
TOPAZ: An Open-Source Interconnection Network Simulator for Chip

Multiprocessors and Supercomputers

Pablo Abad, Pablo Prieto, Lucía G. Menezo, Adrián Colaso, Valentin Puente, José-Ángel Gregorio
Departamento de Electrónica y Computadores

University of Cantabria

Santander, Spain

{abadp, prietop, gregoriol, colasoa, vpuente, monaster} @unican.es

Abstract—As in other computer architecture areas,

interconnection networks research relies most of the times on

simulation tools. This paper announces the release of an open-

source tool suitable to be used for accurate modeling from

small CMP to large supercomputer interconnection networks.

The cycle-accurate modeling of TOPAZ can be used

standalone through synthetic traffic patterns and application-

traces or within full-system evaluation systems such as GEMS

or GEM5 effortlessly. In fact, we provide an advanced

interface that enables the replacement of the original

lightweight but optimistic GEMS and GEM5 network

simulator with limited performance impact on the simulation

time. Our tests indicate that in this context, underestimating

network modeling could induce up to 50% error in the

performance estimation of the simulated system. To minimize

the impact of detailed network modeling on simulation time,

we incorporate mechanisms able to attenuate the higher

computational effort, reducing in this way the slowdown of the

full system simulation with accurate performance estimations.

Additionally, in order to evaluate large-scale networks, we

parallelize the simulator to be able to optimize memory

resources with the growing number of cores available per chip

in the simulation farms. This allows us to simulate node

networks exceeding one million of routers with up to 70%

efficiency in a multithreaded simulation running on twelve

cores.

Keywords; simulator, interconnection networks, chip

multiprocessor, supercomputer

I.INTRODUCTION

Retrospectively, the research in the field of
interconnection networks has mostly been restricted to
supercomputing. However, nowadays the outlook is very
different, and the advent of on-chip interconnection networks
[1] has significantly increased the relevance of the area.
Today, the interconnection network is a key element
everywhere from large supercomputers [2] to high-
performance general purpose chip-multiprocessor [3][4],
through systems-on-a-chip[5]. Different environments with
particular technological constraints and system requirements
have diversified this research area. Although the foundations
of each kind of network are similar, in practice some of the
design parameters are feasible in some fields but not in
others. For example, in the on-chip context, wire availability
is profuse, making it feasible to use ultra wide
communication links. On the contrary, in the off-chip
context, router implementation cost or network energy
consumptions are not first-order design parameters, allowing
the utilization of very large on-network storage. Many other

characteristics such as link latency, network interfaces, node
count, topology, etc. can also have a different impact
depending on the environment, making network proposals
very specific to the system constraints.

This diversification turns into an important handicap
when trying to design “wide-spectrum” simulation tools,
increasing the complexity and computational effort required
to cover multiple environments. As a consequence of this,
many simulation tools used in interconnection networks are
limited to a single field. For chip-multiprocessor-oriented
simulators, such as GARNET [6], which supports the
integration with GEMS [7], it seems adequate to restrict
simulator capabilities targeting only network on chip
requeriments. On the other hand, off-chip system-oriented
tools such as INSEE [8] are focused on simulating tens of
thousands of nodes, which makes more sense in a
supercomputing system. Finally, system-on-chip-oriented
tools, such as NOXIM [9], allow the evaluation of
heterogeneous networks, usually found in this kind of
environment. Like in many computer architecture expertise
areas, more accurate simulation tools imply higher
computational effort. If this tradeoff is not carefully adjusted,
simulations could present an error margin rendering
meaningless the results or the computational effort could turn
simulation time prohibitive. Systems such as SimOS [10] or
GEM5 [11] are able to dynamically adjust this tradeoff when
moving from the initial exploration of the design space to the
final product. A different solution, employed by GEMS [7],
relies on the simulation of different parts of the system with
different levels of detail. Most of network simulation tools
are not able to adapt their computational effort to different
scenarios, relying only on one of these premises; speed or
accuracy.

This work presents TOPAZ, a simulation tool with a
broad spectrum of utilization scenarios and different
tradeoffs between accuracy, simulation speed and field of
application for interconnection network research. TOPAZ
has been conceived to be embedded in other simulation tools
with limited effort. In fact, the GEMS/GEM5-TOPAZ
interface is also presented in this document. TOPAZ is
designed to be easily extendable and deeply configurable on
runtime. TOPAZ includes multithread capabilities,
minimizing the impact of more accurate simulations on
execution time. As well as a description of these
characteristics, this paper provides a brief overview of
TOPAZ construction, philosophy, capabilities, and examples
of use along with pointers to sources of additional
information. In order to facilitate access to the tool by other

researchers and simplify the adoption of their own
modifications, a public source code repository and project
management tools have been made available [12].

