
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Architecting Racetrack Memory preshift through 
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Abstract— Racetrack Memories (RM) are a promising 
spintronic technology able to provide multi-bit storage in a single 
cell (tape-like) through a ferromagnetic nanowire with multiple 
domains. This technology offers superior density, non-volatility 
and low static power compared to CMOS memories. These 
features have attracted great interest in the adoption of RM as a 
replacement of RAM technology, from Main memory (DRAM) to 
maybe on-chip cache hierarchy (SRAM). One of the main 
drawbacks of this technology is the serialized access to the bits 
stored in each domain, resulting in unpredictable access time. An 
appropriate header management policy can potentially reduce the 
number of shift operations required to access the correct position. 
Simple policies such as leaving read/write head on the last domain 
accessed (or on the next) provide enough improvement in the 
presence of a certain level of locality on data access. However, in 
those cases with much lower locality, a more accurate behavior 
from the header management policy would be desirable. In this 
paper, we explore the utilization of hardware prefetching policies 
to implement the header management policy. “Predicting” the 
length and direction of the next displacement, it is possible to 
reduce shift operations, improving memory access time. The 
results of our experiments show that, with an appropriate header, 
our proposal reduces average shift latency by up to 50% in L2 and 
LLC, improving average memory access time by up to 10%.  

Keywords—Racetrack Memory, Cache Hierarchy, Header 
Management 

I. INTRODUCTION 
Cache Memories occupy a growing fraction of transistor 

count (and chip area) in modern processors. It seems that the 
demand for even larger on-chip storage will continue in the near 
future, driven by the increasing processor-memory performance 
gap and the growing datasets of emerging applications [1]. 
Consequently, there is a great interest in emerging memory 
technologies able to provide higher density and better energy 
efficiency. Racetrack memories [2][3][4][5] are promising 
spintronic-based non-volatile memories, which combine the 
speed of SRAM, the density of DRAM and the non-volatility of 
Flash memory. This technology can provide even larger 
integration density than alternative emerging technologies, such 
as spin-transfer torque random-access memory (STT-RAM) [6] 
or phase-change memory (PCM) [7]. 

A Racetrack Memory cell consists of a ferromagnetic wire 
where electron spins are employed to encode binary data 
information. Its early implementations, known as Domain Wall 
Memories or DWM [2] encoded information by a train of spin-
up or spin-down magnetic domains separated by Domain Walls. 
More recently, it has been demonstrated that nanometer-scale 
skyrmions [8] can also be employed to encode information in a 

metalic racetrack, providing higher package density, lower 
energy and more robust data stability [5]. As seen in Fig. 1, each 
RM cell is able to store multiple data bits in a single wire 
programming domains to a certain direction (DWM) or by the 
absence or presence of a skyrmion (SK-RM). Applying a current 
through the wire ends, domains or skyrmions can be shifted 
left/right at a constant velocity. With such a tape-like operation, 
every domain can be aligned with a read/write port, 
implemented through a Magnetic Tunnel Junction (MTJ). The 
bit-cell structure required for shifting and read/write is shown in 
Fig. 1.down. Read/write operations are performed precharging 
bitlines (BL and BLB) to the appropriate values and turning on 
the access transistors (TRW1 and TRW2). Bit shifting requires an 
additional pair of transistors connected to the edges of the 
nanowire. During a shift, transistors TS1 and TS2 are turned ON, 
while BL and BLB lines are connected to Vdd/ground 
(depending on the shift direction. Left shift: BL=Vdd, 
BLB=ground). 

 

 
Fig. 1. (up) Racetrack Memory structure, Domain Wall Memory and 
Skyrmion Memory. (down) Bit-cell structure. 

From the architecture side, the main drawback of this kind 
of memory technology is the variable access time. Accessing a 
bit stored in the metalic wire involves two steps: aligning the 
domain/skyrmion to an access port and performing the read or 
write access. As alignment depends on the current position of 



the domain/skyrmion to be accessed relative to the access port, 
access latency is variable. Such a property is undesired, 
especially in higher levels in the memory hierarchy. It can be 
mitigated through the inclusion of additional read/write ports 
[9][10], being the main drawback of these solutions the area 
overhead [11][12], which could diminish the density benefits. 
An alternative solution consists on the utilization of prediction 
mechanisms able to proactively perform domain alignment [11], 
moving domains/skyrmions prior to memory access. Previous 
works have already demonstrated the benefits of simple header 
management policies in the presence of data locality [13], 
simply leaving access port in a position close to the last access. 
However, in the absence of locality these mechanisms might not 
be accurate enough to minimize the overhead of header 
alignments. In this work, we explore the suitability of techniques 
based on pattern recognition for header management, focusing 
on Racetrack Memory implementations with single read/write 
port. We propose and evaluate a new preshifting policy relying 
on correlation-based prefetching. We evaluate multi-domain 
racetrack memories as part of the levels of memory hierarchy 
above LLC (which correspond to private cache levels), 
comparing its performance to state-of-the-art counterparts and 
evaluating the proposal through full-system simulation. We 
make use of a large number of workloads, belonging to multiple 
benchmark suites.  

