

 1

������������	�
���
���������������
�������	�
�������
����
��
��������������������
������������
����

�
V. Puente, J.A. Gregorio and R. Beivide

Computer Architecture Group
University of Cantabria – Spain

{vpuente, jagm, mon}@atc.unican.es

Abstract – An environment has been developed which is capable of determining the impact that

a multiprocessor interconnection subsystem causes on real application execution time.
A general-purpose interconnection network simulator, called SICOSYS, able to
capture essential aspects of the low-level implementation, has been integrated into two
execution driven simulators for multiprocessors: RSIM and SimOS. The enhancement
of both tools allows the analysis of new proposals for the interconnection subsystem
of a cc-NUMA machine, from the VLSI level up to the real application level. Any
new proposal can be translated to a specific message router architecture and by using a
low-level implementation tool, the parameter delays of a detailed router model to be
used by SICOSYS can be obtained. The pair RSIM-SICOSYS is adapted for
simulating multiprocessor systems running preemptive parallel applications, such as
intensive numerical ones, with hardly no operating system interference. However, for
determining the impact that new proposals provoke on the execution time of parallel
applications strongly interacting with the operating system, such as online transaction
processing, the SimOS-SICOSYS environment is more adequate.

Keywords: Interconnection networks, multiprocessors, simulation tools, RSIM, SimOS,
SICOSYS.

 !� 	�
����
����

The interconnection network is an essential element of multiprocessor systems and to

determine its performance is critical. Although the number of works carried out in this direction
have been numerous, there is a lack of completeness, mainly in two aspects. On the one hand, in
a few occasions the impact of the low-level implementation is considered in any proposal. Thus,
in spite of pioneering studies like Chien’s work [3], it is usual to analize of new proposals
without considering if the increase of complexity of its VLSI implementation will neutralize the
supposed improvements. On the other hand, as opposed to what already happens with
practically all other computer building blocks, the performance analysis of the interconnection
network continues to be analyzed without paying too much attention to real working loads.
However, it is evident that numerous proposals lose relevance when characteristics of traffic
corresponding to real applications are considered.

The main reasons for the these deficiencies are both cost and complexity of their consideration.
The simulation, at VLSI level, of an interconnection network of medium size (≈128 nodes) can
take several days for obtaining some basic parameter. Also, to accurately simulate a few
seconds of the traffic generated by a real parallel application can go beyond what could be
considered as a reasonable design cycle time. Moreover, the situation is still worse if the special
characteristics of structures as successful as Distributed Shared Memory machines, are
considered. The coherence maintenance, normally by hardware, causes an uncertainty about the
traffic applied to the network. An application will generate different traffic distribution
depending on aspects such as data location, out-of-order execution, cache size, interference
between processes, characteristics of the interconnection network, etc.

 2

Obtaining real measures from this type of systems is not even feasible until very advanced
stages of the design. The high cost prevents the construction of prototypes of multiprocessor
systems, even with a reduced number of processors, without a guarantee of working. Analytical
results are equally difficult to obtain. Although the parameters which take part in the
performance of the interconnection network can be fixed, their stochastic relationships are
complex, application dependent, and, therefore, it is difficult to obtain results without carrying
out unacceptable approaches.

The only way to accurately determine the performance is simulation. However, the number and
characteristics of the simulators are as diverse as research groups working on this subject. They
can be composed of a few tens of code lines [10] (raw results at low cost), up to tens of
thousands of lines of a VHDL simulator (higher precision at higher cost). For this reason,
throughout the last five years, our research group has been developing a simulator called
SICOSYS [14], which is able to incorporate the key parameters of the low-level implementation
and provides results close to those from VHDL simulators, but at lower computational cost.

In this paper, the integration of this high-precision simulator in RSIM [9] and SimOS [12] is
described. They are two of the most powerful public-domain simulation tools for multiprocessor
systems. RSIM allows simulation of the characteristics of a superscalar processor, to the types
of protocol used to maintain the data coherence. SimOS represents the following step in the
simulation of a multiprocessor system, introducing the effect caused by the operating system.
However, both simulators have the same drawback. Their capacity for modeling the
interconnection network is not good enough. RSIM has a module, called NETSIM, to simulate
the interconnection network of the system, but it presents serious limitations. For example, the
topology is restricted to a mesh with constant transfer times. In SimOS the limitation is harder
because a fixed latency for the interconnection network is always assumed.