The rest of the paper is structured as follows: Section 2
describes the simulator, Section 3 explains the integration of
the tool in a full-system simulation environment, Section 4
indicates how the simulator can be used as an effective tool
in very large networks, and finally Section 5 draws the main
conclusions of this paper.

II. SIMULATOR DESCRIPTION

TOPAZ is a general-purpose interconnection network
simulator that enables the modeling of a wide variety of
message routers, with different tradeoffs between speed and
precision. TOPAZ originates from the SICOSYS [13]
simulator, which was originally conceived to obtain results
very close to those obtained by using HDL description of
network components by hardware simulators but at lower
computational cost. In order to make the tool easily
comprehensible, extensible and reusable, the design of
TOPAZ is object-oriented and has been implemented in
C++. For the models provided, approximately 100 classes,
distributed in about 50,000 lines of code have been
necessary. TOPAZ provides router descriptions with
different levels of detail. Simplified routers are described as
a single component, which allows fast simulation times. On
the other hand, detailed routers require the description of
each router component separately, much more similar to
RTL router descriptions. Detailed routers are much more
precise, at the cost of simulation speed. Finally, the
simulator has also support for parallel execution using
standard POSIX threads. The portability is very high and it
can be executed on any UNIX platform with a C++ standard
compiler.

Simulations in TOPAZ can be divided into three different
phases; building, running and printing. In the first phase, the
network simulated is constructed at run-time according to a
set of parameters selected by the user. TOPAZ network is
constructed hierarchically. The simulator builds the network
and the links (topology), then the network builds all the
routers and finally the routers build its intrinsic components
and interconnect them. Each simulated structure is associated
with two C++ classes: components and flows. The
components are descriptive, characterizing each structure
and its relationship with the remaining components of the
system. The flows establish how the stream of the
information will move inside the component. As an example,
for a buffer structure, the component will determine its size,
number of ports or delay, while the flow will determine its
behavior according to the flow control selected. During the
running phase, all system components are iteratively visited
and all dependent flows simulated for every cycle simulated.
Simulation length can be configured both in terms of
simulation cycles or messages injected. The flows of each
router component are run in first place each cycle, and links
interconnecting each component (both inter and intra router
links) are run subsequently. While TOPAZ is a time-driven
simulation tool, some flows can internally be constructed as
FSMs, making these components event-driven. If chosen,

results can be periodically printed during running phase.
Finally, printing phase returns all the parameters derived
from simulation process. As well as the main figures of merit
of interconnection network (latency and throughput), this
phase can be configured to produce additional details, such
as execution time, per-VC results, per-router injection rate,
per-router consumption rate, link utilization, event count
(useful for power estimations), etc.

A. Structure

The implementation of the simulator has been oriented
towards high portability and an easy learning curve. Files
present into code directories (/inc and /src), can be divided
into the following parts:

SGML constructors (*builder.cpp). Employed in the
building phase. Responsible for interpreting the specification
files and generating the objects required for the simulation.
There is a constructor for each one of the three existing
specification files described in next section.

Components & Flows. They represent the hardware that
will be simulated. The functional components of the router,
their characteristics and associated delays are modeled. In
this way, a direct relationship between a specific hardware
structure and the model that our simulator generates is
established. The constructors simply generate a hierarchy of
components related to each other.

Traffic patterns (TPZTrafficPattern.cpp). Module in
charge of the injection of packets into the network. When the
simulator is used in a stand-alone way, the main traffic
patterns (random, matrix transpose, reversal bit, perfect
shuffle, hot-spot, etc.) can be used. Additionally, trace-based
simulations are also supported. For injecting traffic generated
by the execution of real applications, an "empty" pattern has
been defined with the aim of working in an integrated way
with other tools.

Simulator: This module carries out the simulation
process. It progressively performs the actions belonging to
each simulation phase. This module is in charge of
interpreting all the parameters provided through command-
line, making feasible the utilization of scripting based
simulation.

B. Specification files

The tool provides a solution to the generic problem of
interconnection network simulation. The same compiled
environment can be used to experiment with very different
architectural proposals. The specification of the type of
experiment is carried out through three description files
written in SGML. These files are interpreted by the simulator
at runtime, making code recompilation unnecessary if the
user wants to use any of the modules included in the
simulation. Static configuration only has been used to switch
from sequential to multithread execution. Each file specifies
the following aspects:

Simulation parameters (Simulation.sgm): Definition of
general simulation parameters such as traffic pattern and
distribution, applied load, message length, etc. In this file,
the network to be used for the simulation is also referenced.

Interconnection network (Network.sgm): Specifications
of the type of network through parameters such as topology
(mesh, torus, etc.), dimensions and interconnection delays.
The router employed at each network cross point is defined
as an additional parameter of the network.

