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ABSTRACT 
Performance comparison is a key task in computer architecture 
research. These evaluations might need to consider the scenario 
where resources are shared concurrently by a wide range of 
application classes. In many cases, well known benchmarking 
tools, such as SpecCPU do not provide evaluation metrics under 
such usage circumstances. Previous attempts to fill the gap with 
realistic workloads have reiled on random combination of 
applications, formulating performance comparison as a statistical 
task to reduce the population size. The computational cost of these 
approaches is substantial, given the large mix required to achieve 
statistically meaningful results. In this paper, we present SPECcast, 
a methodology for the SPEC CPU2017 suite, which can circumvent 
this issue. The idea relies on exploiting the inner application 
characteristics to minimize the computational cost without 
degrading the statistical significance of the results. Using manual 
source-code annotation, we determine a small portion of each 
application, denoted Region of Interest (ROI), that accurately 
resembles the whole program’s characteristics. Then, we develop 
synchronization mechanisms that can concurrently run any 
combination of applications in the cores of the system. This enables 
us to run multiprogrammed SPEC workloads ~95% faster without 
losing statistical significance.  

A detailed validation of the proposed methodology will be 
performed and three different use cases for the methodology will 
be described: Fast performance evaluation of micro-architectural 
features (prefetching in this case) in real systems, system 
comparisons and application characterization using full-system 
simulation. 
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1 Introduction and Motivation 
Nowadays, almost every activity relies on some kind of computing 
device to work properly. In some of these environments, 
computation resources run applications of disparate nature 
concurrently. Cloud computing could be considered the main 
exponent of this class of workload. The market share of this usage 
scenario is predominant in many scenarios as it represents a 
significant fraction of the server processor market [1][2]. In such 
settings, the responsiveness of an application executing on a shared 
machine (usually a multi-socket with multi-core processors) might 

be influenced by other applications running concurrently on the 
same machine. Therefore, anticipating and/or preventing such 
cross-effects might have a large economic impact on both the 
service provider and the final user of the infrastructure. 
Performance evaluation, focused on the comparison of alternative 
architectures/computers, is a fundamental practice for researchers. 
This task is usually performed making use of a reduced set of 
applications considered representative of a much broader scenario. 
Among the multiple suites available [3][4][5][6][7], SPEC CPU 
(2006 and 2017 [7] versions) is one of the most widely used in the 
computer architecture community [7]. This suite, developed to be 
representative of realistic applications, provides a standardized way 
to measure and compare computationally-intensive performance 
among different platforms and/or combinations in the software 
stack and compilers. Unfortunately, the suite is focused on 
performance metrics that might be inaccurate in the aforementioned 
usage scenario. The most relevant metric is SPECrate, where an 
instance of the same application is executed in each core of the 
system under test. Therefore, the SPECrate benchmark limits the 
number of workloads available in the suite to a total of 24. This 
number might not be sufficiently representative for accurate 
performance comparison under heterogenous utilization, like the 
cloud. 
In an attempt to improve the limited performance metrics available, 
previous works have proposed the generation of multiprogrammed 
benchmarks through the random combination of available 
applications [8][9][10]. This approach entails a large population of 
workloads to test. To achieve a feasible performance 
characterization it is necessary to sample it by selecting a smaller 
and more representative set. The representativeness of the group 
selected is usually validated through statistical methods. In most 
cases these approaches rely on the approximation of the 
performance metric by a normal distribution [8], applying the 
Central Limit Theorem [11]. Unfortunately, the number of values 
required to achieve distribution normality can be extremely high 
[12], escaling its computational cost. For example, ensuring a 
successful normality approximation through 1000 workload 
execution [12] would require nearly 4 execution days to be 
completed (assuming an average 5-minute execution for each 
workload). In this paper, we propose an alternative methodology to 
circumvent this issue. The idea is implemented following the steps 
described next. 
Firstly, we performed exhaustive manual code profiling to identify 
and label a loop-based ROI in most SPEC applications. Next, 
making use of hardware performance counters, we could perform a 
detailed per-loop analysis, demonstrating the microarchitectural 
similarity of the multiple iterations inside ROI loop. This confirmed 
that the execution of a single iteration of that ROI loop (or a few in 
some cases) resembles whole execution for many performance 



  
 

 
 

metrics. Limiting execution to that fraction, we could significantly 
reduce the execution time per workload. 
Secondly, we developed a simple lockstep mechanism that 
synchronizes the execution of the ROI selected for different 
applications instances across the cores of the system. The source 
code of every application was annotated including a barrier before 
the ROI loop, allowing us to pause the application execution in any 
pre-defined number of iterations of the main loop. This way, 
mixing different applications on the same processor, we could 
evaluate the performance effects derived from the competition for 
shared hardware resources in any of the potential scenarios found 
in the whole population of workloads. 