The rest of the paper is organized as follows: Section II 
describes related work on RMs, focusing on header management 
policies, Section III presents the proposed cache architecture, its 
organization and a working example, Section IV explains the 
evaluation methodology, Section V explores the optimal 
configuration for the proposed mechanism and Section VI is 
devoted to the performance evaluation. Finally, Section VII 
states our main conclusions. 

II. RELATED WORK 
The potential benefits of this kind of technology have made 

Racetrack Memories an active research field in the recent years. 
Multiple works have demonstrated alternative prototypes of this 
technology [14][15][4][16] and many efforts have been recently 
involved in skyrmion-based RMs research and development 
[17][5][8][18], given their unique properties [19]. These 
promising results have inspired many authors to explore the 
utilization of RMs as a candidate to replace CMOS-based 
DRAM/SRAM.  

The author in [20] recently presented an extensive survey of 
architectural techniques for using RM. For this reason, this 
section will only focus on alternative header management 
policies found in the literature, more similar to our proposal. The 
architectural proposals aimed at mitigating the latency overhead 
caused by header alignment follow two different approaches: 
moving data closer to the read/write header [21] or 
implementing read/write header alignment policies able to 
minimize access latency [22][11][13][23][24][25]. 

A simple and efficient data movement policy relies on the 
migration of frequently accessed blocks closer to the access port 
[22][11]. Additionally, some RM-oriented cache 

                                                             
1 For SK-RM, we define “Domain” as the fraction of wire required to store a 
single skyrmion. This way, the number of domains describes the wire capacity 
(number of skyrmions that can be created in the wire). 

implementations also make use of data migration as part of their 
behavior. In [12], a merged two-level cache is proposed, in 
which migration is required to move the LRU block to the 
domain closest to the read/write port. Cache banks mixing 
single-domain and multi-domain cells [11] make use of similar 
migration mechanisms, moving LRU blocks to single-domain 
cells. 

To the best of our knowledge, the only preshifting proposal 
for general purpose architectures consists of next-block 
preshifting [13][11]. Our proposal moves one step further and 
evaluates more sophisticated mechanisms, making use of past 
access patterns (shift size and direction) to predict the next shift 
operation. 

III. PRESHIFT RM CACHE ARCHITECTURE 
This section provides an overview of the architecture 

proposed, describing key features such as data organization, 
addressing policy and header management. We focus our 
attention on a 3-level on-chip cache hierarchy, which is 
commonly used by current processors. The configuration used 
has two private levels and a last level shared among all system 
cores. Data and Instructions are divided at the first level of 
private caching, sharing the same storage in the rest of levels. 
We assume the utilization of RM technology in all levels. 1-
domain 1  cells [26] are employed in those latency-critical 
elements (L1 Instruction cache, Tag Array of those banks with 
sequential access). The use of multi-domain cells is limited to 
L1D (data and tag arrays) and Data Arrays of L2/LLC cache 
blocks. 

 
Fig. 2. Address bits (above) and cache organization (below) 

A. Bank/Data Organization 
Fig. 2 sketches the data array organization of the architecture 

employed for Multi-domain cache banks, similar to the one 
proposed in [13]. RMs are arranged “vertically”, assigning each 
domain to a different set of the bank. All the RMs in the same 
row share the same header alignment and perform shift, read and 
write operations simultaneously. To store a cache block 512 
cells (64B per block) are used and each domain inside the 



nanowire contains a bit from a different block (e.g., domain 0 
stores a bit from set 0, domain 1 stores a bit from set 1 and so 
on). This implementation makes use of the RM cell described in 
Fig. 1.c as the basic building block. The row decoder drives both 
Wordlines (WL) and Shiftlines (SL), employing the logic in 
Wordline/Shiftline Activation to select the kind of operation to 
perform (read/write or shift). Column logic controls Bitlines (BL 
and BLB) to carry out read, write and shift operations (only 
modifying Voltage values). Tag and offset bits are used in the 
same way as a conventional SRAM cache bank. In contrast, 
index bits are divided into Cell bits and Domain bits. Cell bits 
(labeled as Index) are used to select a RM-cell row and domain 
bits are used to select a singular domain inside the RM-cell. 
Therefore, each row of RM-cell will store a group of consecutive 
sets in the cache. Shift Control Logic is in charge of storing the 
header alignment of each RM row and calculating the 
appropriate shift operation according to the incoming index bits. 