The integration of SICOSYS in both simulators provides the first public-domain framework
able to analyze the impact that the technological implementation of the interconnection
subsystem has on the execution time of the applications, running in cc-Numa machines, with a
accuracy degree close to a VLSI tool. In this way, real parallel applications can be executed in
multiprocessor machines using the interconnection network that we are trying to optimize. At
the moment, RSIM-SICOSYS integration is complete and the resulting tool has been widely
tested with innumerable practical cases. Nevertheless, since SimOS is a more recent and
complex tool than RSIM, its integration with the simulator SICOSYS is still in a verification
phase.

The rest of the paper is structured as follows. The next section presents the basic characteristics
of SICOSYS and its comparison with other tools. Section 3 describes the most significant
aspects of its integration into RSIM and SimOS. Section 4 presents an application example
showing the potential advantages and drawbacks of using the framework. Finally, in Section 5,
the main conclusions and future work are mentioned.

"!� ������
��������������
�������
����#�	�����$�

SICOSYS is a general-purpose interconnection network simulator that allows the modeling

a wide variety of message routers in a precise way. Results are very close to those obtained by
using hardware simulators but at lower computational cost. In order to make the tool easily
comprehensible, extensible and reusable, the design of the tool is object-oriented and its
implementation is in C++ language.
The implementation of the simulator is based on technology intimately related to the OO
design: ���� �����	�
�����	�� [4]. In particular, approximately 110 classes, distributed in about
50,000 lines of code have been necessary. The portability is very high and practically it can be
executed in any UNIX platform with a C++ standard compiler.

 3

"! ��
��
���

 The implementation of the simulator has been oriented towards a suitable structuring
and a high portability. It can be divided in the following parts:

• �%�&� ����
��
��. Responsible for interpreting the input files and generating the
objects required for the simulation. There is a constructor for each one of the three
existing input files.

• ��������
�. They represent the hardware that is going to be simulated. The functional
components of the router, their characteristics and associate delays are modeled. In this
way, a direct relationship between a specific hardware structure and the model that our
simulator generates is established. The constructors simply generate a hierarchy of
components related to each other.

• '��������

���. Module in charge of the injection of packets into the network. When
it is desired to use the simulator in a stand-alone way, the main traffic patterns (random,
matrix transpose, reversal bit, perfect shuffle, hot-spot,..) can be used. For injecting
traffic generated by the execution of real applications, an "empty" pattern has been
defined with the aim of working integrated with other tools.

• ������
�. This module carries out the simulation process. Periodically, it generates
information on the simulation state and finalizes by generating a file with the simulation
results. Among them, the two basic figures of merit of interconnection network
performance: packet latency (average and maximum) and network throughput.

Although the simulator has a graphical interface for its stand-alone operation, is not useful for
describing the integration process.

"!"����������
����������

The tool provides a solution to the generic problem of interconnection network simulation.
The same environment can be used to experiment with very different architectural proposals.
The specification of the type of experiment is carried out through description files in SGML
language [4]. These files describe three aspects:

• ������ ��������� ������������. Description of the elements (memories, switches,
multiplexers,..) that connected to each other form the router.

• �	�����		�����	� 	������. Specifications of the type of network (mesh, torus,..),
dimensions and interconnection delays.

• ���������	�
���������. Specification of parameters such as traffic pattern, applied load,
message length, etc.

The modification of these input files allows to carry out different experiments without
recompiling the source code. This provokes a certain loss of performance in the initialization
phase, but as a counterpart, the tool presents a homogenous form to carry out experiments and
an easy-to-use interface. In this way, not only the router is fixed but also the functional and
temporary characteristics extracted from VLSI levels are transferred at a superior level of
abstraction.

Figure 1 shows an example of the three input files. "Router.sgm" is a SGML description of all
architectural characteristics of a determinist router for toroidal networks with a deadlock
avoidance mechanism based on injection control. "Network.sgm" describes both the form in
which routers are interconnected and the connection delays. Finally, "Simula.sgm" specifies the
remaining parameters of the simulation.

