Multi-Scale Comput. Syst.,
vol. 2, no. 2, pp. 69–82, 2016.
[13] R. Venkatesan, V. Kozhikkottu, C. Augustine, A.
Raychowdhury, K. Roy, and A. Raghunathan, “TapeCache: A
High Density, Energy Efficient Cache Based on Domain Wall
Memory,” Proc. 2012 ACM/IEEE Int. Symp. Low power
Electron. Des. - ISLPED ’12, p. 185, 2012.

[14] S. Fukami, T. Suzuki, K. Nagahara, N. Ohshima, Y.
Ozaki, S. Saito, R. Nebashi, N. Sakimura, H. Honjo, K. Mori,
C. Igarashi, S. Miura, N. Ishiwata, and T. Sugibayashi, “Low-
Current Perpendicular Domain Wall Motion Cell for Scalable
High-Speed MRAM,” 2009 Symp. VLSI Technol. Dig. Tech.
Pap., pp. 230–231, 2009.
[15] A. J. Annunziata, M. C. Gaidis, L. Thomas, C. W.
Chien, C. C. Hung, P. Chevalier, E. J. O’Sullivan, J. P.
Hummel, E. A. Joseph, Y. Zhu, T. Topuria, E. Delenia, P. M.
Rice, S. S. P. Parkin, and W. J. Gallagher, “Racetrack memory
cell array with integrated magnetic tunnel junction readout,” in
Technical Digest - International Electron Devices Meeting,
IEDM, 2011.
[16] S. Fukami, M. Yamanouchi, K. J. Kim, T. Suzuki, N.
Sakimura, D. Chiba, S. Ikeda, T. Sugibayashi, N. Kasai, T.
Ono, and H. Ohno, “20-nm magnetic domain wall motion
memory with ultralow-power operation,” in Technical Digest -
International Electron Devices Meeting, IEDM, 2013.
[17] W. Kang, C. Zheng, Y. Huang, X. Zhang, Y. Zhou, W.
Lv, and W. Zhao, “Complementary Skyrmion Racetrack
Memory with Voltage Manipulation,” IEEE Electron Device
Lett., vol. 37, no. 7, pp. 924–927, 2016.
[18] R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M.
Carpentieri, and G. Finocchio, “A strategy for the design of
skyrmion racetrack memories,” Sci. Rep., vol. 4, p. 6784, Oct.
2014.
[19] D. Zhu, W. Kang, S. Li, Y. Huang, X. Zhang, Y. Zhou,
and W. Zhao, “Skyrmion Racetrack Memory With Random
Information Update/Deletion/Insertion,” IEEE Trans. Electron
Devices, vol. 65, no. 1, pp. 87–95, Jan. 2018.
[20] S. Mittal, “A Survey of Techniques for Architecting
Processor Components Using Domain-Wall Memory,” ACM J.
Emerg. Technol. Comput. Syst., vol. 13, no. 2, pp. 1–25, 2016.
[21] Z. Sun, X. Bi, A. K. Jones, and H. Li, “Design
exploration of racetrack lower-level caches,” in Proceedings of
the 2014 international symposium on Low power electronics
and design - ISLPED ’14, 2014, pp. 263–266.
[22] Z. Sun, X. Bi, W. Wu, S. Yoo, and H. H. Li, “Array
Organization and Data Management Exploration in Racetrack
Memory,” IEEE Trans. Comput., vol. 65, no. 4, pp. 1041–1054,
2016.
[23] M. Moeng, H. Xu, R. Melhem, and A. K. Jones,
“ContextPreRF: Enhancing the Performance and Energy of
GPUs with Nonuniform Register Access,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 24, no. 1, pp. 343–347, 2016.
[24] E. Atoofian, “Reducing shift penalty in Domain Wall
Memory through register locality,” in 2015 International
Conference on Compilers, Architecture and Synthesis for
Embedded Systems, CASES 2015, 2015, pp. 177–186.
[25] Y. Liang and S. Wang, “Performance-Centric
Optimization for Racetrack Memory Based Register File on

GPUs,” J. Comput. Sci. Technol., vol. 31, no. 1, pp. 36–49,
2016.
[26] R. Venkatesan, M. Sharad, K. Roy, and A.
Raghunathan, “DWM-TAPESTRI - an energy efficient all-spin
cache using domain wall shift based writes,” Proc. Conf. Des.
Autom. Test Eur., pp. 1825–1830, 2013.
[27] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, D. A. Wood, B. Beckmann, G. Black, S.
K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, and
T. Krishna, “The gem5 simulator,” ACM SIGARCH Comput.
Archit. News, vol. 39, no. 2, p. 1, 2011.
[28] SPEC Standard Performance Evaluation Corporation,
“SPEC 2006,” https://spec.org. .
[29] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The
PARSEC benchmark suite,” in Proceedings of the 17th
international conference on Parallel architectures and
compilation techniques - PACT ’08, 2008, p. 72.
[30] H. Jin, M. Frumkin, and J. Yan, “The OpenMP
implementation of NAS parallel benchmarks and its
performance,” Natl. Aeronaut. Sp. Adm. (NASA), Tech. Rep.
NAS-99-011, Moffett Field, USA, no. October, 1999.
[31] B. F. Cooper, A. Silberstein, E. Tam, R.
Ramakrishnan, and R. Sears, “Benchmarking cloud serving
systems with YCSB,” in Proceedings of the 1st ACM
symposium on Cloud computing - SoCC ’10, 2010, p. 143.
[32] A. Lakshman and P. Malik, “Cassandra: a
decentralized structured storage system,” ACM SIGOPS Oper.
Syst. Rev., vol. 44, no. 2, p. 35, Apr. 2010.
[33] “MongoDB.” [Online]. Available:
https://www.mongodb.com. [Accessed: 15-May-2017].
[34] O. T. LTD, “OrientDB,” Available:
https://orientdb.com. [Online]. Available: https://orientdb.com.
[Accessed: 15-May-2017].
[35] S. Sanfilippo, “Redis,” Available: https://redis.io.
[Online]. Available: https://redis.io. [Accessed: 15-May-2017].
[36] S. Bischoff, A. Sandberg, A. Hansson, D. Sunwoo, A.
G. Saidi, M. Horsnell, and B. M. Al-Hashimi, “Flexible and
High-Speed System-Level Performance Analysis using
Hardware-Accelerated Simulation,” Des. Autom. Test Eur., vol.
39, no. 2, p. 2012, 2013.
[37] S. Mittal, R. Wang, and J. Vetter, “DESTINY: A
Comprehensive Tool with 3D and Multi-Level Cell Memory
Modeling Capability,” J. Low Power Electron. Appl., vol. 7, no.
3, p. 23, 2017.
[38] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P.
Jouppi, “Cacti 5.1,” HP Lab. April, vol. 2, p. 24, 2008.
[39] N. P. Jouppi, “NVSim: A Circuit-Level Performance,
Energy, and Area Model for Emerging Nonvolatile Memory,”
IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 31, no. 7,
pp. 994–1007, Jul. 2012.