Table 1. SPEC CPU2017 Summary 

Application Loop  Iterations Cyc./Iter. (Millions) 
500.perlbench -- -- -- 
502.gcc -- -- -- 
503.bwaves Yes 80/130/110/120 5730/5771/5382/5574 
505.mcf Yes 33 36820 
507.cactuBSSN Yes 80 10541 
508.namd Yes 65 11372 
510.parest Yes 7 219851 
511.povray Yes 2048 730 
519.lbm Yes 44 266 
520.omnetpp Yes 467 3078 
521.wrf Yes 1440 1512 
523.xalancbmk -- -- -- 
525.x264 yes 1000/1000/750 162/602/802 
526.blender yes 20 84745 
527.cam4 Yes 90 13541 
531.deepsjeng Yes 194 5760 
538.imagick Part 5200 134 
541.leela Yes 970 1830 
544.nab Yes 240 5234 
548.exchange2 Yes 54 5121 
549.fotonik3d Yes 1909 883 
554.roms Yes 150 8533 
557.xz Yes 268/344/363 1446/1359/1359 
 
The combination of sampling and synchronization mechanisms 
allowed us to execute, profile and evaluate a large number of 
different workloads in a reasonable time. This way, we obtined 
insights about architectural interactions, by achieving statistically 
meaningful metrics in a practical way. We exhaustively validated 
our results against whole-application execution and demonstrated 
its utility for multiple evaluation experiments: system configuration 
for optimal performance/fairness, performance comparison beyond 
SPECrate and micro-architectural exploration through simulation 
tools. The main contributions of this paper are highlighted next: 

1. We perform a detailed profiling of SPEC CPU2017 
applications, demonstrating the uniform behavior of main 
loop iterations for most applications. 

2. We present a performance evaluation methodology named 
SPECcast, able to execute and evaluate a large number of 
different workloads in a reduced time compared to SPECrate. 

                                                                 
1 In every case where a loop-based ROI is detected, this region represents at least 90% 
of total execution time. 

We validate our methodology comparing to whole application 
execution. 

3. We propose multiple use cases, demonstrating that SPECcast 
can not only improve performance evaluation accuracy but 
can also be extended to alternative metrics such as fairness, 
due to the heterogeneous nature of the workloads, or different 
micro-architectural parameters, such as cache miss-rate, using 
performance counters. 

4. Finally, we also demonstrate the utility of this methodology in 
simulation environments, where it can be employed for micro-
architectural evaluations. 

2 Profiling SPEC 
The Region of Interest of an application is the one consuming the 
largest fraction of execution time and usually devoted to the 
resolution of the main tasks that the application addresses. In many 
applications, ROI is composed of a repetitive pattern, in the shape 
of some kind of iterative control structure such as a for/while 
statement. Making use of the Linux perf tool [13] to identify the hot 
execution spots of application code, the first step of this work 
consisted of finding out whether this loop-based ROI is present in 
SPEC CPU2017 applications. A detailed description of the 
hardware platform employed to perform these experiments is 
provided in Section 3, under the DESKTOP label. The data 
collected in Table 1 show the results of our exploration, detailing 
the presence (or not) of a Loop-based ROI1, as well as the number 
of iterations and cycles per iteration when found. As can be seen, 
we have been able to identify a loop-based ROI in 20 out of 23 
applications. 
Given the repetitive nature of this kind of control loops, a question 
that arises from this code analysis is whether a loop iteration of the 
ROI could be representative of complete application execution. To 
confirm this assumption, micro-architectural metrics for each 
iteration should closely mirror whole-execution results and 
behavior should be similar for every loop iteration. For this reason, 
to evaluate this hypothesis we must make use of hardware 
performance counters to collect representative performance metrics 
for each iteration independently. Considering each metric as a 
random variable (with a number of samples equal to the number of 
iterations), we look for average values similar to whole-execution 
results and a standard deviation that is as small as possible. The 
similarity analysis makes use of IPC, Branch predictor accuracy 
and L1D efficiency. The Linux perf tool [13] is employed to collect 
whole execution metrics. In the case of per-iteration metrics, the 
source code of every SPEC application has been modified in order 
to include event counting for each ROI iteration making use of the 
PAPI-C library [14]. Figure 1 shows the results obtained, one graph 
for each of the metrics evaluated. The two columns in each plot 
represent whole-execution (TOTAL) and single-iteration (LOOP) 
values. In the case of iteration results, metrics are collected for 
every iteration and an average value is calculated. Error bars 
represent the standard deviation of the set of results obtained. 



  
 

 

Focusing on IPC results, we observe that most applications show 
high similarity between LOOP and TOTAL results. 19 out of 26 
workloads present a discrepancy of less than 10%. This observation 
is consistent in other metrics such as L1D Hit Rate, Branch 
predictor accuracy, IPC, etc. Additionally, the small observed 
deviation in all of these should be remarked. Error bars are small 
enough in most cases to consider that micro-architectural metrics 
remain nearly constant in all iterations. 