 4

<! ��������	
� Example of a SGML router description-->

<Router id="DOR2D-BU" inputs=4 outputs=4 bufferSize=64 bufferControl=CT
routingControl="DOR-BU">
<Injector id="INJ">
<Consumer id="CONS">

<Buffer id="BUF1" type="X+" dataDelay=2>
.
<Buffer id="BUF5" type="Node" dataDelay=2>

<Routing id="RTG1" type="X+" headerDelay=1 dataDelay=0>
.
<Routing id="RTG5" type="Node" headerDelay=1 dataDelay=0>

<Crossbar id="CROSSBAR" inputs="5" outputs="5" type="CT" headerDelay=2
dataDelay=1>
<Input id=1 type="X+">
<Input id=2 type="X-">
.
<Output id=5 type="Node">
</Crossbar>

<Connection id="C01" source="INJ" destination="BUF5">
<Connection id="C02" source="CROSSBAR.5" destination="CONS">
.
<Connection id="C12" source="RTG5" destination="CROSSBAR.5">

<Input id="1" type="X+" wrapper="BUF1">
.
<Input id="4" type="Y-" wrapper="BUF4">

<Output id="1" type="X+" wrapper="CROSSBAR.1">
.
<Output id="4" type="Y-" wrapper="CROSSBAR.4">

</Router>

<!���������	
� A name of a network file -->
<TorusNetwork id="T88-DOR2D-BU"
 sizeX=8 sizeY=8 router="DOR2D-BU" delay=0>

<! ��
�����	
� Simulation file -->
<Simulation id="output_file">
<Network id="T88-DOR2D-BU">
<SimulationCycles id=100000>
<TrafficPattern id="MODAL" type=”RANDOM”>

<MessageLength id=1>
</Simulation>

Figure 1. Example of SGML input files for a simulation.

"!(�������
�)������������

The main objective of SICOSYS is to reach the precision of a VLSI simulator but at a
computational cost close to a functional simulator. In order to verify the degree of
accomplishment of this objective, a comparison example with each type of simulator is
presented.

�������������������������������

As a test element, a completely adaptive virtual cut-through router (Figure 2) has been
selected. Each one of the router channels has the following elements: a synchronizer block for
asynchronous communication with neighboring routers; a packet storage with FIFO policy; a

 5

routing decision unit to route packets to a suitable output port; and a crossbar for the switching
function. The deadlock avoidance mechanism is based on restriction of injection [11].

Starting with a RTL router description in VHDL and following a conventional design
methodology, a logic-level implementation of the router has been obtained, employing the
ECPD07 design kit (0.7 µm) [13].

&
U
R
V
V
E
D
U
��
[
�

!!!!!!

1HWZRUN�,QWHUIDFH

,QM &RQV

;�RXW

!!!

<�RXW�
��

�
�
��

�
��

�
�
��

;�LQ

6\Q�)LIR 5'

6\Q�)LIR 5'

<�LQ

6\Q�)LIR 5'

6\Q�)LIR 5'

6\Q�)LIR 5'

Figure 2. Example of the router used for comparison between SICOSYS and Leapfrog.

Next, using ���
���� (the VHDL simulator of Cadence [7]), a simulation of 64 nodes (each one
using the RTL description) interconnected in a toroidal topology has been carried out. Latency
and throughput results have been compared to those obtained by using SICOSYS, showing the
goodness of our simulator, as can be seen in Figure 3. The latency error is below 4% and in the
case of throughput, the error is even smaller. Meanwhile, the speed-up of SICOSYS can achieve
up to 45 (see Figure 4). Similar results are obtained using other routers, with different traffic
patterns and network configurations.

0

20

40

60

80

100

120

0 5 10 15 20 25

Applied load (phits/cycle)

La
te

nc
y

(c
yc

le
s)

0

0,5

1

1,5

2

2,5

3

3,5

4

E
rr

or
 (

%
)

SicoSys

VHDL (Leapfrog)

Error

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50
Applied Load (phits/cycle)

A
cc

ep
te

d
Lo

ad
 (

ph
its

/c
yc

le
)

0

0,5

1

1,5

2

2,5

3

3,5

4

E
rr

or
 (

%
)

SicoSys

VHDL (Leapfrog)

Error

 (a) (b)

Figure 3. (a) Average latency and relative error of SICOSYS versus Leapfrog. (b) Throughput.