Router microarchitecture (Router.sgm): Description of
the elements (memories, switches, multiplexers, etc.) which,
connected to each other, form the router. The main
parameters of each router component (delay, size, inputs,
outputs) are also described in this file.

The simulation tool employs an additional file, named
“TPZSimul.ini”. This way, it is possible to easily select one
among the multiple router, network and simulation
description files. Through command line, we only need to
specify the name of the simulation we want to run. In the file
"Simulation.sgm" we find a simulation with the same name
passed through command line, which will specify the
dynamic conditions of the simulation, i.e. traffic pattern,
packet or message length, etc. The network configuration we
want to simulate is an additional parameter in this file. In
"Topology.sgm" file we find a description of the selected
network. Different topologies can be used, from bi-
dimensional or tri-dimensional meshes, tori, to irregular
networks. Finally, router is also selected at this point, and the
file "Routers.sgm" contains a SGML description of all
architectural characteristics. When components have been
implemented, it is possible to instantiate them. In the
example, fifo-buffers, routing units and a crossbar are used
(detailed description). After instantiating the components,
connections have to be made within the router and between
the routers. In the instantiation, different parameters of the
components can be set, overriding global router parameters,
for example buffer capacity, which allows different
components of the router to be customized. For example,
escape channels may require different buffer size to adaptive
channels in a fully adaptive router [2].

C. Out-of-the Box Models Available

Table I enumerates network models supplied in the initial
release of the simulator. For most router models, both fast
and accurate models are supplied. Some of the components
target the CMP environment, such as low degree topologies,
whereas others are more suitable for off-chip networks, such
as 3D network interconnects. Although some combinations
are fixed, for example the Adaptive Bubble Router requires
Bubble Flow Control, it could be possible to combine
different network topologies, router architectures and
additional features. The models provided are selected in
order to offer CMP researchers an out-of-the-box setup to
work with, but are also intended to provide a framework to
develop new components. The design style, once the
programmer is familiar with it, simplifies the implementation
of new components. This enables to implement new
components in a short period of time. As was mentioned
earlier, we provide an open platform to collaborate in the
future development of the simulator, which could facilitate
further advancement and new components. We hope that
users of the tool will share their developments with other
users.

D. Multithread Implementation

In general, parallelization of computer architecture
simulators is a non trivial task, and usually the performance
benefit does not compensate the effort. The scalability of this
development is greatly limited by the fine-grained
parallelism: in a conservative implementation it is necessary
to synchronize each thread every cycle. Although speculative
approaches are possible, they introduce additional
complexity in a usually very complex piece of software. If
we consider the fact that the number of simulations required
is very large, using throughput computing is more appealing.
Nevertheless, the simulated system size can make this
approach a costly solution. In particular, today’s server farms
devoted to running these simulations use CMPs with a

TABLE I. COMPONENTS SUPPLIED WITH TOPAZ

Network Topologies

Ring Mesh

(2D & 3D)

Torus

(2D & 3D)

Midimew

(2D)

Square Midimew

(2D)

Flow controls

Virtual Cut Through Bubble Flow Control Wormhole Virtual Channel

Flow control

Multicast Support

Source-decomposed Path-based DOR-Tree based Adaptive (Path-

Tree)

Traffic Patterns

Random Bit-Reversal Perfect-Shuffle Transpose Matrix

Tornado Hot Spot Local Trace-Based

Message Size / Packet Size

1 to unlimited / 1 to unlimited

Power consumption (Event count)

Buffer Write Buffer Read VC Allocation SW Allocation

SW Traversal Link Traversal

Routers

ID Reference Year Level of detail

Adaptive Bubble [14] 2001 complex &simple

Deterministic Bubble [15] 1998 complex & simple

Deterministic with VC

(Dally)

[16][17] 2001 complex & simple

VCTM (Dally + MC

support)

[18] 2008 complex & simple

Rotary Router [19][20] 2009 complex & simple

Bufferless Router [21] 2010 simple

Bidirectional Router [22] 2009 simple

Buffered Crossbar [23] 1987 complex

Pipeline Optimized [24] 2008 complex & simple

Configuration Parameters

Buffer Size Packet Size Number of Virtual

Channels

Number of

message types

Router Pipeline Buffer Delay Link Delay Number of

physical networks

growing number of cores per chip. Under these
circumstances, throughput computing demands massive
quantities of DRAM per server, which increases acquisition
and costs of ownership. From the TOPAZ perspective, this
can happen if massive supercomputer networks have to be
simulated, i.e. networks with hundreds of thousands of
computing elements. In its design, TOPAZ has been
conceived to run these necessarily large networks in parallel.
For the sake of portability, Topaz parallelization is based on
POSIX threads.