 

 

 
Figure 1. Similarity analysis for different performance 

metrics: IPC (above), Branch Predictor accuracy (mid) and 
L1D Miss Rate (below). 

Despite the similarity of results in general, it should be noted that 
in some applications (such as 503) the metric TOTAL deviates 
from LOOP. In these cases, we have detected two main sources of 
divergence. First, it must be taken into account that LOOP results 
are limited to the ROI, while TOTAL results cover the whole 
application. The metrics collected outside the ROI are therefore a 
first source of deviation. Second, it can be observed that IPC 
divergences are combined in some cases with large standard 
deviation. For those cases, we have detected a variable ROI 
behavior across different execution phases. For example, Figure 1 
shows the per-iteration IPC for 503. As can be seen, two different 
phases are clearly identified. In these cases, accuracy can be 

                                                                 
2 SPEC CPU 2017 is proprietary code. Annotation is released as a software patch that 
can be applied once the suite has been purchased. 

improved by grouping loop phases, characterizing applications as 
the combination of these phases. If we divide application 503 into 
two different groups (G1 and G2 in Figure 2), and combine the 
performance metrics of each group considering their contribution 
to the total number of loops, we obtain a significant improvement, 
as shown in Figure 2. 
After addressing these accuracy divergences, TOTAL and LOOP 
results are similar enough for all the applications of the SPEC 
benchmark evaluated. The results from this section suggest that the 
mere execution of a small fraction of application ROI resembles the 
whole execution (concerning micro-architectural behavior). 
Relying on this feature, the next section introduces the 
methodology proposed, named SPECcast. 

 

 
Figure 2. Per-iteration IPC of application 503(above). 

Accuracy improvement after grouping iterations (below) 

3 SPECcast 
This methodology tries to implement an alternative evaluation 
system, still relying on SPEC workloads, but making use of a much 
more realistic configuration and at an affordable computational 
cost. Through the subsections SPECcast is described, validated and 
analyzed, ensuring its suitability for performance evaluation. For 
the experiments in this section we use a node configuration 
representative of two different scenarios: desktop-oriented 
configuration (DESKTOP) and scale-out server deployments 
(SERVER). The Desktop configuration is a 4-Core CMP, making 
use of an Intel i5-7500 chip running at 3.40 GHz with 6MB of cache 
and a main memory of 16GB. In contrast, the server configuration 
scales up to 32 Cores, with an Intel Xeon Silver 4216 chip running 
at 2.10 GHz, with 22MB of cache and a main memory of 110Gb. 
Both systems use Debian 9 (stretch), with kernel version 4.9.0. All 
development tools and libraries employed in this work are based on 
the GNU tool set with the versions of the distribution used. All the 
code associated with SPEC annotation2, the methodology proposal 
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and the experiments of the rest of this document is available 
through a public software repository3 (anonymous repository for 
revision). 

3.1 ROI Loop Synchronization 
In order to ensure that all the applications in the workload execute 
at least one iteration of the main loop, SPECcast synchronizes all 
the applications at the beginning of their ROI. SPECcast uses a 
POSIX thread barrier mapped in a shared memory region through 
a POSIX shared memory object. The barrier and the shared 
memory object are created by SPECcast’s main process (or 
Master), which also creates child processes for each application to 
be launched. Using the annotation of the ROI in the previous 
section, we add, with minor code modifications, barrier calls at the 
beginning of the ROI of each application. Parent and children wait 
at the same barrier until all the SPEC apps reach the ROI (usually 
after at least one execution of the ROI). Then, the barrier is raised. 

 
Figure 3. SPECcast Synchronization and execution process. 

To ensure minimal system-related noise in the measurement, such 
as in OS scheduling, we bind each application instance to a 
different core in the system using the sched setaffinity system call. 
The number of applications and the set used is fully parametrizable. 
Additionally, a feature is provided to enable the use of PAPI [14] 
counters to measure the behavior of the SPECs running. The master 
process attaches a PAPI EventSet to each of the application 
instances and starts the Evaluation when all the processes are ready 
for execution (i.e. all have reached the barrier). Available 
performance counters vary with the architecture under evaluation. 
For this reason, only basic ones such as Total cycles 
(PAPI_TOT_CYC) and Total Instructions (PAPI_TOT_INS) are 
included, as they are widely available in x86_64 platforms. The 
execution either ends when all the applications finish their runs or 
runs the loop indefinitely until a given time mark is reached. 