 6

�

	�

�

��

��

��

	�

�

��

� � �� �� �� ��

Applied Load (phits/cycle)

P
er

fo
rm

an
ce

 (
cy

cl
es

/C
P

U
 s

ec
.)

�

�

�

�

	�

	�

��

��

�

�

��

S
pe

ed
up

SicoSys

VHDL (Leapfrog)

SpeepUp

Figure 4. Performance of SICOSYS versus Leapfrog.

��������������� !"��#��

Originally developed as an independent tool, NETSIM is a module integrated in the execution-
driven simulator RSIM [9]. It is able to simulate a direct interconnection network employing a
specific C-library and three basic elements: buffers, multiplexers and demultiplexers. With the
aim of comparing its performance with SICOSYS, several routers have been described in both
simulators and their results compared employing synthetic loads.

35

45

55

65

75

85

95

105

115

0 5 10 15 20 25
Applied Load (phits/cycle)

La
te

nc
y

(c
yc

le
s)

0

10

20

30

40

50

60
E

rr
or

 (
%

)
SICOSYS

NETSIM

Error

Figure 5. NETSIM –SICOSYS comparison (8x8 torus, deterministic routing and
random traffic).

As an example, Figure 5 shows the results for one of the different cases analyzed. It represents
the average message latency under uniform traffic. The network is an 8x8 torus, deterministic
routing. Although the router simplicity is evident, the discrepancy between both types of
simulators is up to 50%. And SICOSYS results remain closer to those obtained by the VHDL
simulator.

 7

These results demonstrate the strong discrepancies that can appear as a result of using functional
simulators, even of the NETSIM characteristics. With such a degree of discrepancy it is not fair
to try to analyze the impact of architectural proposals on the execution time of real applications.

(!� 	�
���
�����	��������
��*�	������������

A tool like SICOSYS, able to capture the essential aspects of the low-level implementation,

it is not sufficient to establish definitive results about the performance of an interconnection
network. There is an enormous variability of results depending on the type of traffic used in the
analysis and therefore, on the application that generates that traffic.

Thus, an application written for example using the message passing interface library MPI,

generates a very different traffic pattern depending on whether it is executed in a PC cluster or
in a cc-Numa machine. This does not mean that synthetic loads must be given up, but forces us
to have tools able to directly provide traffic coming from the execution of real applications,
because a proposal can lose or gain importance depending on such a traffic. For that reason, the
following step has been to integrate SICOSYS within both execution driven simulators, RSIM
and SimOS, obtaining a complete and trustworthy simulation environment.

(! �*�	�+�	������	�
���
���

RSIM is an execution driven simulator, basically designed to study the behavior of
shared memory architectures and to emulate current processors. The architecture of the memory
hierarchy that RSIM is able to simulate, is very similar to the employed in the DASH
multiprocessor [8], except each node of the system has only one processor.

RSIM directly interprets the application codes compiled and linked for SPARC processors. The
support for the development of parallel applications is based on a specific library that
incorporates the SystemV calls and an implementation of macros PARCMACS [1]. Distribution
of the shared variables has to be made explicitly in the application code by using functions
provided by the library.

Given the characteristics of both simulators, RSIM and SICOSYS, it is clear that their
integration will give rise to a very complete simulation tool. The simplest way to carry out such
an integration is to replace the module NETSIM by the simulator SICOSYS. The main problem
was the simulation control. SICOSYS is a time-driven simulator but RSIM is essentially an
event-driven simulator handled by the library YACSIM [6]. The solution adopted was to control
the simulation driver by SICOSYS. Figure 6 shows the structure of the complete environment.

 8

������
������

����������

�!��"��� #$��%�
���"�����

����

&��'
��('

���)��*
���"�����

�������

���)��*
���"�����

�	
���

���"�����#� +� �

������

���)��*
,��������(

��(���
,��������(

Figure 6. RSIM-SICOSYS integration.

The resulting tool is able to feed the accurate simulator SICOSYS with traffic directly generated
by the execution of real applications. The interrelation between advanced processor
characteristics and the technology used in the interconnection network implementation can be
analyzed. For example, the effect on the application execution time caused by both the out-of-
order execution of the processor and the type of message management of the router can be
jointly analyzed. Thus, in a cc-Numa machine, the network performance affects the
management of the cache lines of the processor and, in turn, the number of requests the
processor sends back to the network. Therefore, for analyzing this type of systems the use of a
precise simulation environment is imperative, specially in the last phases of the design.

