
SPECcast: A Methodology for Fast Performance Evaluation with
SPEC CPU 2017 Multiprogrammed Workloads

ABSTRACT
Performance comparison is a key task in computer architecture
research. These evaluations might need to consider the scenario
where resources are shared concurrently by a wide range of
application classes. In many cases, well known benchmarking
tools, such as SpecCPU do not provide evaluation metrics under
such usage circumstances. Previous attempts to fill the gap with
realistic workloads have reiled on random combination of
applications, formulating performance comparison as a statistical
task to reduce the population size. The computational cost of these
approaches is substantial, given the large mix required to achieve
statistically meaningful results. In this paper, we present SPECcast,
a methodology for the SPEC CPU2017 suite, which can circumvent
this issue. The idea relies on exploiting the inner application
characteristics to minimize the computational cost without
degrading the statistical significance of the results. Using manual
source-code annotation, we determine a small portion of each
application, denoted Region of Interest (ROI), that accurately
resembles the whole program’s characteristics. Then, we develop
synchronization mechanisms that can concurrently run any
combination of applications in the cores of the system. This enables
us to run multiprogrammed SPEC workloads ~95% faster without
losing statistical significance.

A detailed validation of the proposed methodology will be
performed and three different use cases for the methodology will
be described: Fast performance evaluation of micro-architectural
features (prefetching in this case) in real systems, system
comparisons and application characterization using full-system
simulation.

CCS CONCEPTS
•Performance, Evaluation, Metrics

KEYWORDS
Benchmark, Performance evaluation.

1 Introduction and Motivation
Nowadays, almost every activity relies on some kind of computing
device to work properly. In some of these environments,
computation resources run applications of disparate nature
concurrently. Cloud computing could be considered the main
exponent of this class of workload. The market share of this usage
scenario is predominant in many scenarios as it represents a
significant fraction of the server processor market [1][2]. In such
settings, the responsiveness of an application executing on a shared
machine (usually a multi-socket with multi-core processors) might

be influenced by other applications running concurrently on the
same machine. Therefore, anticipating and/or preventing such
cross-effects might have a large economic impact on both the
service provider and the final user of the infrastructure.
Performance evaluation, focused on the comparison of alternative
architectures/computers, is a fundamental practice for researchers.
This task is usually performed making use of a reduced set of
applications considered representative of a much broader scenario.
Among the multiple suites available [3][4][5][6][7], SPEC CPU
(2006 and 2017 [7] versions) is one of the most widely used in the
computer architecture community [7]. This suite, developed to be
representative of realistic applications, provides a standardized way
to measure and compare computationally-intensive performance
among different platforms and/or combinations in the software
stack and compilers. Unfortunately, the suite is focused on
performance metrics that might be inaccurate in the aforementioned
usage scenario. The most relevant metric is SPECrate, where an
instance of the same application is executed in each core of the
system under test. Therefore, the SPECrate benchmark limits the
number of workloads available in the suite to a total of 24. This
number might not be sufficiently representative for accurate
performance comparison under heterogenous utilization, like the
cloud.
In an attempt to improve the limited performance metrics available,
previous works have proposed the generation of multiprogrammed
benchmarks through the random combination of available
applications [8][9][10]. This approach entails a large population of
workloads to test. To achieve a feasible performance
characterization it is necessary to sample it by selecting a smaller
and more representative set. The representativeness of the group
selected is usually validated through statistical methods. In most
cases these approaches rely on the approximation of the
performance metric by a normal distribution [8], applying the
Central Limit Theorem [11]. Unfortunately, the number of values
required to achieve distribution normality can be extremely high
[12], escaling its computational cost. For example, ensuring a
successful normality approximation through 1000 workload
execution [12] would require nearly 4 execution days to be
completed (assuming an average 5-minute execution for each
workload). In this paper, we propose an alternative methodology to
circumvent this issue. The idea is implemented following the steps
described next.
Firstly, we performed exhaustive manual code profiling to identify
and label a loop-based ROI in most SPEC applications. Next,
making use of hardware performance counters, we could perform a
detailed per-loop analysis, demonstrating the microarchitectural
similarity of the multiple iterations inside ROI loop. This confirmed
that the execution of a single iteration of that ROI loop (or a few in
some cases) resembles whole execution for many performance

metrics. Limiting execution to that fraction, we could significantly
reduce the execution time per workload.
Secondly, we developed a simple lockstep mechanism that
synchronizes the execution of the ROI selected for different
applications instances across the cores of the system. The source
code of every application was annotated including a barrier before
the ROI loop, allowing us to pause the application execution in any
pre-defined number of iterations of the main loop. This way,
mixing different applications on the same processor, we could
evaluate the performance effects derived from the competition for
shared hardware resources in any of the potential scenarios found
in the whole population of workloads.