As the simulation engine is time-based, parallelization of
the tool is greatly simplified. It is possible to split the
network and assign their simulation to different slave
execution threads. The boundary of the group of components
assigned to each slave thread has to be synchronized
periodically with neighboring threads. The synchronization
between slaves is done each cycle using a barrier. The master
thread is responsible for orchestrating the initialization and
finalization of the simulation and facilitating the integration
with full-system simulators. This approach abstracts the
details of simulation implementation completely to the
external full-system simulator.

III. CHIP MULTIPROCESSORS: INTEGRATION WITH FULL

SYSTEM SIMULATION TOOL

A. Topaz-GEMS Integration

TOPAZ is fully modular and can be used in an abstracted
way by full-system simulation tools. It provides the API
necessary to connect external simulators without extensively
modifying code. The developer should create an interface,
according to external simulator peculiarities and system
necessities. In order to simplify TOPAZ adoption, we
provide a detailed implementation with GEMS [7] and as
GEM5 [11]. This could be easily extended to other derived
simulation tools such as FeS2 [25]. As Figure 1 shows,
TOPAZ is connected to the memory subsystem of Ruby. As
it is a common simulator with GEM5, FeS2 and GEMS,
TOPAZ will work with all the tools seamlessly. We provide
a patch for version 2.1 of GEMS that performs the
integration. This patch could be merged with further
development using standards tools such as quilt or equivalent
ones. We also provide a clone of GEM5 development
repository.

In contrast to GARNET, TOPAZ integration is fully
isolated. In the process of compilation, the simple network
simulator of Ruby is connected to the external simulator. A
new event is introduced in the event-queue of Ruby in such a
way that if TOPAZ has to be run, the engine is activated for
the number of cycles that the network-memory clock ratio
indicates. If multithreading is activated, the main thread does
not wait for TOPAZ until the beginning of the next cycle. At
this time Ruby takes the packets delivered by TOPAZ and
injects the new ones.

Both, the modified GEMS and GEM5 are supplied as a
Mercurial repository at the public TOPAZ page [12].

Undeniably, increasing accuracy decreases simulation
performance. In full-system simulation, where thousands of
millions of CPU cycles have to be simulated in order to
obtain meaningful results, slightly decreasing simulation
speed could have a significant cost. In order to minimize
performance effects, TOPAZ provides three different
mechanisms. First, its multithread implementation enables
network simulations to be run in a separate thread from the
main simulation. Although the usually reduced size of on-
chip networks makes it unnecessary to subdivide them into
separate threads, it makes sense to use master thread
abstraction to isolate network simulation from the main
thread. Second, we have developed an adaptive interface
between both simulators. When network load is low,
contention in the network is negligible and the original Ruby
network is enough to model the network. Nevertheless, when
contention is high, the optimistic latency provided by Ruby
could be tens or even hundreds of cycles below the real
value. Our adaptive interface works as follows: when the
number of packets in the network is below a predefined
threshold, TOPAZ is disabled and only Ruby is simulated. If
this threshold is surpassed, TOPAZ is activated and will
remain activated until a second threshold number of packets
is surpassed. Finally, the third technique is based on the
modification of the router complexity. For almost all routers
provided, two different accuracy models can be used, making
it possible to use simplified models in initial design phases
and more detailed models in later stages.

No modification has been performed in GEMS’s nor
GEM5’s original code besides the creation of the interface to
connect Ruby to TOPAZ.

B. Effects of Network Simulation Accuracy

The original Ruby network simulator is quite simple: it
models contention only at link level. Although this speeds up
simulation, it introduces a non negligible error in network
latency estimation when the load applied is high. Recent
versions of GEMS/GEM5 have introduced the possibility of
using GARNET [6] as a replacement for the original
simulator. Although much more detailed than the original
simulator, GARNET has limited flexibility with fixed router
architecture. It only contemplates changing a few parameters
in the network such as number of virtual channels, router
pipeline stages, buffer size and flit size. TOPAZ is much
more flexible, providing a full set of very different router
architectures, routing algorithms, network topologies, flow-
controls, etc. The TOPAZ-Ruby interface has been
developed to support any CMP or SMP network
configuration, using both file-defined topologies and regular

Simics

Opal

(processor)
PTLSim

(processor)
M5

(processor)

Simics Ruby

(Memory)

Topaz

(Network)

Thread1 Thread2

Figure 1 Topaz-Ruby Connection.

ones. TOPAZ does not replace the original Ruby network
simulator but is added to it, in order to be able to
dynamically activate or deactivate it to speed up the
simulation during phases of low traffic. During those
moments contention should be negligible and therefore
results obtained by precise router modeling are usually close
to those provided by a simpler router model.