Precision is usually paid her by increasing resources and simulation time. Nevertheless, the
resulting tool RSIM-SICOSYS slows down less than 3 times, respect to RSIM. Moreover, a
biprocessor version able to reduce this performance fall to 2 times has also been developed. As
an example, Table 1 shows the simulation time of an FFT application of the suite SPLASH,
running on a 64-processor system, with the default size problem (64K complex doubles).
Simulations have been carried out in a SGI Power Challenge with MIPS R10000 processors at
200 Mhz, on IRIX6.2.

Application RSIM-NETSIM
(uni-processor)

RSIM-SICOSYS
(uni-processor)

RSIM-SICOSYS
(Bi-processor)

FFT 64 Processors 3767 9413 7126

Table 1. Simulation time (in seconds) of the different tools.

(!"������+�	������	�
���
���

We have also integrated SICOSYS with the more complete machine simulator, SimOS,
because of several reasons. RSIM-SICOSYS is an environment adapted for the simulation of
multiprocessor systems running preemptive parallel applications, such as intensive numerical
ones. The number of processors, assigned by the operating system, remains constant during
some interval, or until their conclusion, without hardly interference. However, there are other
important applications, like the online transaction processing (OLTP), that interact with the
operating system in a very intensive way. The kernel component can be up to 25% of the total
time (user and kernel) [2]. Therefore, the committed error carrying out simulations of this type
of applications without considering the operating system interference, can be inadmissible. Even

 9

numerical applications can suffer certain operating system interventions (for example, from the
virtual memory manager) [5].

One of the few free distribution simulators able to emulate the behavior of the entire system,
including an operating system, is SimOS [12]. This tool is able to simulate the hardware
components of the multiprocessor system (processors, MMU, caches, disks, console,..) with
enough detail for running real software. Although SimOS is also able to emulate the
interconnection subsystem behavior, in this specific aspect, its deficiencies are important. Thus,
while the impact on the application execution time of almost any processor modification can be
analyzed, the message delivery time for the network is considered constant. Obviously,
considering a network without contention can give rise to an important discrepancy in results.
For example, Figure 7 shows the difference in the execution time of RADIX (a SPLAH
application) employing the raw interconnection network model from SimOS against an accurate
model from SICOSYS. The application has been compiled using the �
���� implementation of
PARMACS and the emulated operating system is a modified version of SGI IRIX6.4.

0

10

20

30

40

50

60

70

80

90

100

Simos Sicosys+simos

�
�
��

��
��
	

��
	

��
��
�
�
��
��

	�
�

L2I

L1I

Upg

L2D

L1D

TimeCPU

�

Figure 7. Effect of the accurate interconnection model of the SimOS-SICOSYS tool on the
RADIX execution time.

Both simulators give rise to an environment with a great potential. From the point of view of the
analysis of the interconnection subsystem, it opens the possibility to reflect the impact of any
parameter on the execution time of real applications running under a commercial operating
system control.

,!� �������
�����-������

With the aim of showing how the developed environments can be used, next we present an

application example using RSIM-SICOSYS (completely described in [11]). Figure 8.a shows
the pipeline structure of a router (BDOR) for direct networks with a deadlock avoidance
mechanism based on injection control. Packets reach their destination using dimension order
routing (DOR) and the router’s buffers are located at the input links. The question is to
determine the impact of locating the buffers at the output links and routing packets in an
adaptive fashion.

The new router (HPAR) can be divided into a number of stages like those shown in Figure 8.b.
The greater complexity of the new router gives rise to an increase of the number of cycles a
packet will need for crossing it. Nevertheless, due to the adaptivity and the elimination of a

 10

great part of the head-of-line blocking it seems feasible that the new router will improve the
previous one.

(a)

(� ���

&��((-
.��
/
��-
.����

��"�� +
0 ��'1�2�

0.5~1.5 1 1 1

4

����� (b)

(� ���
�"���-
����

��"�� +
0 ��'1�2�

0.5~1.5 1 1 2

5

�

Figure 8. Pipeline Structures of the BDOR router (a), and the HPAR router (b).