Table 1. SPEC CPU2017 Summary

Application Loop Iterations Cyc./Iter. (Millions)
500.perlbench -- -- --
502.gcc -- -- --
503.bwaves Yes 80/130/110/120 5730/5771/5382/5574
505.mcf Yes 33 36820
507.cactuBSSN Yes 80 10541
508.namd Yes 65 11372
510.parest Yes 7 219851
511.povray Yes 2048 730
519.lbm Yes 44 266
520.omnetpp Yes 467 3078
521.wrf Yes 1440 1512
523.xalancbmk -- -- --
525.x264 yes 1000/1000/750 162/602/802
526.blender yes 20 84745
527.cam4 Yes 90 13541
531.deepsjeng Yes 194 5760
538.imagick Part 5200 134
541.leela Yes 970 1830
544.nab Yes 240 5234
548.exchange2 Yes 54 5121
549.fotonik3d Yes 1909 883
554.roms Yes 150 8533
557.xz Yes 268/344/363 1446/1359/1359

The combination of sampling and synchronization mechanisms
allowed us to execute, profile and evaluate a large number of
different workloads in a reasonable time. This way, we obtined
insights about architectural interactions, by achieving statistically
meaningful metrics in a practical way. We exhaustively validated
our results against whole-application execution and demonstrated
its utility for multiple evaluation experiments: system configuration
for optimal performance/fairness, performance comparison beyond
SPECrate and micro-architectural exploration through simulation
tools. The main contributions of this paper are highlighted next:

1. We perform a detailed profiling of SPEC CPU2017
applications, demonstrating the uniform behavior of main
loop iterations for most applications.

2. We present a performance evaluation methodology named
SPECcast, able to execute and evaluate a large number of
different workloads in a reduced time compared to SPECrate.

1 In every case where a loop-based ROI is detected, this region represents at least 90%
of total execution time.

We validate our methodology comparing to whole application
execution.

3. We propose multiple use cases, demonstrating that SPECcast
can not only improve performance evaluation accuracy but
can also be extended to alternative metrics such as fairness,
due to the heterogeneous nature of the workloads, or different
micro-architectural parameters, such as cache miss-rate, using
performance counters.

4. Finally, we also demonstrate the utility of this methodology in
simulation environments, where it can be employed for micro-
architectural evaluations.

2 Profiling SPEC
The Region of Interest of an application is the one consuming the
largest fraction of execution time and usually devoted to the
resolution of the main tasks that the application addresses. In many
applications, ROI is composed of a repetitive pattern, in the shape
of some kind of iterative control structure such as a for/while
statement. Making use of the Linux perf tool [13] to identify the hot
execution spots of application code, the first step of this work
consisted of finding out whether this loop-based ROI is present in
SPEC CPU2017 applications. A detailed description of the
hardware platform employed to perform these experiments is
provided in Section 3, under the DESKTOP label. The data
collected in Table 1 show the results of our exploration, detailing
the presence (or not) of a Loop-based ROI1, as well as the number
of iterations and cycles per iteration when found. As can be seen,
we have been able to identify a loop-based ROI in 20 out of 23
applications.
Given the repetitive nature of this kind of control loops, a question
that arises from this code analysis is whether a loop iteration of the
ROI could be representative of complete application execution. To
confirm this assumption, micro-architectural metrics for each
iteration should closely mirror whole-execution results and
behavior should be similar for every loop iteration. For this reason,
to evaluate this hypothesis we must make use of hardware
performance counters to collect representative performance metrics
for each iteration independently. Considering each metric as a
random variable (with a number of samples equal to the number of
iterations), we look for average values similar to whole-execution
results and a standard deviation that is as small as possible. The
similarity analysis makes use of IPC, Branch predictor accuracy
and L1D efficiency. The Linux perf tool [13] is employed to collect
whole execution metrics. In the case of per-iteration metrics, the
source code of every SPEC application has been modified in order
to include event counting for each ROI iteration making use of the
PAPI-C library [14]. Figure 1 shows the results obtained, one graph
for each of the metrics evaluated. The two columns in each plot
represent whole-execution (TOTAL) and single-iteration (LOOP)
values. In the case of iteration results, metrics are collected for
every iteration and an average value is calculated. Error bars
represent the standard deviation of the set of results obtained.

Focusing on IPC results, we observe that most applications show
high similarity between LOOP and TOTAL results. 19 out of 26
workloads present a discrepancy of less than 10%. This observation
is consistent in other metrics such as L1D Hit Rate, Branch
predictor accuracy, IPC, etc. Additionally, the small observed
deviation in all of these should be remarked. Error bars are small
enough in most cases to consider that micro-architectural metrics
remain nearly constant in all iterations.

Figure 1. Similarity analysis for different performance

metrics: IPC (above), Branch Predictor accuracy (mid) and
L1D Miss Rate (below).

Despite the similarity of results in general, it should be noted that
in some applications (such as 503) the metric TOTAL deviates
from LOOP. In these cases, we have detected two main sources of
divergence. First, it must be taken into account that LOOP results
are limited to the ROI, while TOTAL results cover the whole
application. The metrics collected outside the ROI are therefore a
first source of deviation. Second, it can be observed that IPC
divergences are combined in some cases with large standard
deviation. For those cases, we have detected a variable ROI
behavior across different execution phases. For example, Figure 1
shows the per-iteration IPC for 503. As can be seen, two different
phases are clearly identified. In these cases, accuracy can be

2 SPEC CPU 2017 is proprietary code. Annotation is released as a software patch that
can be applied once the suite has been purchased.

improved by grouping loop phases, characterizing applications as
the combination of these phases. If we divide application 503 into
two different groups (G1 and G2 in Figure 2), and combine the
performance metrics of each group considering their contribution
to the total number of loops, we obtain a significant improvement,
as shown in Figure 2.
After addressing these accuracy divergences, TOTAL and LOOP
results are similar enough for all the applications of the SPEC
benchmark evaluated. The results from this section suggest that the
mere execution of a small fraction of application ROI resembles the
whole execution (concerning micro-architectural behavior).
Relying on this feature, the next section introduces the
methodology proposed, named SPECcast.