 
Fig. 3. (a) Hardware structures required for pattern-based prediction. (b) 
Pattern table update after each cache access. (c) Next shift prediction according 
to Pattern table values. 

B. Header Management 
The accuracy of the header management policy for state-of-

the-art proposals is highly dependent on the presence of 
temporal and spatial locality. In this context, Lazy policy [13], 
which leaves the head port in the last accessed domain, exhibits 
good performance. Unfortunately, the locality characteristics 
vary with application and/or hierarchy level. In order to 
compensate for this heterogeneity, we propose a hybrid head 

management policy, combining a policy with a preshifting 
mechanism based on cache access pattern recognition with the 
Lazy approach. 

The information employed for pattern identification and 
prediction is the distance between consecutive accesses. Shift 
distance is always obtained as the difference in steps between 
the domains referred to by two consecutive accesses. Shift 
information includes both dimension (distance between 
domains) and direction (left or right shift). It is also feasible to 
define each element of access pattern (such as domain number, 
or memory address). For now, we focus on shift patterns for 
space exploration, leaving alternative mechanisms for Sub-
Section 5.1. 

The proposed mechanism makes use of two hardware 
structures, a Pattern Table and a Shift History Register (SHR). 
Additionally, the current shift associated to the current access is 
available through Current Shift (CS). The SHR register keeps 
the W most recent shift operations in the whole bank.  There is 
one entry in the table for a set of all the possible W most recent 
shift patterns. The internal structure of the Pattern Table is 
shown in Fig. 3, and contains the following fields that tracks the 
recent past access pattern of that group of sets: 
• Shift Pattern: information about W past consecutive shifts 

accesses (W=3 in Fig 3.a). Each entry is made up of the 
Sequence tag (1,3,-1 first entry) and the Predicted Shift (2). 
The SHR value (last W bits) is compared to each Sequence 
tag values to perform prediction. Predicted shift is the value 
used for preshifting. Sequence Tag length depends on pattern 
length whereas Predicted shift only stores one value. 

• Consolidation: Number of times a pattern repeats. 
• Priority: if table size is not enough to store all possible 

patterns, policy replacement uses this field to choose the 
pattern to evict. This policy mimics the LRU algorithm 
employed for way replacement in associative caches. 
On every cache access the mechanism will sequentially 

perform the following two operations: 
Pattern Table Update. Fig. 3.b sketches the steps involved 

in the process of updating the Pattern Table after each access. 
The current value of SHR is looked up in the Pattern Table. On 
a hit, Current Shift and Predicted Shift field values are 
compared. If the two match, the Consolidation value is 
incremented. If the two values differ, the Predicted Shift value 
is removed and replaced by the Current Shift value. In this case, 
Consolidation is also reset. If the pattern is not in the table, it 
must be inserted, it being necessary to evict an LRU entry. Then, 
both the Priority values and the SHR are updated. SHR is shifted 
to insert the Current Shift as part of the last N shifts. 

Next Shift Prediction. Subsequently, as described inFig. 3.c, 
prediction will be performed. A lookup in the Pattern Table with 
the updated SHR will be performed. In the case of a Hit and if 
the Consolidation threshold is exceeded, the RM header is 
shifted to the predicted value. In any other case, the Lazy policy 
is applied, i.e. that header remains in its current position. 

C. Working Example 
To better understand the mechanism, next we will illustrate 

it with a greatly simplified configuration (Fig. 4). A nanowire 
with 8 domains and the head port initially located in domain 0x4 
is used. A two-shift pattern length and single hit for 



consolidation are employed. Pattern table contains only 4 
entries. The initial status of the Pattern Table, Shift History 
Register and Current Shift is shown in the first box in Figure 4. 
For the initial state of the Pattern Table, we describe the 
evolution of header position, shift prediction and table content 
for the following sequence of set accesses (domain number): 
0x5, 0x3, 0x4, 0x2, 0x3, 0x1, 0x2. 

