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Abstract—As in other computer architecture areas, 

interconnection networks research relies most of the times on 

simulation tools. This paper announces the release of an open-

source tool suitable to be used for accurate modeling from 

small CMP to large supercomputer interconnection networks. 

The cycle-accurate modeling of TOPAZ can be used 

standalone through synthetic traffic patterns and application-

traces or within full-system evaluation systems such as GEMS 

or GEM5 effortlessly. In fact, we provide an advanced 

interface that enables the replacement of the original 

lightweight but optimistic GEMS and GEM5 network 

simulator with limited performance impact on the simulation 

time. Our tests indicate that in this context, underestimating 

network modeling could induce up to 50% error in the 

performance estimation of the simulated system. To minimize 

the impact of detailed network modeling on simulation time, 

we incorporate mechanisms able to attenuate the higher 

computational effort, reducing in this way the slowdown of the 

full system simulation with accurate performance estimations. 

Additionally, in order to evaluate large-scale networks, we 

parallelize the simulator to be able to optimize memory 

resources with the growing number of cores available per chip 

in the simulation farms. This allows us to simulate node 

networks exceeding one million of routers with up to 70% 

efficiency in a multithreaded simulation running on twelve 

cores. 

Keywords; simulator, interconnection networks, chip 

multiprocessor, supercomputer 

I.INTRODUCTION 

Retrospectively, the research in the field of 
interconnection networks has mostly been restricted to 
supercomputing. However, nowadays the outlook is very 
different, and the advent of on-chip interconnection networks 
[1] has significantly increased the relevance of the area. 
Today, the interconnection network is a key element 
everywhere from large supercomputers [2] to high-
performance general purpose chip-multiprocessor [3][4], 
through systems-on-a-chip[5]. Different environments with 
particular technological constraints and system requirements 
have diversified this research area. Although the foundations 
of each kind of network are similar, in practice some of the 
design parameters are feasible in some fields but not in 
others. For example, in the on-chip context, wire availability 
is profuse, making it feasible to use ultra wide 
communication links. On the contrary, in the off-chip 
context, router implementation cost or network energy 
consumptions are not first-order design parameters, allowing 
the utilization of very large on-network storage. Many other 

characteristics such as link latency, network interfaces, node 
count, topology, etc. can also have a different impact 
depending on the environment, making network proposals 
very specific to the system constraints. 

This diversification turns into an important handicap 
when trying to design “wide-spectrum” simulation tools, 
increasing the complexity and computational effort required 
to cover multiple environments. As a consequence of this, 
many simulation tools used in interconnection networks are 
limited to a single field. For chip-multiprocessor-oriented 
simulators, such as GARNET [6], which supports the 
integration with GEMS [7], it seems adequate to restrict 
simulator capabilities targeting only network on chip 
requeriments. On the other hand, off-chip system-oriented 
tools such as INSEE [8] are focused on simulating tens of 
thousands of nodes, which makes more sense in a 
supercomputing system. Finally, system-on-chip-oriented 
tools, such as NOXIM [9], allow the evaluation of 
heterogeneous networks, usually found in this kind of 
environment. Like in many computer architecture expertise 
areas, more accurate simulation tools imply higher 
computational effort. If this tradeoff is not carefully adjusted, 
simulations could present an error margin rendering 
meaningless the results or the computational effort could turn 
simulation time prohibitive. Systems such as SimOS [10] or 
GEM5 [11] are able to dynamically adjust this tradeoff when 
moving from the initial exploration of the design space to the 
final product. A different solution, employed by GEMS [7], 
relies on the simulation of different parts of the system with 
different levels of detail. Most of network simulation tools 
are not able to adapt their computational effort to different 
scenarios, relying only on one of these premises; speed or 
accuracy. 

This work presents TOPAZ, a simulation tool with a 
broad spectrum of utilization scenarios and different 
tradeoffs between accuracy, simulation speed and field of 
application for interconnection network research. TOPAZ 
has been conceived to be embedded in other simulation tools 
with limited effort. In fact, the GEMS/GEM5-TOPAZ 
interface is also presented in this document. TOPAZ is 
designed to be easily extendable and deeply configurable on 
runtime. TOPAZ includes multithread capabilities, 
minimizing the impact of more accurate simulations on 
execution time. As well as a description of these 
characteristics, this paper provides a brief overview of 
TOPAZ construction, philosophy, capabilities, and examples 
of use along with pointers to sources of additional 
information. In order to facilitate access to the tool by other 



 

researchers and simplify the adoption of their own 
modifications, a public source code repository and project 
management tools have been made available [12]. 