Figure 2. Per-iteration IPC of application 503(above).

Accuracy improvement after grouping iterations (below)

3 SPECcast
This methodology tries to implement an alternative evaluation
system, still relying on SPEC workloads, but making use of a much
more realistic configuration and at an affordable computational
cost. Through the subsections SPECcast is described, validated and
analyzed, ensuring its suitability for performance evaluation. For
the experiments in this section we use a node configuration
representative of two different scenarios: desktop-oriented
configuration (DESKTOP) and scale-out server deployments
(SERVER). The Desktop configuration is a 4-Core CMP, making
use of an Intel i5-7500 chip running at 3.40 GHz with 6MB of cache
and a main memory of 16GB. In contrast, the server configuration
scales up to 32 Cores, with an Intel Xeon Silver 4216 chip running
at 2.10 GHz, with 22MB of cache and a main memory of 110Gb.
Both systems use Debian 9 (stretch), with kernel version 4.9.0. All
development tools and libraries employed in this work are based on
the GNU tool set with the versions of the distribution used. All the
code associated with SPEC annotation2, the methodology proposal

0

1

2

3

4

50
3.

1
50

3.
2

50
3.

3
50

3.
4

50
5

50
7

50
8

51
0

51
1

51
9

52
0

52
5.

1
52

5.
2

52
5.

3
52

6
52

7
53

1
53

8
54

1
54

4
54

8
54

9
55

4
55

7.
1

55
7.

2
55

7.
3

In
st

ru
ct

io
ns

 p
er

 C
yc

le TOTAL
LOOP

80

85

90

95

100

50
3.

1
50

3.
2

50
3.

3
50

3.
4

50
5

50
7

50
8

51
0

51
1

51
9

52
0

52
5.

1
52

5.
2

52
5.

3
52

6
52

7
53

1
53

8
54

1
54

4
54

8
54

9
55

4
55

7.
1

55
7.

2
55

7.
3

B
pr

ed
 A

cc
ur

ac
y

TOTAL LOOP

0

50

100

150

50
3.

1
50

3.
2

50
3.

3
50

3.
4

50
5

50
7

50
8

51
0

51
1

51
9

52
0

52
5.

1
52

5.
2

52
5.

3
52

6
52

7
53

1
53

8
54

1
54

4
54

8
54

9
55

4
55

7.
1

55
7.

2
55

7.
3

L1
D

 M
PK

I

TOTAL LOOP

0

0,5

1

1,5

2

2,5

3

3,5

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

In
st

ru
ct

io
ns

 P
er

 C
yc

le
Loop Iteration

0
0,5

1
1,5

2
2,5

TO
TA

L

LO
O

P

L-
G

R
O

U
P

TO
TA

L

LO
O

P

L-
G

R
O

U
P

TO
TA

L

LO
O

P

L-
G

R
O

U
P

TO
TA

L

LO
O

P

L-
G

R
O

U
P

503.1 503.2 503.3 503.4

GLOBAL G1 G2

and the experiments of the rest of this document is available
through a public software repository3 (anonymous repository for
revision).

3.1 ROI Loop Synchronization
In order to ensure that all the applications in the workload execute
at least one iteration of the main loop, SPECcast synchronizes all
the applications at the beginning of their ROI. SPECcast uses a
POSIX thread barrier mapped in a shared memory region through
a POSIX shared memory object. The barrier and the shared
memory object are created by SPECcast’s main process (or
Master), which also creates child processes for each application to
be launched. Using the annotation of the ROI in the previous
section, we add, with minor code modifications, barrier calls at the
beginning of the ROI of each application. Parent and children wait
at the same barrier until all the SPEC apps reach the ROI (usually
after at least one execution of the ROI). Then, the barrier is raised.

Figure 3. SPECcast Synchronization and execution process.

To ensure minimal system-related noise in the measurement, such
as in OS scheduling, we bind each application instance to a
different core in the system using the sched setaffinity system call.
The number of applications and the set used is fully parametrizable.
Additionally, a feature is provided to enable the use of PAPI [14]
counters to measure the behavior of the SPECs running. The master
process attaches a PAPI EventSet to each of the application
instances and starts the Evaluation when all the processes are ready
for execution (i.e. all have reached the barrier). Available
performance counters vary with the architecture under evaluation.
For this reason, only basic ones such as Total cycles
(PAPI_TOT_CYC) and Total Instructions (PAPI_TOT_INS) are
included, as they are widely available in x86_64 platforms. The
execution either ends when all the applications finish their runs or
runs the loop indefinitely until a given time mark is reached.