Preliminary results can be easily obtained by using synthetic loads. Employing the usual traffic
patterns of this type of analysis, it can be quickly proved that the increase of a cycle of the
router structure translates to a greater base latency (time spent for a packet to arrive at
destination, in load absence). Nevertheless, adaptivity and changing the buffer’s location
improve the new router performance up to 300% when it is integrated in a 64-node network (see
Figure 9).

0

5

10

15

20

25

30

35

40

������������	��

B
as

e
La

te
nc

y
(c

yc
le

s)

BDOR 28,21 31,07 28,98 30,72

HPAR 31,25 34,29 31,97 33,94

Random Matrix-Transp. Perfect-Suffle Bit-reversal

0

5

10

15

20

25

30

35
40

45

50

������������	��

M
ax

im
um

 T
hr

ou
gh

pu
t (

ph
its

/c
yc

le
)

BDOR

HPAR

BDOR 17,66 11,21 17,41 10,7

HPAR 44,43 32,31 35,19 41,2

Random Matrix-Transp. Perfect-Suffle Bit-reversal

Figure 9. Results of latency and maximum throughput of both routers using synthetic loads for a
64-node network.

The question that always arises in these cases is what part of this gain will be transferred to the
real applications. Only making use of simulation environments like the one developed in this
work can give the correct answer at a reasonable cost. Thus, if the operating system does not
interfere, the impact of router modifications on any real application can be analyzed using
RSIM-SICOSYS.

As an example, Figure 10 shows the results for the Radix application. Although this application
is highly communication demanding, the performance improvement of the proposal is lower
than that forecast by SICOSYS using synthetic loads. The explanation comes from the data that
RSIM-SICOSYS provides. In Figure 10.b the load applied to the network throughout the
execution time of the application has been represented. There are phases of high and low
communication demand. In the high demand phases, the HPAR router takes advantage of its
higher maximum throughput and the application ends these phases quickly. However, during
low demand phases the lower base latency of the simpler router (BDOR) allows the application
to spent less time and the new proposal loses part of its advantage. The final result is that the

 11

new proposal improves the original router remarkably, but significantly less than the value
predicted by using only synthetic loads.

0

10

20

30

40

50

60

70

80

90

100

BDOR HPAR

SYNC

MEM

BUSY

0

5

10

15

20

25

30

35

40

45

50

5,0E+05 1,0E+06 1,5E+06 2,0E+06 2,5E+06

([HFXWLRQ�&\FOH

 A
pp

lie
d

Lo
ad

 (
ph

its
/n

et
w

or
k

cy
cl

es
) BDOR

HPAR

Figure 10 (a) Normalized execution time for Radix with 64 processors and 512 K integer keys.
(b) Network performance analysis for Radix execution.

.!� ������������������
�������

As with other basic-building blocks of computers, to analyze the interconnection network it

is essential to have sufficiently precise tools. In the initial stages of the design, synthetic loads
or execution traces can be employed for analyzing new proposals. However, in the latter stages
real loads must be used. Moreover, current superscalar processors with characteristics such as
their out-of-order execution, oblige the use of execution-driven simulators. In fact, for analyzing
the goodness of new proposals, not only the low-level implementation aspects have to be
considered but in addition, the use of real application loads is essential. Important discrepancies
can arise if inaccurate simulation tools are used.

The developed simulation environment, with the integration of SICOSYS into both RSIM and
SimOS simulators, allows the transfer of the impact that technological implementations of the
routers have on the execution time of applications. By means of the two powerful tools, RSIM-
SICOSYS and SimOS-SICOSYS, it is possible to simulate the behavior of a medium size cc-
NUMA machine, with an elevated level of detail (interconnection network included).

We think that this is the first public domain environment able to analyze the impact that a
technological implementation of the interconnection subsystem has on the execution time of the
applications with a degree of approximation close to VLSI domain.

At present, the effort is being directed fundamentally in three directions. In the first place, to
improve the most stable environment, RSIM-SICOSYS. Secondly, to carry out exhaustive tests
on the behavior of SimOS-SICOSYS with non-numerical working loads. And finally, trying to
reduce the execution time of this new tool because the overhead of the operating system
simulation is elevated.
�
��������������
��

We would like to thank Robert Kunz for his help during the installation and test of SimOS.
We are also grateful to SGI for facilitating the use of the IRIX kernel.