In order to demonstrate how relevant accurate network
simulation can be, we have carried out the simulation of very
diverse applications and coherence protocols. We will
restrict this study to GEMS. Twenty workloads are
considered in this study, including both multi-programmed
and multi-threaded applications (numerical and server)
running on top of the OpenSolaris 10 OS. The numerical
applications are the whole NAS Parallel Benchmarks suite
(OpenMP implementation version 3.2 [26]) and four
benchmarks of the PARSEC suite [27]. The server
benchmarks correspond to the whole Wisconsin Commercial
Workload suite [28], released by the authors of GEMS in
version 2.1. The remaining class corresponds to multi-
programmed workloads using part of the SPEC CPU2006
suite running in rate mode (where one core is reserved to run
OS services) [29]. Each application is simulated multiple
times with random perturbations in memory access time in
order to reach 95% confidence intervals. The number of
applications enables the sweeping of a broad spectrum of
application types, with diverse network demands in order to
know the margin of error caused by different network
modeling.

TABLE II. EVALUATED WORKLOADS (PROBLEM SIZES).

Multithreade

d-Workloads

Wisconsin

Commercial

Workload

Apache (1000 Surge

dynamic)

Zeus (1000 Surge Static)

Jbb (4000 SpecJbb) OLTP (500 TPC-C alike)

NAS Parallel

Bench.

BT (Class A) CG (Class A)

FT (Class W) IS (Class A)

LU (Class A) MG (Class W)

SP (Class A) UA (Class A)

PARSEC blackscholes (native)

canneal (native)

fluidanimate (native)

streamcluster (native)

Multiprogram

med-

Workloads

Spec 2006 (Rate

Mode)

astar (reference) hmmer (reference)

lbm (reference) ommetpp (reference)

We have used a 16-processor CMP, with out-of-order
Nehalem [30] like cores, using a 4×4 mesh network which is
provided in the version 2.1 of GEMS. We analyzed how the
system behaves with the two coherence protocols provided:
MOESI_CMP_token and MOESI_CMP_directory. No
change has been made in either of the two coherence
protocols. All the configuration parameters chosen in the
comparison are provided in the GEMS Mercurial repository
provided in [12].

We adjust all simulators to have similar router
configurations. In particular we chose the fixed 5-cycle
wormhole pipeline router provided by GARNET [6]. We

will assume 1 cycle wires between routers. In the simple
Ruby network simulator, the latency is adjusted to match
GARNET routers. We use four virtual networks to avoid
end-to-end deadlock and 10 flits of 16 bytes of buffer per
virtual channel, having only one virtual channel per traffic
class. TOPAZ is configured using the same router in its
simple and complex implementation and matching all
configuration parameters. The two routers are provided in
out-of-the-box components.

C. MOESI_CMP_directory Coherence Protocol

This coherence protocol is characterized by a limited
network load, therefore it can be considered as baseline
where careful network simulation has lower impact on final
system performance. Figure 2 shows the normalized
execution time for the workloads considered. On the one
hand, it is clear that contention modeling of the original
simulator is too optimistic, inducing a substantial error in the
estimation of the execution time of each application.
Although in some cases the effect is lower, such as for
blacksholes and fluidanimate, in others it is surprisingly
high. If we compare TOPAZ’s complex and simple
implementations the differences are small but appreciable
with respect to other simulators. Taking into account that the
tool from which TOPAZ derives [13] is capable of achieving
less than 3% error with respect to hardware simulators, it
seems reasonable to use TOPAZ as a reference point.

On the other hand, GARNET network modeling seems to
be too pessimistic. We used the publicly available tool,
compiled and run using all the benchmarks considered. We
prefer not to modify it in order to allow other researchers to
repeat the evaluation. Like in the case of the original network
simulator, with low load applications the error is small but
with high contention applications the effect is substantially
increased to almost three times the application execution
time differences. This behavior can be easily reproduced
with the configuration used, which is available in [12].

On average, the original network simulator introduces an
optimistic error of 25% in execution time and GARNET a
pessimistic one of 25%. Therefore, even in a not very
demanding scenario, inaccurate modeling of the contention
in the interconnection network could induce substantial
errors in evaluation results, which could render the
hypothetical comparison of two or more architectural
solutions for the CMP unreliable. Note that original Ruby
only models contention at link level, which is optimistic
given the contention suffered at the crossbar by conventional
routers, and GARNET seems to have some kind of error in
pipeline implementation.