3.2 Validation
From a statistical point of view, performance can be considered a
random variable obeying a certain probability distribution. In order
to validate the proposed methodology, this section carries out a
similarity test of the performance distributions obtained with
SPECcast (SCAST label) and with full-application execution

3 https://github.com/prietop/SPECcast

described by the rules of execution of SPEC (STOTAL label). For
STOTAL workloads, each core runs a different application in an
“infinite loop”, and execution is terminated when every application
completes at least one complete execution. For the experiments of
this section we run a sufficiently large number of different
workloads, each with a random mix of SPEC applications.
Instructions per Cycle (IPC) will be the performance metric used.
The final value is calculated as the average IPC of the applications
running on each core of the system under test.

Figure 4. Estimated p-value of the Kolmogorov-Smirnov

similarity test. Sample size ranging from 20 to 1900
workloads.

Similarity is evaluated making use of the two-sample Kolmogorov-
Smirnov test [15], a nonparametric test (does not assume data
sampled from well-known distributions) that compares the
cumulative distributions of two datasets. For a growing sample size
n ∈[100, 200, 300, …, 1500] we run the normality test 100 times,
generating a different group of workloads each time.

Figure 5. Distribution comparison with a 1500 workload

sample. Cumulative frequency (left) and histogram (right).
Desktop (above) and Server (below) configurations.

The results in Figure 4 show, for each sample size, the average,
maximum and minimum p-value obtained from the statistical
hypothesis testing. The p-value, or significance probability, is a real

0

0,2

0,4

0,6

0,8

1

0 500 1000 1500 2000

0

0,5

1

0,
1

0,
4

0,
7 1

1,
3

1,
6

1,
9

2,
2

2,
5

2,
8

3,
1

3,
4

3,
7 4

SCAST
STOTAL

0

0,05

0,1

0,15

0 0,5 1 1,5 2 2,5 3 3,5 4

SCAST

STOTAL

0

0,2

0,4

0,6

0,8

1

0,
1

0,
4

0,
7 1

1,
3

1,
6

1,
9

2,
2

2,
5

2,
8

3,
1

3,
4

3,
7 4

SCAST

STOTAL
0

0,05

0,1

0,15

0 0,5 1 1,5 2 2,5 3 3,5 4

SCAST
STOTAL

value between 0 and 1 employed as an indicator for decision-
making, A small p-value reduces the risk of incorrectly rejecting
the NULL Hypothesis (which in this experiment is defined as “both
datasets belong to the same distributions”). In contrast, p-values
close to 1 tend to confirm this NULL Hypothesis. By convention,
pre-defined values employed to reject the NULL Hypothesis are
commonly set to 0.05, 0.01, 0.005, or 0.001. As can be seen in
Figure 4, for any sample length evaluated, every p-value obtained
is >>0,05, meaning that there is an extremely high probability of
both sets belonging to the same probability distribution.
This similarity can also be displayed visually in both evaluated
systems. For a sample size of 1500 workloads, Figure 5 represents
IPC distribution in two different ways, the left graphs represent the
cumulative frequency of the IPC distribution, while the right ones
show the same information as a frequency histogram. The results
above and below correspond to Desktop and Server configurations
respectively. As can be seen, both datasets follow a pretty similar
curve, it being hard to distinguish between them. These plots
confirm the minimal divergences calculated with the Kolmogorov-
Smirnov similarity test. Given the large amount of workloads
employed for validation, the time spent for this experiment was
significant. While SCAST values were collected in less than a day,
it took us several days to complete all STOTAL executions.

3.3 Accurate Performance Sampling
The large population size requires the use of sampling in the
evaluation procedures, relying on statistical methods to guarantee
that the set used is representative of its total population. In many
cases, since the applications of each workload are chosen randomly
and independently from each other, the Central Limit Theorem is
applied. Therefore, performance distribution will be described by a
normal distribution. However, in practice it is difficult to determine
how large the sample must be to achieve normality. In practice, it
could be unfeasibly large from the computational cost stand-point.
This section evaluates the effort necessary to achieve normality in
different throughput metrics. We have chosen two of the most
frequently used metrics [8]: the IPC throughput (IPCT)and the
Average Weighted SpeedUp (AWSU). IPCT is defined as the
arithmetic mean of the IPC values measured at each core. AWSU
is defined as the arithmetic mean of a speedup value calculated as
the division between IPC measured at a core and the IPC of the
same application running alone on the same machine.
Making use of four sample sizes (20, 50, 200 and 500) we estimate
the cumulative frequency graph for 10 different datasets (each
dataset is created randomly selecting 20,50,200,500 samples from
a 35000-workload population), comparing their distribution to a
normal one (with mean and standard deviation values obtained
from a sufficiently large population of 35000 workloads). The
results in Figure 6 correspond to the IPCT metric, from 20 to 500
samples. As can be clearly seen, for a small number of samples
distributions resemble a normal one, but there are significant
differences. Increasing the number of samples reduces this
discrepancy. Reaching a strong level of similarity has required the
utilization of 500 sample datasets, which means that this is the
minimum size to guarantee distribution normality. Similarly to the

experiments in previous section, while evaluating this number of
workloads would extend execution to multiple days, SPECcast
reduces evaluation time to just a few hours (5-6).

Figure 6. Probability distribution of IPCT metric for different

sample sizes: 20 (a), 50 (b), 200 (c) and 500 (d).