 
Fig. 4. Example 

a. The head port was initially aligned to the previously 
accessed domain (0x4). As the first access is to 0x5 domain, 
the header must be shifted one position to the right (CS=1), 
adding an extra cycle to cache access. Concerning the Pattern 
Table update, the pattern [-1 1] resulting from the 
concatenation of the SHR (-1) and the Current Shift (1), is 
inserted in Pattern Table (SHR®Sequence Tag, Current 
Shift®Predicted Shift). The entry selected for the new 
pattern is the one with the lowest priority ([-3 1] in this case). 
SHR is updated with CS content (last step in Figure 3.b, 
turned arrow). Concerning Next shift prediction, a 
coincidence is found in the Sequence Tag (first row, value 
1), but no preshift is done because this pattern is not 
consolidated remaining the head port aligned to the last 
accessed domain. 

b. Next access moves the head port 2 positions to the left (CS=-
2) to access domain 0x3. The SHR matches a Sequence tag 

of the table (first row, value 1) but Predicted Shift is different 
to Current Shift. Therefore, the new pattern [1 -2] (SHR + 
CS) replaces the pattern in the table with the same Sequence 
Tag. Next, SHR is updated to -2. In this case, there is a 
consolidated pattern matching Sequence Tag -2 so the head 
port is preshifted according to the predicted shift field (1 
domain to the left, red arrow). 

c. The speculative preshift turned out to be wrong, since the 
head was moved to the domain 0x2 but the new access refers 
to the domain 0x4, so the miss-prediction added one cycle to 
total latency. As a consequence, the consolidated pattern that 
triggered the preshift is replaced with the new pattern made 
up of SHR and Current Shift ([-2 -1] replaced with [-2 1]. 
Every replacement requires resetting the consolidation bit. 
Concerning prediction, there is a Sequence Tag with value 1 
(matching the SHR updated value) but no preshift is done 
because it is not consolidated yet. 

d. To access domain 0x2, the head port is shifted two positions 
to the left, pattern [1 -2] is consolidated (Sequence Tag and 
Predicted Shift match). No preshift is done (no consolidation 
of [-2 1] pattern). 

e. The head port is shifted one position to the right and pattern 
[-2 1] is consolidated. The head port is preshitfted two 
positions to the left according to the consolidated pattern [1 
-2], aligning the head port to domain 0x1. 

f. In this case the preshift was correct and the head port is 
properly aligned when the new access arrives, eliminating 
the variable part of the access latency. Only priority bits are 
updated in the table. After updating the SHR value (-2), a 
match with the consolidated pattern [-2 1] is found and 
another preshift is done. 

g. The preshift was correct again eliminating the need of 
shifting the head port. As in the previous access only LRU 
bits are updated in the table. After the SHR update (1) the 
head port is preshifted to domain 0x0 according to the 
consolidated pattern [1 -2]. 

IV. EVALUATION FRAMEWORK 
We use Gem5 [27] as the main tool for our evaluation, 

modeling full-system activity. We simulate a 4-core CMP with 
the configuration parameters provided in TABLE I. . 

TABLE I.  CORE AND CACHE HIERARCHY CONFIGURATION 

C
or

e 
A

rc
h.

 

Functional Units 4´I-ALU/4´FP-ALU/4´D-MEM 
ROB size/Issue Width 128, 4-way 
Frequency/Count 3Ghz, 4 core 

Pr
iv

at
e 

C
ac

he
s 

(L1)Size/Associativity / 
Block Size / Access Time 

32KB I/ 32KB D (128KB RM), 4-
way, 64B, 2 cycle 

(L2)Size / Associativity/ 
Block Size / Access 
Time/Type 

256KB (4MB RM) Unified, 8-way, 
64B, 10 cycles, Exclusive with L1 

Sh
ar

ed
 L

3 Size / Associativity / Block 
Size/Type 

16MB (64MB RM), 16-way, 64B, 
Mostly inclusive / 24 cycles 

Coherence Prot., Consistency 
Mod. 

MOESI snooping / TSO / Tagged 
prefetcher 

RM Domains / RW ports / Shift 
speed 64 / 1 rw port / 1cycle per domain 

Mem. Capacity / Access Time /BW 4GB /250 cycles / 32GB/s 
58 diverse workloads, running on top of the Debian 8 OS, 

have been considered for evaluation. We make use of three of 
the most significant benchmark suites in computer architecture 



to generate these workloads: SPEC2006 [28], PARSEC [29] and 
NAS Parallel Benchmark [30]. We also make use of the Yahoo! 
Cloud Serving Benchmark (YCSB) [31] as interface for four 
different database applications: Cassandra [32], MongoDB [33], 
OrientDB [34] and Redis [35]. The databases selected cover 
alternative NoSQL data models (column, graph and document-
based) and performance optimizations (in-memory storage). 
The core package includes a set of pre-defined workloads (WA 
to WF) that try to model different scenarios [31]. TABLE II. 
summarizes the applications that form our evaluation 
framework. 