The rest of the paper is structured as follows: Section 2 
describes the simulator, Section 3 explains the integration of 
the tool in a full-system simulation environment, Section 4 
indicates how the simulator can be used as an effective tool 
in very large networks, and finally Section 5 draws the main 
conclusions of this paper. 

II. SIMULATOR DESCRIPTION 

TOPAZ is a general-purpose interconnection network 
simulator that enables the modeling of a wide variety of 
message routers, with different tradeoffs between speed and 
precision. TOPAZ originates from the SICOSYS [13] 
simulator, which was originally conceived to obtain results 
very close to those obtained by using HDL description of 
network components by hardware simulators but at lower 
computational cost. In order to make the tool easily 
comprehensible, extensible and reusable, the design of 
TOPAZ is object-oriented and has been implemented in 
C++. For the models provided, approximately 100 classes, 
distributed in about 50,000 lines of code have been 
necessary. TOPAZ provides router descriptions with 
different levels of detail. Simplified routers are described as 
a single component, which allows fast simulation times. On 
the other hand, detailed routers require the description of 
each router component separately, much more similar to 
RTL router descriptions. Detailed routers are much more 
precise, at the cost of simulation speed.  Finally, the 
simulator has also support for parallel execution using 
standard POSIX threads. The portability is very high and it 
can be executed on any UNIX platform with a C++ standard 
compiler. 

Simulations in TOPAZ can be divided into three different 
phases; building, running and printing. In the first phase, the 
network simulated is constructed at run-time according to a 
set of parameters selected by the user. TOPAZ network is 
constructed hierarchically. The simulator builds the network 
and the links (topology), then the network builds all the 
routers and finally the routers build its intrinsic components 
and interconnect them. Each simulated structure is associated 
with two C++ classes: components and flows. The 
components are descriptive, characterizing each structure 
and its relationship with the remaining components of the 
system. The flows establish how the stream of the 
information will move inside the component. As an example, 
for a buffer structure, the component will determine its size, 
number of ports or delay, while the flow will determine its 
behavior according to the flow control selected. During the 
running phase, all system components are iteratively visited 
and all dependent flows simulated for every cycle simulated. 
Simulation length can be configured both in terms of 
simulation cycles or messages injected. The flows of each 
router component are run in first place each cycle, and links 
interconnecting each component (both inter and intra router 
links) are run subsequently. While TOPAZ is a time-driven 
simulation tool, some flows can internally be constructed as 
FSMs, making these components event-driven. If chosen, 

results can be periodically printed during running phase. 
Finally, printing phase returns all the parameters derived 
from simulation process. As well as the main figures of merit 
of interconnection network (latency and throughput), this 
phase can be configured to produce additional details, such 
as execution time, per-VC results, per-router injection rate, 
per-router consumption rate, link utilization, event count 
(useful for power estimations), etc. 

A. Structure 

The implementation of the simulator has been oriented 
towards high portability and an easy learning curve. Files 
present into code directories (/inc and /src), can be divided 
into the following parts:  

SGML constructors (*builder.cpp). Employed in the 
building phase. Responsible for interpreting the specification 
files and generating the objects required for the simulation. 
There is a constructor for each one of the three existing 
specification files described in next section.  

Components & Flows. They represent the hardware that 
will be simulated. The functional components of the router, 
their characteristics and associated delays are modeled. In 
this way, a direct relationship between a specific hardware 
structure and the model that our simulator generates is 
established. The constructors simply generate a hierarchy of 
components related to each other.  

Traffic patterns (TPZTrafficPattern.cpp). Module in 
charge of the injection of packets into the network. When the 
simulator is used in a stand-alone way, the main traffic 
patterns (random, matrix transpose, reversal bit, perfect 
shuffle, hot-spot, etc.) can be used. Additionally, trace-based 
simulations are also supported. For injecting traffic generated 
by the execution of real applications, an "empty" pattern has 
been defined with the aim of working in an integrated way 
with other tools.  

Simulator: This module carries out the simulation 
process. It progressively performs the actions belonging to 
each simulation phase. This module is in charge of 
interpreting all the parameters provided through command-
line, making feasible the utilization of scripting based 
simulation. 