Figure 3 shows the performance of each simulator in
terms of Ruby network normalized simulated cycles per
second of CPU. We have used the same hardware platform
to perform this measurement with a large number of samples
in order to have reliable averages. As can be appreciated, the
complex TOPAZ router has a non negligible impact on
performance, increasing the simulation time by 20 % on
average. In some applications, such as CG, performance
could be degraded by up to 50%. As can be seen, using
simple models could attenuate this slowdown on average,

obtaining reasonable accuracy with less than 5% of
performance degradation. Surprisingly, GARNET is the best
performer, improving on the original gems simulator by an
average of 10%, which is motivated by its pessimistic
contention modeling. It increases the average latency
perceived by the processors in such a way that the activity in
the rest of the system falls, increasing the number of cycles
simulated per clock cycle. In Topaz simple, this also happens
in workloads with low parallelism at instruction level, in
which processor activity is lower than in Ruby.

In contrast, Topaz complex compensates the lower
computational cost of modeling the processors with the
higher network activity, which makes the number of cycles
simulated per second almost constant.

D. MOESI_CMP_token Coherence Protocol

In contrast to directory, this coherence protocol is
characterized by intense network requirements due to
multicast traffic. This example could be considered as a
reference point where careful network simulation has a large
impact on final system performance and simulation speed.
Given the fact that GARNET has no native support for
multicast traffic and this protocol uses it heavily, we decided
to exclude GARNET in the comparison. Our simulator does
have support for this kind of traffic. Note that broadcast-
based coherence protocols heavily depend on network
support for multicast [18].

Figure 4 shows how the CMPs perform for each
application and as the coherence protocol is characterized by
a larger bandwidth requirements [31], the contention in the
network will be higher and consequently the optimistic
modeling of GEMS induces a larger error in the execution

time of the workloads. In some cases, such as Apache and IS
the observed error is above 100%, which is much higher than
that observed in the case of directory.

As mentioned before, more network load implies a higher
computational workload for the network simulator and a
slowdown in simulation time, as Figure 5 indicates. Now the
performance reduction with the most detailed router falls on
average by 40%. Simple implementation attenuates this fall
by 5-10%. For some applications such as CG, the
performance falls 80% i.e., simulation is five times slower.
Under these conditions, in this protocol we explore
additional performance optimizations such as an adaptive
interface (denoted AI in the results). Even with such a small
network and simple router, the unbalance between network
simulation and the remaining components of the system keep
multithreaded simulations (denoted P in the results)
interesting, especially if it is required to run a particular
application faster or maximum precision is required for
network model. If a large batch of runs is required, in most
cases to run sequential simulations will be more efficient
because it requires two cores and in most cases speedup is
lower than two. In contrast, adaptive interface is able to
improve simulation performance significantly, reducing the
gap with the original Ruby simulator by more than 10%,
with an error below 2% for both simple and complex routers.
The data provided have been obtained using a threshold of
25 packets in the network before turning on the Topaz
simulator. Only with applications such as streamcluster is
the error relevant. Even when using 25 in-flight messages as
a threshold, the traffic pattern could create significant
contention, for example, if most traffic is highly localized
around some specific parts of the system.

Figure 2. Directory Coherence Protocol: Execution time differences through different network simulators.

Figure 3 Directory Coherence Protocol: Simulator Performance differences through different network simulators

0

0.5

1

1.5

2

2.5

3

R
U

B
Y

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

RUBY

GARNET

TOPAZ_SIMPLE

TOPAZ_COMPLEX

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o

rm
al

iz
e

d
 C

yc
le

s
Si

m
u

al
te

d
/s

ec
co

n
d

RUBY

GARNET

TOPAZ_SIMPLE

TOPAZ_COMPLEX

IV. SUPERCOMPUTERS INTERCONNECTION NETWORK

EVALUATION

This class of system has the singular characteristic of
having a massive number of routers. The biggest challenge
for a simulation tool for this kind of system is when the
number of nodes grows significantly and accurate router
modeling is paramount to discover potential instabilities in
the system [32]. When thousands of nodes have to be
simulated, the memory required could be significant.
TOPAZ could use an advanced memory allocation approach
which speeds up execution and limits further potential
problems during the simulation. Additionally, multithread
implementation enables taking advantage of current
multicore server predominance.

To show the scalability limit of the tool, like in the case
of IBM Blue Gene systems [2], we use a 3D torus with the
simple model of the Bubble Router [14]. We evaluate the
performance obtained with up to one million of routers in the

network in order to determine the scalability of the
parallelization. Figure 6 presents the results obtained with a
server with 12 cores and with 54GBytes of main memory
based on Intel Xeon E5645. As we can observe, the
scalability with such large systems is adequate. With 32K
routers the simulation uses approximately 1.5GB of memory,
5.5GB for 128K nodes, 12GB for 256K nodes, 24GB for
512K routers and for 1 million it uses 49GB. As the number
of nodes grows the speedup decreases slightly. When the
number of routers is higher, the data synchronization
between threads is more demanding for the memory
hierarchy of the server. With 12 threads there is performance
degradation due to threads unbalance due to non divisible
number of nodes.