TABLE II.  WORKLOADS 
SPEC CPU2006 (SINT, SFP) 
astar, bzip2, gcc, gobmk, h264ref, hmmer, libquantum, mcf, sjeng, 
xalancbmk, bwaves, cactusADM, dealII, games, gromacs, lbm, milc, 
namd, soplex, sphinx3, zeusmp. 
PARSEC 3.0 (PARSEC) 
blackscholes, bodytrack, canneal, facesim, fluidanimate, raytrace  
NPB 3.3.1 (NPB) 
BT, CG, FT, IS, LU, MG, SP, UA 
YCSB (CASS, MON, ORI, RED) 
Cassandra (WA-WF), MongoDB (WA-WF), OrientDB (WA-WF), 
Redis (WA-WF). 
 
Accurate hardware simulation is employed during the 

execution of the Region Of Interest (ROI). The ROI is reached 
making use of Virtual Machine (VM) based simulation 
acceleration [36]. Once reached, a checkpoint is taken and will 
be loaded subsequently in detailed architectural simulation. 
Starting from each checkpoint, the memory hierarchy is warmed 
up for enough cycles before starting to collect statistics, 
minimizing the effect of compulsory (cold) misses and 
warming-up non-architectural state (prefetchers, replacement 
policy, etc.). For each workload evaluated, multiple runs are 
employed to fulfill strict 95% confidence intervals. 

V. PARAMETER SENSITIVITY 
Next, we will analyze the impact of the configuration on the 

behavior of the proposed head-management policy. The main 
configuration parameters to study are: head tracking pattern 
type, pattern-length, consolidation threshold and table size. 
From these results, we will choose the actual values (which will 
definitively determine the feasibility of the idea itself). The 
results in this section show the process carried out to choose the 
appropriate configuration of the L2 cache. Similar analyses have 
been performed in each level of the cache-hierarchy. 

A. Head Tracking 
We evaluate two alternative options to track the header 

movement: relative to the current position (including distance 
and direction) and absolute (only considering the domain 
number). Tracking a pattern based on domain number implies 
that a cache access sequence must refer to the same domains at 
least twice to form a pattern (e.g., the following domain access 
sequence 0x4®0x7®0xC®0x4®0x7®0xC would be 
recognized as the pattern [0x4 0x7 0xC]). In contrast, shift-based 
patterns track the head port movements instead of the domains 
accessed. This means that the identification of a shift-based 
pattern may not involve the same domains, only the same shift-
sequence (e.g., the cache access sequence 
0x1®0x2®0x4®0x7®0x8®0xA®0xD, which requires the 

following head port movements +1 +2 +3 +1 +2 +3, would not 
be recognized as a domain pattern because the accesses refer to 
different domains, but it would be recognized as the shift pattern 
[1 2 3]). 

In Fig. 5 we show the average shift values obtained for both 
approaches. Each column represents a different benchmark 
suite. The results are normalized to the ones obtained with 
domain-based patterns and the last column represents the 
geometric mean values. The preshifting policy clearly works 
better when shift-based patterns are employed. This is especially 
true for NPB suite and also for some benchmarks from SPEC 
(SINT and SFP). There are only three workloads (milc from 
SPEC (12%), canneal (1%) and facesim (2,5%) from PARSEC) 
which exhibit better performance working with domains. 
NoSQL applications (specially MON, RED and ORI) present a 
much lower sensitivity to this configuration parameter. In 
general, we observed that the number of patterns identified is 
lower when the policy works with domain-based patterns, 
moreover, the number of incorrect predictions is significantly 
higher. 

 
Fig. 5. Normalized average shift observed comparing shift-based tracking 
with domain-based tracking 

In contrast, shift-based patterns are much more frequent and, 
moreover, the same pattern seems to be valid for different cache 
access sequences involving different domains (the distance 
between accesses remains for different addresses). These results 
guide our first design decision, shift-based preshifting being the 
choice for the remaining experiments of this paper. 

B. Pattern Length 
This might be the most critical parameter, because it affects 

prediction accuracy, prediction frequency and implementation 
cost. The trade-off between prediction accuracy and frequency 
must be analyzed. The use of short Pattern Length values harms 
accuracy, but longer patterns also reduce the frequency of 
pattern detection. Concerning implementation cost, short 
patterns are desirable, in order to reduce area and energy on 
Pattern Table implementation. 