B. Specification files 

The tool provides a solution to the generic problem of 
interconnection network simulation. The same compiled 
environment can be used to experiment with very different 
architectural proposals. The specification of the type of 
experiment is carried out through three description files 
written in SGML. These files are interpreted by the simulator 
at runtime, making code recompilation unnecessary if the 
user wants to use any of the modules included in the 
simulation. Static configuration only has been used to switch 
from sequential to multithread execution. Each file specifies 
the following aspects:  

Simulation parameters (Simulation.sgm): Definition of 
general simulation parameters such as traffic pattern and 
distribution, applied load, message length, etc. In this file, 
the network to be used for the simulation is also referenced. 



 

Interconnection network (Network.sgm): Specifications 
of the type of network through parameters such as topology 
(mesh, torus, etc.), dimensions and interconnection delays. 
The router employed at each network cross point is defined 
as an additional parameter of the network. 

Router microarchitecture (Router.sgm): Description of 
the elements (memories, switches, multiplexers, etc.) which, 
connected to each other, form the router. The main 
parameters of each router component (delay, size, inputs, 
outputs) are also described in this file. 

The simulation tool employs an additional file, named 
“TPZSimul.ini”. This way, it is possible to easily select one 
among the multiple router, network and simulation 
description files. Through command line, we only need to 
specify the name of the simulation we want to run. In the file 
"Simulation.sgm" we find a simulation with the same name 
passed through command line, which will specify the 
dynamic conditions of the simulation, i.e. traffic pattern, 
packet or message length, etc. The network configuration we 
want to simulate is an additional parameter in this file. In 
"Topology.sgm" file we find a description of the selected 
network. Different topologies can be used, from bi-
dimensional or tri-dimensional meshes, tori, to irregular 
networks. Finally, router is also selected at this point, and the 
file "Routers.sgm" contains a SGML description of all 
architectural characteristics. When components have been 
implemented, it is possible to instantiate them. In the 
example, fifo-buffers, routing units and a crossbar are used 
(detailed description). After instantiating the components, 
connections have to be made within the router and between 
the routers. In the instantiation, different parameters of the 
components can be set, overriding global router parameters, 
for example buffer capacity, which allows different 
components of the router to be customized. For example, 
escape channels may require different buffer size to adaptive 
channels in a fully adaptive router [2]. 

C. Out-of-the Box Models Available 

Table I enumerates network models supplied in the initial 
release of the simulator. For most router models, both fast 
and accurate models are supplied. Some of the components 
target the CMP environment, such as low degree topologies, 
whereas others are more suitable for off-chip networks, such 
as 3D network interconnects. Although some combinations 
are fixed, for example the Adaptive Bubble Router requires 
Bubble Flow Control, it could be possible to combine 
different network topologies, router architectures and 
additional features. The models provided are selected in 
order to offer CMP researchers an out-of-the-box setup to 
work with, but are also intended to provide a framework to 
develop new components. The design style, once the 
programmer is familiar with it, simplifies the implementation 
of new components. This enables to implement new 
components in a short period of time. As was mentioned 
earlier, we provide an open platform to collaborate in the 
future development of the simulator, which could facilitate 
further advancement and new components. We hope that 
users of the tool will share their developments with other 
users. 

D. Multithread Implementation 

In general, parallelization of computer architecture 
simulators is a non trivial task, and usually the performance 
benefit does not compensate the effort. The scalability of this 
development is greatly limited by the fine-grained 
parallelism: in a conservative implementation it is necessary 
to synchronize each thread every cycle. Although speculative 
approaches are possible, they introduce additional 
complexity in a usually very complex piece of software. If 
we consider the fact that the number of simulations required 
is very large, using throughput computing is more appealing. 
Nevertheless, the simulated system size can make this 
approach a costly solution. In particular, today’s server farms 
devoted to running these simulations use CMPs with a 

TABLE I. COMPONENTS SUPPLIED WITH TOPAZ  

Network Topologies 

Ring Mesh  

(2D & 3D) 

Torus  

(2D & 3D) 

Midimew 

(2D) 

Square Midimew 

(2D) 

Flow controls 

Virtual Cut Through Bubble Flow Control Wormhole Virtual Channel 

Flow control 

Multicast Support 

Source-decomposed Path-based DOR-Tree based Adaptive (Path-

Tree) 