3.2 Validation 
From a statistical point of view, performance can be considered a 
random variable obeying a certain probability distribution. In order 
to validate the proposed methodology, this section carries out a 
similarity test of the performance distributions obtained with 
SPECcast (SCAST label) and with full-application execution 

                                                                 
3 https://github.com/prietop/SPECcast 

described by the rules of execution of SPEC (STOTAL label). For 
STOTAL workloads, each core runs a different application in an 
“infinite loop”, and execution is terminated when every application 
completes at least one complete execution. For the experiments of 
this section we run a sufficiently large number of different 
workloads, each with a random mix of SPEC applications. 
Instructions per Cycle (IPC) will be the performance metric used. 
The final value is calculated as the average IPC of the applications 
running on each core of the system under test. 

 
Figure 4. Estimated p-value of the Kolmogorov-Smirnov 

similarity test. Sample size ranging from 20 to 1900 
workloads. 

Similarity is evaluated making use of the two-sample Kolmogorov-
Smirnov test [15], a nonparametric test (does not assume data 
sampled from well-known distributions) that compares the 
cumulative distributions of two datasets. For a growing sample size 
n ∈[100, 200, 300, …, 1500] we run the normality test 100 times, 
generating a different group of workloads each time. 

 

 
Figure 5. Distribution comparison with a 1500 workload 

sample. Cumulative frequency (left) and histogram (right). 
Desktop (above) and Server (below) configurations. 

The results in Figure 4 show, for each sample size, the average, 
maximum and minimum p-value obtained from the statistical 
hypothesis testing. The p-value, or significance probability, is a real 
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value between 0 and 1 employed as an indicator for decision-
making, A small p-value reduces the risk of incorrectly rejecting 
the NULL Hypothesis (which in this experiment is defined as “both 
datasets belong to the same distributions”). In contrast, p-values 
close to 1 tend to confirm this NULL Hypothesis. By convention, 
pre-defined values employed to reject the NULL Hypothesis are 
commonly set to 0.05, 0.01, 0.005, or 0.001. As can be seen in 
Figure 4, for any sample length evaluated, every p-value obtained 
is >>0,05, meaning that there is an extremely high probability of 
both sets belonging to the same probability distribution. 
This similarity can also be displayed visually in both evaluated 
systems. For a sample size of 1500 workloads, Figure 5 represents 
IPC distribution in two different ways, the left graphs represent the 
cumulative frequency of the IPC distribution, while the right ones 
show the same information as a frequency histogram. The results 
above and below correspond to Desktop and Server configurations 
respectively. As can be seen, both datasets follow a pretty similar 
curve, it being hard to distinguish between them. These plots 
confirm the minimal divergences calculated with the Kolmogorov-
Smirnov similarity test. Given the large amount of workloads 
employed for validation, the time spent for this experiment was 
significant. While SCAST values were collected in less than a day, 
it took us several days to complete all STOTAL executions. 

3.3 Accurate Performance Sampling 
The large population size requires the use of sampling in the 
evaluation procedures, relying on statistical methods to guarantee 
that the set used is representative of its total population. In many 
cases, since the applications of each workload are chosen randomly 
and independently from each other, the Central Limit Theorem is 
applied. Therefore, performance distribution will be described by a 
normal distribution. However, in practice it is difficult to determine 
how large the sample must be to achieve normality. In practice, it 
could be unfeasibly large from the computational cost stand-point. 
This section evaluates the effort necessary to achieve normality in 
different throughput metrics. We have chosen two of the most 
frequently used metrics [8]: the IPC throughput (IPCT)and the 
Average Weighted SpeedUp (AWSU). IPCT is defined as the 
arithmetic mean of the IPC values measured at each core. AWSU 
is defined as the arithmetic mean of a speedup value calculated as 
the division between IPC measured at a core and the IPC of the 
same application running alone on the same machine. 
Making use of four sample sizes (20, 50, 200 and 500) we estimate 
the cumulative frequency graph for 10 different datasets (each 
dataset is created randomly selecting 20,50,200,500 samples from 
a 35000-workload population), comparing their distribution to a 
normal one (with mean and standard deviation values obtained 
from a sufficiently large population of 35000 workloads). The 
results in Figure 6 correspond to the IPCT metric, from 20 to 500 
samples. As can be clearly seen, for a small number of samples 
distributions resemble a normal one, but there are significant 
differences. Increasing the number of samples reduces this 
discrepancy. Reaching a strong level of similarity has required the 
utilization of 500 sample datasets, which means that this is the 
minimum size to guarantee distribution normality. Similarly to the 

experiments in previous section, while evaluating this number of 
workloads would extend execution to multiple days, SPECcast 
reduces evaluation time to just a few hours (5-6). 

 

 
Figure 6. Probability distribution of IPCT metric for different 

sample sizes: 20 (a), 50 (b), 200 (c) and 500 (d). 

AWSU provides a different set of results, as seen in Figure 7. In 
this case we observe a similar trend to convergence for large 
samples, but these samples clearly differ from a normal distribution 
[12]. For the largest sample size, we observe that different datasets 
converge to similar distribution functions, but this distribution does 
not fit a normal one. Although not included in the paper, we have 
extended sample size to 5000 workloads and even for this sample 
size normality is not obtained. 