We analyze this parameter for four different values, 
increasing pattern length from 2 to 5. Fig. 6 shows the results 
obtained, evaluating both the accuracy and frequency of 
predictions (above) and the effect on average access latency 
(below). In both cases results have been normalized to those 
obtained for the shortest pattern. As expected, longer patterns 
improve prediction accuracy but reduce the number of preshifts 
(since it will be harder to have a hit on Pattern Table). For the 
longest pattern analyzed preshift operations are nearly halved, 
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but accuracy only improves by 20%. This imbalance has a direct 
effect on performance, and the smaller number of preshift 
operations degrades the average latency observed. The latency 
results indicate that short patterns are desirable, in order to 
maximize the number of predictions performed. As pattern 
length also affects Pattern Table size, we choose the shortest 
value (length=2) for the remaining experiments of this work. 

 

 
Fig. 6. (above) Preshift accuracy (correct preshifts) and frequency for 
different pattern lengths. (below) Normalized average shift observed for 
different pattern lengths. 

C. Consolidation 
The term consolidation refers to the number of repetitions of 

a pattern that are required to consider performing a preshift 
operation. Similarly to Pattern Length, this parameter has a 
direct influence on prediction accuracy and frequency. A larger 
consolidation value increases the probability of performing 
correct predictions, but also reduces the frequency of preshift 
operations. 

Fig. 7 shows the sensitivity to consolidation. A value of 0 for 
consolidation means that the pattern is consolidated after only 
one occurrence. Whereas a value of 1 or higher for consolidation 
means that the pattern must appear at least twice to be 
consolidated. The first time it is inserted in the table, it being 
consolidated after the appropriate number of appearances is 
satisfied. Once consolidated, the next repetitions of the same 
pattern trigger a preshift operation. As can be seen, the most 
appropriate value for consolidation is 1. A value of 0 makes the 
policy very aggressive, degrading accuracy and increasing shift 
latency. Values larger than 1 make the policy to be conservative 
and also increase the average latency to access the cache bank. 
A noticeable degradation is observed when two or three 
repetitions are required for consolidation, especially for SPEC 
and PARSEC suites. Consequently, we will require a single 
pattern repetition before enabling preshift operations. 

D. Pattern Table 
The last parameter considered in this design space 

exploration is the size of the Pattern Table. Even for the smallest 
pattern length, storing all the possible pattern combinations 

would require a table with an unaffordable size. We implement 
a Pattern Table of limited size, limiting the number of patterns 
stored to only the last N detected (N represents the number of 
rows in the Pattern Table). In those cases where a replacement 
becomes necessary (an old pattern must be erased to include a 
new one), a LRU policy is implemented, similar to the one in 
charge of controlling cache-block replacement. 

 
Fig. 7. Average shift for a growing consolidation threshold. Results 
normalized to the lowest consolidation value. 

The experiment in Fig. 8 analyzes the capacity required by 
the proposed preshift policy. This analysis is done varying the 
number of entries in the Pattern Table, ranging from 4 to 128 
entries. The results are again normalized to the ones with the 
smallest capacity (4 patterns stored). As expected, all 
benchmark suites undergo a shift latency decrease as the 
capacity increases but to a different degree. PARSEC reduces 
the average shift when varying the capacity from 4 to 128 entries 
by 5% approximately, SPEC goes further reducing it by 10%. 
The increase in capacity has little effect for NPB workloads, the 
average shift latency is only reduced by 2% approximately. 
Taking into account that the number of table entries is 
proportional to the cost, we have chosen a capacity value of 32, 
trying to balance performance and cost. In any case, it should be 
noticed that, if the cost is affordable, it is possible to increase the 
size of the Pattern Table to keep on improving performance. 

 
Fig. 8. Average shift evolution as the number of stored patterns increases. 
Results normalized to a single-pattern table. 

E. Final Configuration & Cost Estimation 
Each cache hierarchy level requires a similar set of 

experiments to figure out the most suitable configuration of the 
preshifting policy. For L1 and L2 levels, our mechanism 
implements the detection of shift-based patterns with a length of 
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2-elements, consolidated after the first repetition. The Table 
stores a total number of 32 patterns simultaneously, 16 in the 
case of L1. The Table size is increased to 64 patterns in LLC, 
while pattern length and consolidation maintain the same values 
as in the rest of cache levels. A RM with 64 domains requires 7 
bits to encode each shift (two’s-complement). Therefore, each 
Table Entry consists of 14 bits for the pattern, 4 bits for priority 
and one more for consolidation, making a total table size of 38 
bytes. One single table is required per RM row (64 ´ 64 ´ 8 total 
bytes, or Domains ´ Block Size ´ Associativity) in the cache, 
which implies a storage overhead of 0.1159% for both L2 and 
LLC (in LLC the increased number of Table rows is 
compensated by the larger associativity). 