TOPAZ has also demonstrated to be a suitable tool for
dealing with such a large system, because the speedup
achieved maximizes core utilization on the server. Running
the simulation for such large systems using sequential
simulations would be prohibitive due to the massive amount
of memory needed to provide 12 or more cores with the

Figure 4 Token Broadcast Coherence Protocol: Execution time differences through different network simulators

Figure 5 Token Broadcast Coherence Protocol: Performance differences through different TOPAZ optimizations.

Figure 6 (a) Simulation Time for 50K Cycles (b) Speedup Observed.

0

0.5

1

1.5

2

2.5

R
U

B
Y

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

RUBY

TOPAZ_SIMPLE

TOPAZ_COMPLEX

(AI)TOPAZ_SIMPLE

(AI)TOPAZ_COMPLEX

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
al

iz
ed

 C
yc

le
s

Si
m

u
al

te
d

/s
ec

co
n

d

RUBY

TOPAZ_SIMPLE

TOPAZ_COMPLEX

(AI)TOPAZ_SIMPLE

(AI)TOPAZ_COMPLEX

(P)TOPAZ_COMPLEX

(P)TOPAZ_SIMPLE

0.E+00

1.E+05

2.E+05

3.E+05

4.E+05

5.E+05

6.E+05

1 3 5 7 9 11

Si
m

u
la

ti
o

n
 T

im
e

(S
ec

o
n

d
s)

Number of Cores

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11

Sp
ee

d
u

p

Number of Cores

32K Rotuers

128K Routers

256K Routers

512K Routers

1M Routers

Routers

memory requirements. According to the system size,
scalability and the memory available in the server, the user
could select the optimal number of threads per simulation.
For example, in our case, if the number of routers is 256K,
the optimal number of simulations to run in our server is
three devoting for each one 4 cores. We would have 36GB
memory utilization and almost a perfect speedup.

V. CONCLUSIONS

We have presented TOPAZ, which is a comprehensive
and extensive tool conceived to facilitate interconnection
network research. Its integration with one of the most
common evaluation platforms in CMPs and its flexibility to
simulate large-scale interconnection networks could make
TOPAZ an attractive tool for a wide range of users. Given
the current usage of GEMS, we hope the tool will attract
many active users. In the long term, we will provide
continued support for the tool, as it is one of our main
resources for performing our research. The open source
approach will also simplify how third party users can make
their own contributions to the tool.

ACKNOWLEDGMENTS
The authors would like to thank José Ángel Herrero for

his valuable assistance with computing environment, and the
anonymous reviewers for many useful suggestions. This
work has been supported by the Spanish Ministry of Science
and Innovation, under contract TIN2010-18159, and by the
HiPEAC European Network of Excellence.

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: on-chip

interconnection networks,” Proceedings of the 38th Design
Automation Conference (IEEE Cat. No.01CH37232), pp. 684-689.

[2] N. R. Adiga et al., “Blue Gene/L torus interconnection network,” IBM

Journal of Research and Development, vol. 49, no. 2.3, pp. 265–276,
Mar. 2005.

[3] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd, “Power7: IBM’s

Next-Generation Server Processor,” IEEE Micro, vol. 30, no. 2, pp. 7-
15, 2010.

[4] C. Park et al., “A 1.2 TB/s on-chip ring interconnect for 45nm 8-core

enterprise Xeon® processor,” in 2010 IEEE International Solid-State
Circuits Conference - (ISSCC), 2010, pp. 180-181.

[5] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and A. Scandurra,

“Spidergon: a novel on-chip communication network,” in
International Symposium on System-on-Chip, 2004, vol. 50, no. 2, pp.

15-22.

[6] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A
detailed on-chip network model inside a full-system simulator,” 2009

IEEE International Symposium on Performance Analysis of Systems

and Software, pp. 33-42, Apr. 2009.
[7] M. M. K. Martin et al., “Multifacet’s general execution-driven

multiprocessor simulator (GEMS) toolset,” ACM SIGARCH

Computer Architecture News, vol. 33, no. 4, p. 99, 2005.
[8] J. Navaridas, J. Miguel-Alonso, J. a. Pascual, and F. J. Ridruejo,

“Simulating and evaluating interconnection networks with INSEE,”
Simulation Modelling Practice and Theory, vol. 19, no. 1, pp. 494-

515, Jan. 2011.

[9] F. Fazzino and M. Palesi, “Noxim: Network-on-chip simulator.”
[Online]. Available: http://sourceforge.net/projects/noxim.

[10] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta, “Complete

computer system simulation: The SimOS approach,” Parallel &
Distributed Technology: Systems & Applications, IEEE, vol. 3, no. 4,

pp. 34–43, 1995.