 

 
Figure 7. Probability distribution of AWSU metric for 

different sample sizes: 20 (a), 50 (b), 200 (c) and 500 (d). 
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SPECcast has enables us to reach a large number of workloads 
looking for distribution normality. These results show that 
normality is not always achievable and, in these cases, where it is 
present, the computational effort required to guarantee it is not 
negligible. One of the main strengths of SPECcast is its reduced 
execution time, making it feasible to perform statistical evaluations 
in a reasonable time. 
Additionally, the use of the PAPI-C library to collect hardware 
events extends the metrics available not only to those directly 
related to performance, but to every micro-architecture feature with 
an available monitoring event. Thus, aspects such as memory 
hierarchy performance, branch prediction accuracy or 
frontend/backend inefficiencies could also be statistically explored 
using SPECcast. Finally, thanks to the utilization of 
multiprogrammed workloads, we would also be able to extend 
metrics to those related to quality of service or fairness among 
applications when using shared resources.  

 

 

 
Figure 8. IPC Scatter plot for different execution times of the 

ROI. Y axis corresponds to IPC obtained from full app 
execution. X axis corresponds to SPECcast’s estimated IPC. 

3.4 Speeding Up Evaluation 
From the previous section, it is clear that the number of workloads 
(and time) required for a meaningful statistical evaluation is 
substantial. In our case, the effort depends mainly on two factors: 

the time required to reach the synchronization point and the fraction 
of ROI (number of loop iterations) executed. Previous experiments 
have been performed for a 60-second ROI execution. However, the 
size of a single loop iteration (in terms of execution time) is in many 
cases much less than 60 seconds and this time could therefore be 
reduced. 
Results in Figure 8 analyze, making use of a scatter plot, the 
degradation of similarity as ROI execution time decreases from 40 
to 5 seconds. As expected, as the fraction of ROI executed is 
reduced, the divergence of results increases. With a small execution 
time, many applications are not able to complete a loop iteration, 
harming the assumed similarity. Analyzing the results in depth, 
running again the two-sample Kolmogorov-Smirnov test, we 
conclude that a 10-second ROI is the lower limit guaranteeing 
correctness for this specific benchmark suite. This reduction in 
execution time has a significant influence on the time required to 
perform a performance evaluation. To illustrate this advantage, the 
results in Figure 9 show the reduction in evaluation time obtained 
with SPECcast, for the different ROI fractions executed. Values are 
normalized to the time required to run the whole application. As 
can be seen, limiting the ROI to 10 seconds we are able to reduce 
the evaluation time by more than 90%, which becomes relevant 
when the number of workloads required is close to one thousand, 
as shown in previous section. 

 
Figure 9. Evaluation time for different ROI execution 

fractions. Results are normalized to the execution of complete 
SPEC applications. 

After ROI reduction, there is still an unavoidable execution time 
for every workload, which corresponds to the required time to reach 
the synchronization point. In this case, a possible way to reduce this 
time could be to limit the applications included for evaluation 
purposes. Among all SPEC apps, we have detected that a few of 
them require a much longer time to reach synchronization, as can 
be seen in Figure 10. If faster evaluations are needed, we could limit 
the number of applications conforming the workloads, eliminating 
those with a higher synchronization delay. Of course, these smaller 
groups reduce the accuracy of the evaluation process, but could be 
useful as preliminary tests. 
From the time-to-barrier results, we can define three application 
groups: those below 30, 20 and 10 seconds (G1, G2, G3 
respectively). As can be seen, with the different groups defined, we 
are able to reduce the execution time even more. For the most 
aggressive grouping (SCAST-G3), we reach a 96% time reduction, 
which means that we can reduce a 2-day evaluation with STOTAL 
to a 2-hour execution making use of SCAST. 
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Figure 10. (left) Time to reach the synchronization barrier for 

each SPEC application. (right) Reduction in execution time 
derived from discarding slow-sync applications. 

4 Use Case 1: Evaluating Prefetch Effect on 
Performance 

As the first usage case, we will compare the system performance 
benefit with and without hardware prefetching. Recent Intel server 
processors have two hardware prefetching mechanisms, which can 
be enabled/disabled through a specific MSR register. These two 
prefetchers work on the unified L2 cache, detecting a stride (Data 
Prefetch Logic) or fetching adjacent 64-byte cache lines (L2 
Streaming Prefetch). We will run the experiment making use of 
both the “official” SPECrate mode and our methodology. 
SPECcast results are obtained after running 1000 workloads with a 
10-second ROI each. The number of SPECcast workloads has been 
chosen to take a similar amount of time to the SPECrate evaluation, 
but in fact it could have been performed in half the time, because 
500 workloads is enough to ensure distribution normality, as seen 
in Section 3.3. The performance comparison is presented in a 
similar way to [8]. Let PFON and PFOFF be two random variables 
corresponding to IPC Throughput (with and without prefetching). 
According to Section 3.3, both variables have a normal distribution, 
so we can also define the random variable D as the per-workload 
throughput difference (D = PFON - PFOFF). As the new random 
variable D can also be approximated by a normal distribution, the 
degree of confidence that PFON is better than PFOFF is equal to the 
probability that D is positive. 