TABLE III.  ENERGY AND AREA ESTIMATION 
 2MB RM Bank Pattern Table 
Area (mm2) 0.2007 0.0058 
Read Energy (nJ) 0.3506 0.0056 
Write Energy (nJ) 0.1491 0.0032 
Shift Energy (nJ) 0.2310 -- 
Leakage (mW) 207 7.12 
We have modeled the hardware structure that implements 

the Pattern Table making use of DESTINY [37], a design space 
exploration tool for SRAM, eDRAM and Non-volatile 
technologies similar to CACTI [38] and NVSim [39]. We obtain 
area, read/write energy and leakage power values for both the 
Pattern Table and the associated cache bank. Despite not being 
in the critical cache access path, we assume a performance 
oriented implementation based on a CAM-like structure (fully 
associative cache), which provides a worst-case scenario in 
terms of energy and area. The value obtained are summarized in 
TABLE III. . On the RM cache side the energy per access, 
assuming an average shift value of 5 domains (chosen according 
to the results observed in the next section), increases to 1.5nJ. In 
contrast, the dynamic energy consumed by the Pattern Table on 
each cache access (hit) is 0.0088nJ, which means a 0.58% 
energy overhead per hit. It should be noted that misses only 
consume energy on the Cache side, so the energy overhead per 
access would be even lower. Finally, concerning area values we 
observe that the Pattern Table only requires a 2.45% area 
overhead to be implemented. 

VI. PERFORMANCE EVALUATION 
In this Section we compare the proposed mechanism 

(PRESHIFT) to the header management policies previously 
proposed. As well as Pattern-Preshift, the remaining results 
include the following counterparts: 
• EAGER [13]: This policy restores the head port to a default 

location after each access. In the case of RM with a single 
read/write port the default position selected is the domain in 
the middle of the wire in order to reduce the worst-case shift 
latency. 

• LAZY [13]: This policy leaves the head port in the position 
of the last access, trying to exploit both temporal and spatial 
locality. Shift penalty is zero when two or more consecutive 
accesses refer to the same domain. 

• NEXT-BLOCK preshift [26]: The last policy performs static 
prediction. The head port is preshifted to the adjacent domain 
(+1) before the next access arrives. 

A. Average shift operations at each cache level 
The first set of results in this Performance Evaluation section 

is devoted to testing the latency overhead of a RM operating 
with each header management policy. To do so, we analyze the 
average shift length (variable part of RM access latency) 
required at each cache level to complete the execution of the 
workloads proposed in TABLE II. . The results are shown in Fig. 
9, where the potential advantages of PRESHIFT over the other 
counterparts are summarized. To facilitate the interpretation of 
the results, they have been normalized to the ones obtained by 
LAZY policy and applications are ordered from best to worst 
performance.  

 

 

 
Fig. 9. Average shift latency for the policies evaluated. Results normalized to 
LAZY policy. One graph per cache level, workloads ordered from best to worst 
performance. 

The results show a different behavior of the proposed 
counterparts at each cache level. In L1, NEXT-BLOCK preshift 
is not able to improve on the LAZY results for any workload. At 
this level there is a high degree of locality, which clearly benefits 
the LAZY policy. PRESHIFT preshift has a limited margin for 
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improvement and only eight workloads show a shift-length 
improvement over 5%. However, PRESHIFT preshift can 
improve the average shift length by up to 12% in a few cases, 
being slightly worse than LAZY in 6 workloads. 

 

 

 
Fig. 10. Average shift latency for a RM with different number of domains. 
Results normalized to LAZY policy. One grapth per cache level, workloads 
ordered from best to worst performance. 

Moving to L2 and LLC, part of the locality has been filtered, 
reducing the potential benefits of the LAZY policy. 
Additionally, the storage area is shared by data and instructions 
and in the case of the LLC, all cores within the chip make use of 
its banks simultaneously. For these reasons, the variability of 
cache accesses is increased, harming static policies (both LAZY 
and NEXT-BLOCK preshift). Comparing LAZY and NEXT-
BLOCK, the shift latency clearly depends on the workload and 
its access pattern, it being hard to opt for any of the proposals. 
At L2 level LAZY seems to perform better than NEXT-BLOCK 
(only 7 workloads behave better with NEXT-BLOCK), but in 
LLC these results are much more balanced. Focusing on 
PRESHIFT preshift results at L2 and LLC caches, we observe 
how this policy outperforms its counterparts in both cases. In L2 
cache half of the workloads improve on LAZY results by 
approximately 5%, reaching a shift-latency reduction up to 50%. 
In Last Level cache a similar behavior is observed. The only 

difference in this case is the significant improvement of NEXT-
BLOCK preshift, which can achieve results close to 
PRESHIFT’s. From this set of results we can conclude that the 
PRESHIFT preshift mechanism proposed can consistently 
outperform all of its counterparts, independently of the level in 
the cache hierarchy analyzed. The following section evaluates 
the effects of shift-latency reduction on system performance. 