Traffic Patterns 

Random Bit-Reversal Perfect-Shuffle Transpose Matrix 

Tornado Hot Spot Local Trace-Based 

Message Size / Packet Size 

1 to unlimited / 1 to unlimited 

Power consumption (Event count) 

Buffer Write Buffer Read VC Allocation SW Allocation 

SW Traversal Link Traversal   

Routers 

ID Reference Year Level of detail 

Adaptive Bubble [14] 2001 complex &simple 

Deterministic Bubble [15] 1998 complex & simple 

Deterministic with VC 

(Dally) 

[16][17] 2001 complex & simple 

VCTM (Dally + MC 

support) 

[18] 2008 complex & simple 

Rotary Router [19][20] 2009 complex & simple 

Bufferless Router [21] 2010 simple 

Bidirectional Router  [22] 2009 simple 

Buffered Crossbar [23] 1987 complex 

Pipeline Optimized [24] 2008 complex & simple 

Configuration Parameters 

Buffer Size Packet Size Number of Virtual 

Channels 

Number of 

message types 

Router Pipeline Buffer Delay Link Delay Number of 

physical networks 



 

growing number of cores per chip. Under these 
circumstances, throughput computing demands massive 
quantities of DRAM per server, which increases acquisition 
and costs of ownership. From the TOPAZ perspective, this 
can happen if massive supercomputer networks have to be 
simulated, i.e. networks with hundreds of thousands of 
computing elements. In its design, TOPAZ has been 
conceived to run these necessarily large networks in parallel. 
For the sake of portability, Topaz parallelization is based on 
POSIX threads.  

As the simulation engine is time-based, parallelization of 
the tool is greatly simplified. It is possible to split the 
network and assign their simulation to different slave 
execution threads. The boundary of the group of components 
assigned to each slave thread has to be synchronized 
periodically with neighboring threads. The synchronization 
between slaves is done each cycle using a barrier. The master 
thread is responsible for orchestrating the initialization and 
finalization of the simulation and facilitating the integration 
with full-system simulators. This approach abstracts the 
details of simulation implementation completely to the 
external full-system simulator.  

III. CHIP MULTIPROCESSORS: INTEGRATION WITH FULL 

SYSTEM SIMULATION TOOL 

A. Topaz-GEMS Integration 

TOPAZ is fully modular and can be used in an abstracted 
way by full-system simulation tools. It provides the API 
necessary to connect external simulators without extensively 
modifying code. The developer should create an interface, 
according to external simulator peculiarities and system 
necessities. In order to simplify TOPAZ adoption, we 
provide a detailed implementation with GEMS [7] and as 
GEM5 [11]. This could be easily extended to other derived 
simulation tools such as FeS2 [25]. As Figure 1 shows, 
TOPAZ is connected to the memory subsystem of Ruby. As 
it is a common simulator with GEM5, FeS2 and GEMS, 
TOPAZ will work with all the tools seamlessly. We provide 
a patch for version 2.1 of GEMS that performs the 
integration. This patch could be merged with further 
development using standards tools such as quilt or equivalent 
ones. We also provide a clone of GEM5 development 
repository. 

In contrast to GARNET, TOPAZ integration is fully 
isolated. In the process of compilation, the simple network 
simulator of Ruby is connected to the external simulator. A 
new event is introduced in the event-queue of Ruby in such a 
way that if TOPAZ has to be run, the engine is activated for 
the number of cycles that the network-memory clock ratio 
indicates. If multithreading is activated, the main thread does 
not wait for TOPAZ until the beginning of the next cycle. At 
this time Ruby takes the packets delivered by TOPAZ and 
injects the new ones.  

Both, the modified GEMS and GEM5 are supplied as a 
Mercurial repository at the public TOPAZ page [12]. 

Undeniably, increasing accuracy decreases simulation 
performance. In full-system simulation, where thousands of 
millions of CPU cycles have to be simulated in order to 
obtain meaningful results, slightly decreasing simulation 
speed could have a significant cost. In order to minimize 
performance effects, TOPAZ provides three different 
mechanisms. First, its multithread implementation enables 
network simulations to be run in a separate thread from the 
main simulation. Although the usually reduced size of on-
chip networks makes it unnecessary to subdivide them into 
separate threads, it makes sense to use master thread 
abstraction to isolate network simulation from the main 
thread. Second, we have developed an adaptive interface 
between both simulators. When network load is low, 
contention in the network is negligible and the original Ruby 
network is enough to model the network. Nevertheless, when 
contention is high, the optimistic latency provided by Ruby 
could be tens or even hundreds of cycles below the real 
value. Our adaptive interface works as follows: when the 
number of packets in the network is below a predefined 
threshold, TOPAZ is disabled and only Ruby is simulated. If 
this threshold is surpassed, TOPAZ is activated and will 
remain activated until a second threshold number of packets 
is surpassed. Finally, the third technique is based on the 
modification of the router complexity. For almost all routers 
provided, two different accuracy models can be used, making 
it possible to use simplified models in initial design phases 
and more detailed models in later stages. 