 
Figure 11. Hardware Prefetching Histograms with SPECcast 

and SPECrate. 

Figure 11 shows the performance results obtained with both 
methodologies. The thick lines represent the normal distribution of 
random variable D for SPECcast and SPECrate methodologies and 
the dotted vertical line corresponds to the average value. The 
background bars represent the real histogram obtained for the 
workloads evaluated. As can be seen, there is a direct consequence 
of the reduced number of values provided by SPECrate, which is 
the large variance observed for the normal distribution. In contrast, 
SPECcast is able to provide a performance distribution with a 
narrower variance. SPECrate results indicates that, on average, 
PFON provides a 15% performance improvement over PFOFF with a 
75% degree of confidence (75% of area below the curve for D>0). 
Making use of the proposed methodology, we can provide a 
performance comparison with much more confidence. In the case 
of SPECcast, PFON provides an 18% performance improvement 
compared to PFOFF on average, with a 98% degree of confidence 
(D>0). 
As can be seen in this first experiment, our methodology confirms 
the tendencies observed with SPECrate, but also introduces a 
correction factor derived from heterogeneous workloads (a 20% 
difference is observed on average values) and improves the 
comparison, providing a much higher confidence level in this case. 

 
Figure 12. System Performance comparison of Desktop and 
Server configurations. Probability Density function for each 

set of results. 

5 Use Case 2: System Comparison 
Next, we will illustrate how SPECCast can enhance the 
performance insights that SPECrate is able to provide. In the 
experiment we will compare the two systems under test described 
in Section 3, denoted as Desktop and Server. SPECrate metrics are 
collected through the “official” procedure described in the “Run 
and Reporting Rules” section. Similarly, we make use of SPECcast 
to generate and run as many workloads as possible in a similar run 
time, also collecting performance results. In this case, the metric 
collected for SPECcast will be the total number of instructions 
retired in the interval executed. The results of this experiment are 
shown in Figure 12, where each curve represents a probability 
density function of the values measured. Performance values have 
been normalized to those obtained by SPECrate for Desktop 
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configuration, the mean value for this distribution being equal to 1 
in the graph. 
Two main conclusions can be extracted from this set of results. 
First, the similarity of average values (4,98 vs 4,85 for SERVER 
configuration) confirms that SPECCast provides equivalent 
performance results to official SPECrate numbers. This result 
reinforces the methodology proposed as a complement for 
SPECrate evaluation. Additionally, it can be observed that the 
significantly larger number of workloads evaluated helps to reduce 
the standard deviation of performance distributions. Given the 
statistical formulation usually employed for performance 
comparison (non-deterministic metric), smaller variance increases 
the confidence level that SERVER is better than DESKTOP.  

6 Use Case 3: Simulation 
Reduced computational effort is a clear advantage for performance 
evaluation of real systems and is even more critical for simulation 
tools. Previous studies performed significant effort to reduce the 
time required for detailed hardware simulation 
[16][17][18][19][20]. Many of these solutions rely on sampling 
techniques, where only a small fraction of the whole application is 
executed, while guaranteeing that it resembles the full application. 
Solutions such as Simpoints [16] perform automated code analysis 
to determine execution phases by similarity . It should be noted that 
SPECcast follows a similar approach, and therefore can be 
employed in a similar way for simulation. However, it should be 
noted that simpoints cannot be used to implement the same kind of 
workloads, since it is not possible to synchronize accurately the 
execution of application phases. If we limit the detailed simulation 
to a single iteration of the main loop, our results show that the 
reduction in execution time can be significant, as can be seen in 
Figure 13. As can be seen, time saving ranges from one order of 
magnitude in the worst case to more than 3 orders of magnitude for 
those applications with short iterations. 

 
Figure 13. Estimated improvement in computational cost, 

reducing simulation to a few loop iterationswithin the 
application’s ROI. 