B. Number of Domains 
The proposed evaluation process makes use of a fixed RM 

configuration, consisting of a racetrack with 64 domains and a 
single port. This set up tries to maximize storage density, one of 
the main advantages of the proposed technology. However, the 
literature provides examples where RMs are configured with a 
lower number of domains or multiple read/write ports. For this 
reason, we consider necessary the evaluation of the proposed 
prefetch policy for a variable number of domains. We conduct a 
similar evaluation to the one performed in previous section with 
different number of domains: 64, 32 and 16. Fig. 11 shows the 
results obtained for each cache level. We only include 
PRESHIFT results normalized to LAZY, being the counterpart 
with the closest performance. As can be seen, PRESHIFT 
improvement is consistent for every RM length analyzed. In 
fact, as the number of domains decreases, PRESHIFT improves 
its results. Our proposal is able to detect even more patterns in 
the presence of less domains, reducing the number of shifts 
required to reach the access port. 

C. Overall memory latency 
The previous experiments have demonstrated that the 

proposed policy can reduce the average shift latency when 
applied to any of the different cache levels. Thanks to the head 
port alignment policy, the variable part of the access latency can 
be significantly reduced. In this section we move one step 
forward toward measuring the impact of this reduction on the 
average memory latency. We employ multi-domain cells (64 
domains) for both L2 and LLC. We discard the utilization of RM 
cells for the first level of cache. In this level, access latency is 
critical and shift latency harms performance significantly. As L1 
hit latency has a fixed value, this metric does not provide 
relevant information about the performance of the different 
header management policies. For this reason, we choose the 
average memory observed to access the RM levels (equivalent 
to L1 miss latency) as a performance metric for the evaluated 
policies. 

 
Fig. 11. Average latency observed to access the RM elements of the cache 
hierarchy. Results normalized to LAZY values. 
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In Fig. 11, we show the average latency observed to access 
the RM elements of the cache hierarchy. Main Memory latency 
is also taken into account to calculate these average latency 
results. We evaluate the same header management policies as in 
the previous section. Y-axis is again normalized to LAZY 
results, the best performer of all the counterparts. Applications 
are arranged according to PRESHIFT results, from best (left 
side) to worst (right side). The simulated system is configured 
according to the parameters inTABLE I. . 

These results confirm the behavior observed in the previous 
section. EAGER and NEXT-BLOCK policies are unable to 
outperform LAZY latency for most of the applications 
evaluated. Despite NEXT-BLOCK showing a similar result to 
PRESHIFT in LLC (see Fig. 9), its poor results in L2 degrade 
the overall latency observed. In contrast, the consistent behavior 
of our proposal across the different cache levels leads better 
behavior of PRESHIFT results when compared to LAZY. For 
the set of applications analyzed, PRESHIFT obtains better 
latency results in 34 out of 35 workloads. This improvement 
exceeds 5% for 5 workloads, being close to 10% for the most 
favorable application. 

A reduction in improvement margin is observed comparing 
Fig. 9 to Fig. 11 results. It should be noted that the achievable 
latency improvement is highly dependent on the combination of 
pattern location in both L2 and LLC levels, as well as on the 
miss rate observed in LLC (frequent Main memory accesses 
could hide the benefits of any header management policy). This 
means that in order to maximize the benefit of the PRESHIFT 
policy, both cache levels should present favorable predictions 
simultaneously and LLC misses should be minimal. In any case, 
for the set of workloads analyzed, the PRESHIFT policy never 
degrades latency results and we have been able to observe peak 
IPC improvement close to 5% for applications such as lbm. 

VII. CONCLUSIONS 
Domain Wall Memory is a promising storage technology 

that provides more density and requires less energy than other 
memory technologies such as SRAM or DRAM. The main 
drawback is the non-static access latency due the need of 
aligning the head port to the accessed one. We propose a new 
preshift header management policy that makes use of pattern-
based prefetching mechanisms. We have carried out a detailed 
evaluation of the proposal, looking for its optimal 
parametrization and comparing it to state-of-the-art 
counterparts. Our results show that with minimal storage 
overhead, our proposal is able to obtain the shortest shift latency. 
We improve on previous policies in the literature by up to 50% 
in some cases. Additionally, our policy is as good as the best of 
the counterparts in those cases where it cannot take advantage 
of pattern detection. Finally, we have observed that the reduction 
in shift latency translates into a latency improvement up to 10% 
even in the set of workloads evaluated. 
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