No modification has been performed in GEMS’s nor 
GEM5’s original code besides the creation of the interface to 
connect Ruby to TOPAZ.  

B. Effects of Network Simulation Accuracy 

The original Ruby network simulator is quite simple: it 
models contention only at link level. Although this speeds up 
simulation, it introduces a non negligible error in network 
latency estimation when the load applied is high. Recent 
versions of GEMS/GEM5 have introduced the possibility of 
using GARNET [6] as a replacement for the original 
simulator. Although much more detailed than the original 
simulator, GARNET has limited flexibility with fixed router 
architecture. It only contemplates changing a few parameters 
in the network such as number of virtual channels, router 
pipeline stages, buffer size and flit size. TOPAZ is much 
more flexible, providing a full set of very different router 
architectures, routing algorithms, network topologies, flow-
controls, etc. The TOPAZ-Ruby interface has been 
developed to support any CMP or SMP network 
configuration, using both file-defined topologies and regular 
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Figure 1 Topaz-Ruby Connection. 



 

ones. TOPAZ does not replace the original Ruby network 
simulator but is added to it, in order to be able to 
dynamically activate or deactivate it to speed up the 
simulation during phases of low traffic. During those 
moments contention should be negligible and therefore 
results obtained by precise router modeling are usually close 
to those provided by a simpler router model. 

In order to demonstrate how relevant accurate network 
simulation can be, we have carried out the simulation of very 
diverse applications and coherence protocols. We will 
restrict this study to GEMS. Twenty workloads are 
considered in this study, including both multi-programmed 
and multi-threaded applications (numerical and server) 
running on top of the OpenSolaris 10 OS. The numerical 
applications are the whole NAS Parallel Benchmarks suite 
(OpenMP implementation version 3.2 [26]) and four 
benchmarks of the PARSEC suite [27]. The server 
benchmarks correspond to the whole Wisconsin Commercial 
Workload suite [28], released by the authors of GEMS in 
version 2.1. The remaining class corresponds to multi-
programmed workloads using part of the SPEC CPU2006 
suite running in rate mode (where one core is reserved to run 
OS services) [29]. Each application is simulated multiple 
times with random perturbations in memory access time in 
order to reach 95% confidence intervals. The number of 
applications enables the sweeping of a broad spectrum of 
application types, with diverse network demands in order to 
know the margin of error caused by different network 
modeling.  

TABLE II. EVALUATED WORKLOADS (PROBLEM SIZES). 

Multithreade

d-Workloads 

Wisconsin 

Commercial 

Workload 

Apache (1000 Surge 

dynamic) 

Zeus (1000 Surge Static) 

Jbb (4000 SpecJbb) OLTP (500 TPC-C alike) 

NAS Parallel 

Bench. 

BT (Class A) CG (Class A) 

FT (Class W) IS (Class A) 

LU (Class A) MG (Class W) 

SP (Class A) UA (Class A) 

PARSEC blackscholes (native) 

canneal (native) 

fluidanimate (native) 

streamcluster (native) 

Multiprogram

med-

Workloads 

Spec 2006 (Rate 

Mode) 

astar (reference) hmmer (reference) 

lbm (reference) ommetpp (reference) 

We have used a 16-processor CMP, with out-of-order 
Nehalem [30] like cores, using a 4×4 mesh network which is 
provided in the version 2.1 of GEMS. We analyzed how the 
system behaves with the two coherence protocols provided: 
MOESI_CMP_token and MOESI_CMP_directory. No 
change has been made in either of the two coherence 
protocols. All the configuration parameters chosen in the 
comparison are provided in the GEMS Mercurial repository 
provided in [12]. 