Next, we will use the proposal in memory characterization of the 
suite, where simulation is a better suited framework than real 
systems, since it enables the alteration of architectural parameters 
of the system. Previous works, such as [21][22][23][24], have 
already conduced characterization tasks for SPECCPU 20017. In 
most cases, the characterization has been confined to the use of 
hardware performance counters in real systems. A few works have 

employed some kind of simulation framework [23]. Simulation 
enables much richer profiling, as experiments that are not feasible 
in real hardware can be performed. One example is the evaluation 
of the data working set of the applications under test. Results for 
such an evaluation with simulation tools have been published 
previously in [23], providing a good opportunity to contrast the 
results obtained using the SPECcast methodology. 
For the proposed profiling we make use of the gem5 simulation 
framework [25]. Gem5 provides detailed CPU and memory system 
models, as well as supporting many commercial platforms. We 
make use of virtual machine (VM) based simulation acceleration 
[26] for checkpointing using full-system simulation mode. During 
the boot and warmup phases, the VM will run a replica of the 
simulated machine at near native speed. To achieve a feasible 
characterization, we only use accurate hardware simulation during 
the execution of the required iterations of the Region of Interest 
(ROI) of each application. On reaching the point of interest with 
VM acceleration, a checkpoint (which includes all architectural 
state, i.e. processor, memory, network, etc.) is taken. The 
checkpoint will be loaded subsequently in detailed architectural 
simulation. Starting from each checkpoint, the memory hierarchy 
is warmed up for a sufficient number of cycles before starting to 
collect statistics. In this way we minimize the effect of cold misses 
and warm-up non-architectural state (i.e. prefetchers, branch-
predictors, etc.). 

 

 
Figure 14. Working set size for SpecInt (above) and SpecFP 

(below) benchmarks. 
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For this experiment, we simulate a system with a single core and a 
single split cache level. For each workload, we conduct a cache 
sensitivity analysis through the simulation of multiple cache sizes. 
We modeled a single-level cache hierarchy ranging from 16KB to 
8MB. The 16KB configuration is directly mapped, 32KB cache is 
2-way associative, 64KB cache is 4-way associative and so on. We 
use a 64B block size and true LRU replacement policy. 
Figure 14 shows a smooth Miss Rate decrease as the cache size 
grows for most applications. Most workloads suffer from 
significant miss rates for 16-64Kb cache sizes, Our results confirm 
those obtained in [23], even the special behavior of some 
applications. Thus, benchmarks such as lbm (519) has a high miss-
rate and low cache sensitivity (presents a plain behavior), until 
8MB cache size is reached, fitting some of the working set. On the 
other hand, highly sensitive cache size applications, such as 
cactuBSSN (507), have a continuous miss-rate drop for cache sizes 
ranging from 16KB to 256KB. povray displays similar behavior 
with a working set size close to 256KB, as miss-rate drops to near 
zero, the same result seen in [23]. 

7 Conclusions and Future Work 
In this work we have presented a performance evaluation 
methodology that can overcome the limitations of current 
alternatives. Making use of profiling and synchronization 
mechanisms we can generate a huge amount of multiprogrammed 
workloads running their ROI simultaneously. Additionally, we 
demonstrate than a small fraction of that ROI is in most cases 
representative of the whole-program execution. 
The methodology has been largely validated, demonstrating its 
accuracy compared to full execution and its suitability when 
statistical analysis is required. The methodology provides three 
major improvements over full SPEC execution: First, it can provide 
a higher number of measures in the same amount of time, or the 
same number of measures in a shorter time. Secondly, it allows the 
measurement of multiple microarchitectural parameters (as many 
as they are available in the PMU of the system under evaluation).  
Finally, it provides hybrid workloads, where different applications 
run simultaneously on the same system, which enables the 
exploration of different metrics, such as fairness, which cannot be 
correctly measured in SPEC rate runs, where all applications 
running are the same. 
We have presented three simple use cases to prove SPECcast’s 
versatility, encouraging future readers to adapt the tools to the huge 
number of possibilities provided. All the code generated for this 
work is open access, with the intention of facilitating its utilization 
by the research community. 

REFERENCES 
[1] D. Coyle and D. Nguyen, “Cloud Computing, Cross-Border Data Flows and New 

Challenges for Measurement in Economics,” Natl. Inst. Econ. Rev., vol. 249, no. 
1, pp. R30–R38, 2019. 

[2] E. Jones, “Cloud Market Share – a Look at the Cloud Ecosystem in 2020,” Kinsta 
Blog, 2020. [Online]. Available: https://kinsta.com/blog/cloud-market-
share/#an-overview-of-the-cloud-computing-market-in-2020. 

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite: 
Characterization and architectural implications,” Proc. Int. Conf. Parallel Archit. 
Compil. Tech., 2008. 

[4] H. Jin, M. Frumkin, and J. Yan, “The OpenMP implementation of NAS parallel 
benchmarks and its performance,” Natl. Aeronaut. Sp. Adm. (NASA), Tech. Rep. 
NAS-99-011, Moffett Field, USA, no. October, 1999. 

[5] M. Ferdman and E. Al., “Clearing the Clouds: A Study of Emerging Scale-out 
Workloads on Modern Hardware,” in ASPLOS’12, 2012, vol. 40, no. Asplos, pp. 
37–48. 