AWSU provides a different set of results, as seen in Figure 7. In
this case we observe a similar trend to convergence for large
samples, but these samples clearly differ from a normal distribution
[12]. For the largest sample size, we observe that different datasets
converge to similar distribution functions, but this distribution does
not fit a normal one. Although not included in the paper, we have
extended sample size to 5000 workloads and even for this sample
size normality is not obtained.

Figure 7. Probability distribution of AWSU metric for

different sample sizes: 20 (a), 50 (b), 200 (c) and 500 (d).

0

0,2

0,4

0,6

0,8

1

0 0,5 1 1,5 2 2,5 3 3,5 4

NORMAL
0

0,2

0,4

0,6

0,8

1

0 0,5 1 1,5 2 2,5 3 3,5 4

0

0,2

0,4

0,6

0,8

1

0 0,5 1 1,5 2 2,5 3 3,5 4
0

0,2

0,4

0,6

0,8

1

0 0,5 1 1,5 2 2,5 3 3,5 4

0

0,2

0,4

0,6

0,8

1

0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2

NORMAL

0

0,2

0,4

0,6

0,8

1

0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2

0

0,2

0,4

0,6

0,8

1

0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2
0

0,2

0,4

0,6

0,8

1

0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2

SPECcast has enables us to reach a large number of workloads
looking for distribution normality. These results show that
normality is not always achievable and, in these cases, where it is
present, the computational effort required to guarantee it is not
negligible. One of the main strengths of SPECcast is its reduced
execution time, making it feasible to perform statistical evaluations
in a reasonable time.
Additionally, the use of the PAPI-C library to collect hardware
events extends the metrics available not only to those directly
related to performance, but to every micro-architecture feature with
an available monitoring event. Thus, aspects such as memory
hierarchy performance, branch prediction accuracy or
frontend/backend inefficiencies could also be statistically explored
using SPECcast. Finally, thanks to the utilization of
multiprogrammed workloads, we would also be able to extend
metrics to those related to quality of service or fairness among
applications when using shared resources.

Figure 8. IPC Scatter plot for different execution times of the

ROI. Y axis corresponds to IPC obtained from full app
execution. X axis corresponds to SPECcast’s estimated IPC.

3.4 Speeding Up Evaluation
From the previous section, it is clear that the number of workloads
(and time) required for a meaningful statistical evaluation is
substantial. In our case, the effort depends mainly on two factors:

the time required to reach the synchronization point and the fraction
of ROI (number of loop iterations) executed. Previous experiments
have been performed for a 60-second ROI execution. However, the
size of a single loop iteration (in terms of execution time) is in many
cases much less than 60 seconds and this time could therefore be
reduced.
Results in Figure 8 analyze, making use of a scatter plot, the
degradation of similarity as ROI execution time decreases from 40
to 5 seconds. As expected, as the fraction of ROI executed is
reduced, the divergence of results increases. With a small execution
time, many applications are not able to complete a loop iteration,
harming the assumed similarity. Analyzing the results in depth,
running again the two-sample Kolmogorov-Smirnov test, we
conclude that a 10-second ROI is the lower limit guaranteeing
correctness for this specific benchmark suite. This reduction in
execution time has a significant influence on the time required to
perform a performance evaluation. To illustrate this advantage, the
results in Figure 9 show the reduction in evaluation time obtained
with SPECcast, for the different ROI fractions executed. Values are
normalized to the time required to run the whole application. As
can be seen, limiting the ROI to 10 seconds we are able to reduce
the evaluation time by more than 90%, which becomes relevant
when the number of workloads required is close to one thousand,
as shown in previous section.

Figure 9. Evaluation time for different ROI execution

fractions. Results are normalized to the execution of complete
SPEC applications.

After ROI reduction, there is still an unavoidable execution time
for every workload, which corresponds to the required time to reach
the synchronization point. In this case, a possible way to reduce this
time could be to limit the applications included for evaluation
purposes. Among all SPEC apps, we have detected that a few of
them require a much longer time to reach synchronization, as can
be seen in Figure 10. If faster evaluations are needed, we could limit
the number of applications conforming the workloads, eliminating
those with a higher synchronization delay. Of course, these smaller
groups reduce the accuracy of the evaluation process, but could be
useful as preliminary tests.
From the time-to-barrier results, we can define three application
groups: those below 30, 20 and 10 seconds (G1, G2, G3
respectively). As can be seen, with the different groups defined, we
are able to reduce the execution time even more. For the most
aggressive grouping (SCAST-G3), we reach a 96% time reduction,
which means that we can reduce a 2-day evaluation with STOTAL
to a 2-hour execution making use of SCAST.

0,5

1

1,5

2

2,5

3

0,5 1,5 2,5

40-SECS

0,5

1

1,5

2

2,5

3

0,5 1,5 2,5

20-SECS

0,5

1

1,5

2

2,5

3

3,5

0,5 1,5 2,5 3,5

10-SECS

0,5

1

1,5

2

2,5

3

3,5

0,5 1,5 2,5 3,5

5-SECS

0,5

1

1,5

2

2,5

3

3,5

0,5 1,5 2,5 3,5

2-SECS

0,5

1

1,5

2

2,5

3

3,5

0,5 1,5 2,5 3,5

1-SEC

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

STOTAL

SCAST-40

SCAST-20

SCAST-10
INIT ROI TOTAL

Figure 10. (left) Time to reach the synchronization barrier for

each SPEC application. (right) Reduction in execution time
derived from discarding slow-sync applications.