We adjust all simulators to have similar router 
configurations. In particular we chose the fixed 5-cycle 
wormhole pipeline router provided by GARNET [6]. We 

will assume 1 cycle wires between routers. In the simple 
Ruby network simulator, the latency is adjusted to match 
GARNET routers. We use four virtual networks to avoid 
end-to-end deadlock and 10 flits of 16 bytes of buffer per 
virtual channel, having only one virtual channel per traffic 
class. TOPAZ is configured using the same router in its 
simple and complex implementation and matching all 
configuration parameters. The two routers are provided in 
out-of-the-box components. 

C. MOESI_CMP_directory Coherence Protocol 

This coherence protocol is characterized by a limited 
network load, therefore it can be considered as baseline 
where careful network simulation has lower impact on final 
system performance. Figure 2 shows the normalized 
execution time for the workloads considered. On the one 
hand, it is clear that contention modeling of the original 
simulator is too optimistic, inducing a substantial error in the 
estimation of the execution time of each application. 
Although in some cases the effect is lower, such as for 
blacksholes and fluidanimate, in others it is surprisingly 
high. If we compare TOPAZ’s complex and simple 
implementations the differences are small but appreciable 
with respect to other simulators. Taking into account that the 
tool from which TOPAZ derives [13] is capable of achieving 
less than 3% error  with respect to hardware simulators, it 
seems reasonable to use TOPAZ as a reference point.  

On the other hand, GARNET network modeling seems to 
be too pessimistic. We used the publicly available tool, 
compiled and run using all the benchmarks considered. We 
prefer not to modify it in order to allow other researchers to 
repeat the evaluation. Like in the case of the original network 
simulator, with low load applications the error is small but 
with high contention applications the effect is substantially 
increased to almost three times the application execution 
time differences. This behavior can be easily reproduced 
with the configuration used, which is available in [12]. 

On average, the original network simulator introduces an 
optimistic error of 25% in execution time and GARNET a 
pessimistic one of 25%. Therefore, even in a not very 
demanding scenario, inaccurate modeling of the contention 
in the interconnection network could induce substantial 
errors in evaluation results, which could render the 
hypothetical comparison of two or more architectural 
solutions for the CMP unreliable. Note that original Ruby 
only models contention at link level, which is optimistic 
given the contention suffered at the crossbar by conventional 
routers, and GARNET seems to have some kind of error in 
pipeline implementation. 

Figure 3 shows the performance of each simulator in 
terms of Ruby network normalized simulated cycles per 
second of CPU. We have used the same hardware platform 
to perform this measurement with a large number of samples 
in order to have reliable averages. As can be appreciated, the 
complex TOPAZ router has a non negligible impact on 
performance, increasing the simulation time by 20 % on 
average. In some applications, such as CG, performance 
could be degraded by up to 50%. As can be seen, using 
simple models could attenuate this slowdown on average, 



 

obtaining reasonable accuracy with less than 5% of 
performance degradation. Surprisingly, GARNET is the best 
performer, improving on the original gems simulator by an 
average of 10%, which is motivated by its pessimistic 
contention modeling. It increases the average latency 
perceived by the processors in such a way that the activity in 
the rest of the system falls, increasing the number of cycles 
simulated per clock cycle. In Topaz simple, this also happens 
in workloads with low parallelism at instruction level, in 
which processor activity is lower than in Ruby.  

In contrast, Topaz complex compensates the lower 
computational cost of modeling the processors with the 
higher network activity, which makes the number of cycles 
simulated per second almost constant. 

D. MOESI_CMP_token Coherence Protocol 

In contrast to directory, this coherence protocol is 
characterized by intense network requirements due to 
multicast traffic. This example could be considered as a 
reference point where careful network simulation has a large 
impact on final system performance and simulation speed. 
Given the fact that GARNET has no native support for 
multicast traffic and this protocol uses it heavily, we decided 
to exclude GARNET in the comparison. Our simulator does 
have support for this kind of traffic. Note that broadcast-
based coherence protocols heavily depend on network 
support for multicast [18]. 

Figure 4 shows how the CMPs perform for each 
application and as the coherence protocol is characterized by 
a larger bandwidth requirements [31], the contention in the 
network will be higher and consequently the optimistic 
modeling of GEMS induces a larger error in the execution 

time of the workloads. In some cases, such as Apache and IS 
the observed error is above 100%, which is much higher than 
that observed in the case of directory. 