[6] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, 
“Benchmarking cloud serving systems with YCSB,” in Proceedings of the 1st 
ACM symposium on Cloud computing - SoCC ’10, 2010, p. 143. 

[7] “SPEC CPU 2017,” 2017. . 
[8] R. A. Velasquez, P. Michaud, and A. Seznec, “Selecting benchmark 

combinations for the evaluation of multicore throughput,” in ISPASS 2013 - IEEE 
International Symposium on Performance Analysis of Systems and Software, 
2013, pp. 173–182. 

[9] K. Van Craeynest and L. Eeckhout, “The multi-program performance model: 
Debunking current practice in multi-core simulation,” in Proceedings - 2011 
IEEE International Symposium on Workload Characterization, IISWC - 2011, 
2011, pp. 26–37. 

[10] M. Van Biesbrouck, L. Eeckhout, and B. Calder, “Representative multiprogram 
workloads for multithreaded processor simulation,” in Proceedings of the 2007 
IEEE International Symposium on Workload Characterization, IISWC, 2007, pp. 
193–203. 

[11] L. Le Cam, “The central limit theorem around 1935,” Stat. Sci., vol. 1, no. 1, pp. 
78–91, 1986. 

[12] T. Chen, Q. Guo, O. Temam, Y. Wu, Y. Bao, Z. Xu, and Y. Chen, “Statistical 
performance comparisons of computers,” IEEE Trans. Comput., vol. 64, no. 5, 
pp. 1442–1455, 2015. 

[13] A. C. de Melo, “The New Linux ‘perf’ Tools,” Linux Kongress, 2010. 
[14] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting performance data 

with PAPI-C,” in Proceedings of the 3rd International Workshop on Parallel 
Tools for High Performance Computing 2009, 2010, pp. 157–173. 

[15] F. J. Massey, “The Kolmogorov-Smirnov Test for Goodness of Fit,” J. Am. Stat. 
Assoc., vol. 46, no. 253, pp. 68–78, 1951. 

[16] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically 
characterizing large scale program behavior,” in Tenth international conference 
on architectural support for programming languages and operating systems on 
Proceedings of the 10th international conference on architectural support for 
programming languages and operating systems (ASPLOS-X) - ASPLOS ’02, 
2002, p. 45. 

[17] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS: 
Accelerating microarchitecture simulation via rigorous statistical sampling,” in 
Conference Proceedings - Annual International Symposium on Computer 
Architecture, ISCA, 2003, pp. 84–95. 

[18] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi, 
“Pinpointing representative portions of large intel® itanium® programs with 
dynamic instrumentation,” in Proceedings of the Annual International 
Symposium on Microarchitecture, MICRO, 2004, pp. 81–92. 

[19] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J. C. 
Hoe, “SIMFLEX: Statistical sampling of computer system simulation,” IEEE 
Micro, vol. 26, no. 4, pp. 18–30, 2006. 

[20] S. Nussbaum and J. E. Smith, “Modeling superscalar processors via statistical 
simulation,” Parallel Archit. Compil. Tech. - Conf. Proceedings, PACT, pp. 15–
24, 2001. 

[21] R. Panda, S. Song, J. Dean, and L. K. John, “Wait of a Decade: Did SPEC CPU 
2017 Broaden the Performance Horizon?,” in Proceedings - International 
Symposium on High-Performance Computer Architecture, 2018, vol. 2018–
Febru, pp. 271–282. 

[22] A. Limaye and T. Adegbija, “A Workload Characterization of the SPEC 
CPU2017 Benchmark Suite,” in Proceedings - 2018 IEEE International 
Symposium on Performance Analysis of Systems and Software, ISPASS 2018, 
2018, pp. 149–158. 

[23] S. Singh and M. Awasthi, “Memory centric characterization and analysis of SPec 
CPU 2017 suite,” in ICPE 2019 - Proceedings of the 2019 ACM/SPEC 
International Conference on Performance Engineering, 2019, pp. 285–292. 

[24] A. Navarro-Torres, J. Alastruey-Benedé, P. Ibáñez-Marín, and V. Viñals-Yúfera, 
“Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on 
the Intel Xeon Skylake-SP,” PLoS One, vol. 14, no. 8, 2019. 

[25] N. Binkert and E. Al., “The gem5 simulator,” ACM SIGARCH Comput. Archit. 
News, vol. 39, no. 2, p. 1, 2011. 

[26] S. Bischoff, A. Sandberg, A. Hansson, D. Sunwoo, A. G. Saidi, M. Horsnell, and 
B. M. Al-Hashimi, “Flexible and High-Speed System-Level Performance 
Analysis using Hardware-Accelerated Simulation,” Des. Autom. Test Eur., vol. 
39, no. 2, p. 2012, 2013. 

  
 
 