[11] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer

Architecture News, vol. 39, no. 2, p. 1, Aug. 2011.
[12] “Topaz Project page.” [Online]. Available:

http://code.google.com/p/tpzsimul/.

[13] V. Puente, J. A. Gregorio, and R. Beivide, SICOSYS: an integrated
framework for studying interconnection network performance in

multiprocessor systems. IEEE Comput. Soc, 2002, pp. 15-22.

[14] V. Puente, C. Izu, R. Beivide, J. A. Gregorio, F. Vallejo, and J. M.
Prellezo, “The Adaptive Bubble Router,” Journal of Parallel and

Distributed Computing, vol. 61, no. 9, pp. 1180-1208, 2001.

[15] C. Carrion, R. Beivide, J. A. Gregorio, and F. Vallejo, “A flow
control mechanism to avoid message deadlock in k-ary n-cube

networks,” in Proceedings Fourth International Conference on High-

Performance Computing, 2001, pp. 322-329.
[16] W. J. Dally, “Virtual-channel flow control,” IEEE Transactions on

Parallel and Distributed Systems, vol. 3, no. 2, pp. 194-205, Mar.

1992.
[17] L.-S. Peh and W. J. Dally, “A delay model and speculative

architecture for pipelined routers,” in Proceedings HPCA Seventh

International Symposium on High-Performance Computer

Architecture, 2001, pp. 255-266.

[18] N. E. Jerger, L. S. Peh, and M. Lipasti, “Virtual circuit tree

multicasting: A case for on-chip hardware multicast support,” in
Computer Architecture, 2008. ISCA’08. 35th International

Symposium on, 2008, pp. 229-240.

[19] P. Abad, J. A. Gregorio, V. Puente, and P. Prieto, “Rotary router: an
efficient architecture for CMP interconnection networks,” in

International Symposium on Computer Architecture, 2007, vol. 35,
no. 2.

[20] P. Abad, V. Puente, and J. A. Gregorio, “MRR: Enabling fully

adaptive multicast routing for CMP interconnection networks,” in
2009 IEEE 15th International Symposium on High Performance

Computer Architecture, 2009, pp. 355-366.

[21] T. Moscibroda and O. Mutlu, “A case for bufferless routing in on-
chip networks,” ACM SIGARCH Computer Architecture News, vol.

37, no. 3, p. 196, Jun. 2009.

[22] Y.-C. Lan, H.-A. Lin, S.-H. Lo, Y. H. Hu, and S.-J. Chen, “A
Bidirectional NoC (BiNoC) architecture with dynamic self-

reconfigurable channel,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 30, no. 3, pp. 427-
440, Mar. 2011.

[23] M. Katevenis, “Fast switching and fair control of congested flow in

broadband networks,” IEEE Journal on Selected Areas in
Communications, vol. 5, no. 8, pp. 1315-1326, Oct. 1987.

[24] A. Kumary, P. Kunduz, A. P. Singhx, L.-S. Pehy, and N. K. Jhay, “A

4.6Tbits/s 3.6GHz single-cycle NoC router with a novel switch
allocator in 65nm CMOS,” 2007 25th International Conference on

Computer Design, pp. 63-70, Oct. 2007.

[25] N. Neelakantam, C. Blundell, J. Devietti, M. M. K. Martin, and C.
Zilles, “FeS2: A Full-system execution-driven simulator for x86

Simulating an Application,” in Poster ASPLOS, 2007.

[26] H. Jin, M. Frumkin, and J. Yan, “The OpenMP implementation of
NAS parallel benchmarks and its performance,” NASA Ames

Research Center,” Technical Report NAS-99-011, Citeseer, 1999.

[27] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
benchmark suite,” in Proceedings of the 17th international

conference on Parallel architectures and compilation techniques -

PACT ’08, 2008, pp. 72-80.

[28] A. R. Alameldeen et al., “Simulating a $2 M Commercial Server on a

$2 K PC,” Computer, vol. 36, no. 2, pp. 50-57, 2003.

[29] V. Standard Performance Evaluation Corporation, SPEC*,
http://www.spec.org, Warrenton, “SPEC 2006.” .

[30] N. Kurd, J. Douglas, P. Mosalikanti, and R. Kumar, “Next generation

Intel® micro-architecture (Nehalem) clocking architecture,” in 2008
IEEE Symposium on VLSI Circuits, 2008, pp. 62-63.

[31] M. Martin and M. Hill, “Token Coherence: a New Framework for

Shared-Memory Multiprocessors,” Micro, IEEE, pp. 108-116, 2004.
[32] J. Miguel-Alonso, J. Gregorio, V. Puente, F. Vallejo, and R. Beivide,

“Load Unbalance in k-ary n-cube Networks,” in Euro-Par 2004

Parallel Processing, 2004, pp. 900–907.