4 Use Case 1: Evaluating Prefetch Effect on
Performance

As the first usage case, we will compare the system performance
benefit with and without hardware prefetching. Recent Intel server
processors have two hardware prefetching mechanisms, which can
be enabled/disabled through a specific MSR register. These two
prefetchers work on the unified L2 cache, detecting a stride (Data
Prefetch Logic) or fetching adjacent 64-byte cache lines (L2
Streaming Prefetch). We will run the experiment making use of
both the “official” SPECrate mode and our methodology.
SPECcast results are obtained after running 1000 workloads with a
10-second ROI each. The number of SPECcast workloads has been
chosen to take a similar amount of time to the SPECrate evaluation,
but in fact it could have been performed in half the time, because
500 workloads is enough to ensure distribution normality, as seen
in Section 3.3. The performance comparison is presented in a
similar way to [8]. Let PFON and PFOFF be two random variables
corresponding to IPC Throughput (with and without prefetching).
According to Section 3.3, both variables have a normal distribution,
so we can also define the random variable D as the per-workload
throughput difference (D = PFON - PFOFF). As the new random
variable D can also be approximated by a normal distribution, the
degree of confidence that PFON is better than PFOFF is equal to the
probability that D is positive.

Figure 11. Hardware Prefetching Histograms with SPECcast

and SPECrate.

Figure 11 shows the performance results obtained with both
methodologies. The thick lines represent the normal distribution of
random variable D for SPECcast and SPECrate methodologies and
the dotted vertical line corresponds to the average value. The
background bars represent the real histogram obtained for the
workloads evaluated. As can be seen, there is a direct consequence
of the reduced number of values provided by SPECrate, which is
the large variance observed for the normal distribution. In contrast,
SPECcast is able to provide a performance distribution with a
narrower variance. SPECrate results indicates that, on average,
PFON provides a 15% performance improvement over PFOFF with a
75% degree of confidence (75% of area below the curve for D>0).
Making use of the proposed methodology, we can provide a
performance comparison with much more confidence. In the case
of SPECcast, PFON provides an 18% performance improvement
compared to PFOFF on average, with a 98% degree of confidence
(D>0).
As can be seen in this first experiment, our methodology confirms
the tendencies observed with SPECrate, but also introduces a
correction factor derived from heterogeneous workloads (a 20%
difference is observed on average values) and improves the
comparison, providing a much higher confidence level in this case.

Figure 12. System Performance comparison of Desktop and
Server configurations. Probability Density function for each

set of results.

5 Use Case 2: System Comparison
Next, we will illustrate how SPECCast can enhance the
performance insights that SPECrate is able to provide. In the
experiment we will compare the two systems under test described
in Section 3, denoted as Desktop and Server. SPECrate metrics are
collected through the “official” procedure described in the “Run
and Reporting Rules” section. Similarly, we make use of SPECcast
to generate and run as many workloads as possible in a similar run
time, also collecting performance results. In this case, the metric
collected for SPECcast will be the total number of instructions
retired in the interval executed. The results of this experiment are
shown in Figure 12, where each curve represents a probability
density function of the values measured. Performance values have
been normalized to those obtained by SPECrate for Desktop

0

10

20

30

40

50 G1G2G3

0 0,05 0,1 0,15 0,2

STOTAL

SCAST-ALL

SCAST-G1

SCAST-G2

SCAST-G3
INIT
ROI
TOTAL

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

-0
,1

-0
,0

5 0
0,

05 0,
1

0,
15 0,
2

0,
25 0,
3

0,
35 0,
4

0,
45 0,
5

0,
55 0,
6

0,
65 0,
7

0,
75 0,
8

0,
85 0,
9

0,
95 1

SRATE-REAL
SCAST-REAL
SRATE-NORM
SCAST-NORM

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 2 4 6 8 10

SCAST-DESKTOP
SCAST-SERVER
SRATE-DESKTOP
SRATE-SERVER

configuration, the mean value for this distribution being equal to 1
in the graph.
Two main conclusions can be extracted from this set of results.
First, the similarity of average values (4,98 vs 4,85 for SERVER
configuration) confirms that SPECCast provides equivalent
performance results to official SPECrate numbers. This result
reinforces the methodology proposed as a complement for
SPECrate evaluation. Additionally, it can be observed that the
significantly larger number of workloads evaluated helps to reduce
the standard deviation of performance distributions. Given the
statistical formulation usually employed for performance
comparison (non-deterministic metric), smaller variance increases
the confidence level that SERVER is better than DESKTOP.

6 Use Case 3: Simulation
Reduced computational effort is a clear advantage for performance
evaluation of real systems and is even more critical for simulation
tools. Previous studies performed significant effort to reduce the
time required for detailed hardware simulation
[16][17][18][19][20]. Many of these solutions rely on sampling
techniques, where only a small fraction of the whole application is
executed, while guaranteeing that it resembles the full application.
Solutions such as Simpoints [16] perform automated code analysis
to determine execution phases by similarity . It should be noted that
SPECcast follows a similar approach, and therefore can be
employed in a similar way for simulation. However, it should be
noted that simpoints cannot be used to implement the same kind of
workloads, since it is not possible to synchronize accurately the
execution of application phases. If we limit the detailed simulation
to a single iteration of the main loop, our results show that the
reduction in execution time can be significant, as can be seen in
Figure 13. As can be seen, time saving ranges from one order of
magnitude in the worst case to more than 3 orders of magnitude for
those applications with short iterations.

Figure 13. Estimated improvement in computational cost,

reducing simulation to a few loop iterationswithin the
application’s ROI.

Next, we will use the proposal in memory characterization of the
suite, where simulation is a better suited framework than real
systems, since it enables the alteration of architectural parameters
of the system. Previous works, such as [21][22][23][24], have
already conduced characterization tasks for SPECCPU 20017. In
most cases, the characterization has been confined to the use of
hardware performance counters in real systems. A few works have

employed some kind of simulation framework [23]. Simulation
enables much richer profiling, as experiments that are not feasible
in real hardware can be performed. One example is the evaluation
of the data working set of the applications under test. Results for
such an evaluation with simulation tools have been published
previously in [23], providing a good opportunity to contrast the
results obtained using the SPECcast methodology.
For the proposed profiling we make use of the gem5 simulation
framework [25]. Gem5 provides detailed CPU and memory system
models, as well as supporting many commercial platforms. We
make use of virtual machine (VM) based simulation acceleration
[26] for checkpointing using full-system simulation mode. During
the boot and warmup phases, the VM will run a replica of the
simulated machine at near native speed. To achieve a feasible
characterization, we only use accurate hardware simulation during
the execution of the required iterations of the Region of Interest
(ROI) of each application. On reaching the point of interest with
VM acceleration, a checkpoint (which includes all architectural
state, i.e. processor, memory, network, etc.) is taken. The
checkpoint will be loaded subsequently in detailed architectural
simulation. Starting from each checkpoint, the memory hierarchy
is warmed up for a sufficient number of cycles before starting to
collect statistics. In this way we minimize the effect of cold misses
and warm-up non-architectural state (i.e. prefetchers, branch-
predictors, etc.).

Figure 14. Working set size for SpecInt (above) and SpecFP

(below) benchmarks.

0 5E+12 1E+13 1,5E+13 2E+13 2,5E+13

LO
O

P
TO

TA
L

503.1 503.2 503.3 503.4 505 507 508 510 511
519 520 525.1 525.2 525.3 526 527 531 538
541 544 548 549 554 557.1 557.2 557.3

0

0,05

0,1

0,15

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M

M
is

s R
at

e

531 548 502.1
502.2 502.3 502.4
502.5 541 505
520 500.1 500.2
500.3 525.1 525.2
525.3 523 557.1
557.2 557.3

0

0,05

0,1

0,15

0,2

0,25

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M

M
is

s R
at

e

526.1 526.2
507 527
549 538
519 544
508 510
511 554
521

For this experiment, we simulate a system with a single core and a
single split cache level. For each workload, we conduct a cache
sensitivity analysis through the simulation of multiple cache sizes.
We modeled a single-level cache hierarchy ranging from 16KB to
8MB. The 16KB configuration is directly mapped, 32KB cache is
2-way associative, 64KB cache is 4-way associative and so on. We
use a 64B block size and true LRU replacement policy.
Figure 14 shows a smooth Miss Rate decrease as the cache size
grows for most applications. Most workloads suffer from
significant miss rates for 16-64Kb cache sizes, Our results confirm
those obtained in [23], even the special behavior of some
applications. Thus, benchmarks such as lbm (519) has a high miss-
rate and low cache sensitivity (presents a plain behavior), until
8MB cache size is reached, fitting some of the working set. On the
other hand, highly sensitive cache size applications, such as
cactuBSSN (507), have a continuous miss-rate drop for cache sizes
ranging from 16KB to 256KB. povray displays similar behavior
with a working set size close to 256KB, as miss-rate drops to near
zero, the same result seen in [23].

7 Conclusions and Future Work
In this work we have presented a performance evaluation
methodology that can overcome the limitations of current
alternatives. Making use of profiling and synchronization
mechanisms we can generate a huge amount of multiprogrammed
workloads running their ROI simultaneously. Additionally, we
demonstrate than a small fraction of that ROI is in most cases
representative of the whole-program execution.
The methodology has been largely validated, demonstrating its
accuracy compared to full execution and its suitability when
statistical analysis is required. The methodology provides three
major improvements over full SPEC execution: First, it can provide
a higher number of measures in the same amount of time, or the
same number of measures in a shorter time. Secondly, it allows the
measurement of multiple microarchitectural parameters (as many
as they are available in the PMU of the system under evaluation).
Finally, it provides hybrid workloads, where different applications
run simultaneously on the same system, which enables the
exploration of different metrics, such as fairness, which cannot be
correctly measured in SPEC rate runs, where all applications
running are the same.
We have presented three simple use cases to prove SPECcast’s
versatility, encouraging future readers to adapt the tools to the huge
number of possibilities provided. All the code generated for this
work is open access, with the intention of facilitating its utilization
by the research community.

REFERENCES
[1] D. Coyle and D. Nguyen, “Cloud Computing, Cross-Border Data Flows and New

Challenges for Measurement in Economics,” Natl. Inst. Econ. Rev., vol. 249, no.
1, pp. R30–R38, 2019.

[2] E. Jones, “Cloud Market Share – a Look at the Cloud Ecosystem in 2020,” Kinsta
Blog, 2020. [Online]. Available: https://kinsta.com/blog/cloud-market-
share/#an-overview-of-the-cloud-computing-market-in-2020.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite:
Characterization and architectural implications,” Proc. Int. Conf. Parallel Archit.
Compil. Tech., 2008.

[4] H. Jin, M. Frumkin, and J. Yan, “The OpenMP implementation of NAS parallel
benchmarks and its performance,” Natl. Aeronaut. Sp. Adm. (NASA), Tech. Rep.
NAS-99-011, Moffett Field, USA, no. October, 1999.

[5] M. Ferdman and E. Al., “Clearing the Clouds: A Study of Emerging Scale-out
Workloads on Modern Hardware,” in ASPLOS’12, 2012, vol. 40, no. Asplos, pp.
37–48.

[6] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of the 1st
ACM symposium on Cloud computing - SoCC ’10, 2010, p. 143.

[7] “SPEC CPU 2017,” 2017. .
[8] R. A. Velasquez, P. Michaud, and A. Seznec, “Selecting benchmark

combinations for the evaluation of multicore throughput,” in ISPASS 2013 - IEEE
International Symposium on Performance Analysis of Systems and Software,
2013, pp. 173–182.

[9] K. Van Craeynest and L. Eeckhout, “The multi-program performance model:
Debunking current practice in multi-core simulation,” in Proceedings - 2011
IEEE International Symposium on Workload Characterization, IISWC - 2011,
2011, pp. 26–37.

[10] M. Van Biesbrouck, L. Eeckhout, and B. Calder, “Representative multiprogram
workloads for multithreaded processor simulation,” in Proceedings of the 2007
IEEE International Symposium on Workload Characterization, IISWC, 2007, pp.
193–203.

[11] L. Le Cam, “The central limit theorem around 1935,” Stat. Sci., vol. 1, no. 1, pp.
78–91, 1986.

[12] T. Chen, Q. Guo, O. Temam, Y. Wu, Y. Bao, Z. Xu, and Y. Chen, “Statistical
performance comparisons of computers,” IEEE Trans. Comput., vol. 64, no. 5,
pp. 1442–1455, 2015.

[13] A. C. de Melo, “The New Linux ‘perf’ Tools,” Linux Kongress, 2010.
[14] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting performance data

with PAPI-C,” in Proceedings of the 3rd International Workshop on Parallel
Tools for High Performance Computing 2009, 2010, pp. 157–173.

[15] F. J. Massey, “The Kolmogorov-Smirnov Test for Goodness of Fit,” J. Am. Stat.
Assoc., vol. 46, no. 253, pp. 68–78, 1951.

[16] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Tenth international conference
on architectural support for programming languages and operating systems on
Proceedings of the 10th international conference on architectural support for
programming languages and operating systems (ASPLOS-X) - ASPLOS ’02,
2002, p. 45.

[17] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:
Accelerating microarchitecture simulation via rigorous statistical sampling,” in
Conference Proceedings - Annual International Symposium on Computer
Architecture, ISCA, 2003, pp. 84–95.

[18] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi,
“Pinpointing representative portions of large intel® itanium® programs with
dynamic instrumentation,” in Proceedings of the Annual International
Symposium on Microarchitecture, MICRO, 2004, pp. 81–92.

[19] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J. C.
Hoe, “SIMFLEX: Statistical sampling of computer system simulation,” IEEE
Micro, vol. 26, no. 4, pp. 18–30, 2006.

[20] S. Nussbaum and J. E. Smith, “Modeling superscalar processors via statistical
simulation,” Parallel Archit. Compil. Tech. - Conf. Proceedings, PACT, pp. 15–
24, 2001.

[21] R. Panda, S. Song, J. Dean, and L. K. John, “Wait of a Decade: Did SPEC CPU
2017 Broaden the Performance Horizon?,” in Proceedings - International
Symposium on High-Performance Computer Architecture, 2018, vol. 2018–
Febru, pp. 271–282.

[22] A. Limaye and T. Adegbija, “A Workload Characterization of the SPEC
CPU2017 Benchmark Suite,” in Proceedings - 2018 IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS 2018,
2018, pp. 149–158.

[23] S. Singh and M. Awasthi, “Memory centric characterization and analysis of SPec
CPU 2017 suite,” in ICPE 2019 - Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering, 2019, pp. 285–292.

[24] A. Navarro-Torres, J. Alastruey-Benedé, P. Ibáñez-Marín, and V. Viñals-Yúfera,
“Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on
the Intel Xeon Skylake-SP,” PLoS One, vol. 14, no. 8, 2019.

[25] N. Binkert and E. Al., “The gem5 simulator,” ACM SIGARCH Comput. Archit.
News, vol. 39, no. 2, p. 1, 2011.

[26] S. Bischoff, A. Sandberg, A. Hansson, D. Sunwoo, A. G. Saidi, M. Horsnell, and
B. M. Al-Hashimi, “Flexible and High-Speed System-Level Performance
Analysis using Hardware-Accelerated Simulation,” Des. Autom. Test Eur., vol.
39, no. 2, p. 2012, 2013.