As mentioned before, more network load implies a higher 
computational workload for the network simulator and a 
slowdown in simulation time, as Figure 5 indicates. Now the 
performance reduction with the most detailed router falls on 
average by 40%. Simple implementation attenuates this fall 
by 5-10%. For some applications such as CG, the 
performance falls 80% i.e., simulation is five times slower. 
Under these conditions, in this protocol we explore 
additional performance optimizations such as an adaptive 
interface (denoted AI in the results). Even with such a small 
network and simple router, the unbalance between network 
simulation and the remaining components of the system keep 
multithreaded simulations (denoted P in the results) 
interesting, especially if it is required to run a particular 
application faster or maximum precision is required for 
network model. If a large batch of runs is required, in most 
cases to run sequential simulations will be more efficient 
because it requires two cores and in most cases speedup is 
lower than two. In contrast, adaptive interface is able to 
improve simulation performance significantly, reducing the 
gap with the original Ruby simulator by more than 10%, 
with an error below 2% for both simple and complex routers. 
The data provided have been obtained using a threshold of 
25 packets in the network before turning on the Topaz 
simulator. Only with applications such as streamcluster is 
the error relevant. Even when using 25 in-flight messages as 
a threshold, the traffic pattern could create significant 
contention, for example, if most traffic is highly localized 
around some specific parts of the system. 

 
Figure 2. Directory Coherence Protocol: Execution time differences through different network simulators. 

 

 
Figure 3 Directory Coherence Protocol: Simulator Performance differences through different network simulators 
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IV. SUPERCOMPUTERS INTERCONNECTION NETWORK 

EVALUATION 

This class of system has the singular characteristic of 
having a massive number of routers. The biggest challenge 
for a simulation tool for this kind of system is when the 
number of nodes grows significantly and accurate router 
modeling is paramount to discover potential instabilities in 
the system [32]. When thousands of nodes have to be 
simulated, the memory required could be significant. 
TOPAZ could use an advanced memory allocation approach 
which speeds up execution and limits further potential 
problems during the simulation. Additionally, multithread 
implementation enables taking advantage of current 
multicore server predominance.  

To show the scalability limit of the tool, like in the case 
of IBM Blue Gene systems [2], we use a 3D torus with the 
simple model of the Bubble Router [14]. We evaluate the 
performance obtained with up to one million of routers in the 

network in order to determine the scalability of the 
parallelization. Figure 6 presents the results obtained with a 
server with 12 cores and with 54GBytes of main memory 
based on Intel Xeon E5645. As we can observe, the 
scalability with such large systems is adequate. With 32K 
routers the simulation uses approximately 1.5GB of memory, 
5.5GB for 128K nodes, 12GB for 256K nodes, 24GB for 
512K routers and for 1 million it uses 49GB. As the number 
of nodes grows the speedup decreases slightly. When the 
number of routers is higher, the data synchronization 
between threads is more demanding for the memory 
hierarchy of the server. With 12 threads there is performance 
degradation due to threads unbalance due to non divisible 
number of nodes.  

TOPAZ has also demonstrated to be a suitable tool for 
dealing with such a large system, because the speedup 
achieved maximizes core utilization on the server. Running 
the simulation for such large systems using sequential 
simulations would be prohibitive due to the massive amount 
of memory needed to provide 12 or more cores with the 

 
Figure 4 Token Broadcast Coherence Protocol: Execution time differences through different network simulators

 
Figure 5 Token Broadcast Coherence Protocol: Performance differences through different TOPAZ optimizations. 

 
Figure 6 (a) Simulation Time for 50K Cycles (b) Speedup Observed. 
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memory requirements. According to the system size, 
scalability and the memory available in the server, the user 
could select the optimal number of threads per simulation. 
For example, in our case, if the number of routers is 256K, 
the optimal number of simulations to run in our server is 
three devoting for each one 4 cores. We would have 36GB 
memory utilization and almost a perfect speedup. 

V. CONCLUSIONS 

We have presented TOPAZ, which is a comprehensive 
and extensive tool conceived to facilitate interconnection 
network research. Its integration with one of the most 
common evaluation platforms in CMPs and its flexibility to 
simulate large-scale interconnection networks could make 
TOPAZ an attractive tool for a wide range of users. Given 
the current usage of GEMS, we hope the tool will attract 
many active users. In the long term, we will provide 
continued support for the tool, as it is one of our main 
resources for performing our research. The open source 
approach will also simplify how third party users can make 
their own contributions to the tool. 
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