/!� *���������

 12

���� �����	
���������������������	������ ��������������� ���������	
�������� !������"� #���

!$����%�����&� �'�	
�����""��� ���
������	"(�)�	��� �#� ���'	��� ���$
	��	'��� *)� %

+� ,������	�+� %)� %�--.%/.��

�0�� 1���� �����"�� 2�� 3$����$������ ��� ��4�	5&6� ���� ��� 7���$�"�� ������	� �#� $
�%1�����

��	����	
���������#���������#�819��:��6����"(�;� �%<�=��'��&�0///��

�>�� ��� $
��������"	�����!�����������#���6%��&��%�'?��:���$������'	��(�;�	���	��������	"�

�'�'"	��-->��

�@�� ��� 3����� �	� ���� �������	"� �#� ��'"�?��� 8?A��	%8�
��	��� !�#	4���(� ���
"��%:�"��&�

���#�""
����� ���'	
���!��
�"��--B��

�B�� =�� 3
?"��� ��� 2'�5�)�� 8#��	� ��� ;���4
	5� =�� ;����""&� ���� ��� ;�
��
�$�� CD1�!;� �"��

*!
�'��	��,� D1�!;E� ��"
��� 	$�� !
�'��	
��� 1���C�� �������
��"� �#� 	$�� -	$� ��	����	
�����

 ��#������� ��� ���$
	��	'���� !'����	� #��� ��������
��� 1���'���"� ���� 8����	
��� !&"	��"�

*�!�18!,�����@-%BF������?���0///���

�<�� =���� ='��� ��� !��� ��#������� ���'��(� �
��� +�
���"
	&� ����	�
���� ���� ���'	���

���
����
���)����	���	�����$��-->��

�.�� ������� ���������� ���'	��%�
���� ���
����
��� 9���"(� 7��
���� �1� ��#������� ���'���

�---��

�F��)��1���"6
�=��1�'����2��3$����$������:��:�?������3'�	��=��;����""&����;���4
	5�����

��!�� 1��� �9$�� !	��#����)�"$��'�	
�����""��(� ����� ���'	��� 7��� 0B� ���>� ���� <>%.-�

����$��--0��

�-�� 7�!�� ��
� ��� �������	$��� ���� !�7�� ������ C�!��E� ��� �G��'	
��%)�
���� !
�'��	��� #��� �1�%

��"���!$����%�����&��'�	
�����""��"�����+�
�����""��"C�������9 ����4"��		���8�	�?���

�--.��

��/�����=�� ���	��� ���!
����� !
�'��	��� #����'�	
����'	�����'	
�����	4��6"(� ��	��$� ���'	���

!�
�����9������$��--0��

������7�� �'��	�� �� �5'� ��� ��
�
��� =���� 3�����
�� D�� 7����A�� ���� =���� ������5�� �9$�� ����	
���

�'??�����'	��(� =�'����������������� ����)
"	�
?'	��� ���'	
����9��?���'?�
"$���
���'�'"	�

0//��

��0��������"��?�'������'��
���!����;����������!��)��
����+"
���	$��!
�8!����$
���"
�'��	���

	�� "	'�&� ������G� ����'	��� "&"	��"(� � �� 9���"��	
��"� ��� �����
��� ���� ���'	���

!
�'��	
���.*�,E.FE�/>�=�����--.��

��>����!0H�9��1�� �)/.�)�"
���2
	���#����������'��*/�.�µ�,��

��@���=����������5��7���'��	�� =����3�����
��&������
�
����!� 8!�!E�+��!
�'�������������"����

��	������G
I�� ����� ���'	�����"� ��������"(� *
�� !���
"$,� ��	�"� ��� ��"� ��� =������"� ���

�������
"����!���!�?�"	
���%�!��	��?�������--F��

 13

��B���!�� :��� ��� 8$���� ��� 9���
�� =���� !
��$� ���� ��� 3'�	��� �9$�� !�1�!;%0� �������"E�

 $����	��
5�	
��� ������	$������
���� ���"
����	
��"(� �������
��"� �#� 	$�� 00��� ��	����	
�����

!&���"
'����� ���'	������$
	��	'���='����--B��

��

