A Case Study of Trace-driven Simulation for
Analyzing Interconnection Networks:

cc-NUMASs with ILP Processors

V. Puente, J.M. Prellezo, C. Izu*, J.A. Gregorio, R. Beivide

Abstract--

The evaluation of network performance under real application
loads is carried out by detailed time-intensive and resource-
intensive simulations. Moreover, the use of ILP processors in
cc-NUMA architectures introduces non-deterministic memory
accesses; the resulting parallel system must be modeled by a
detailed execution-driven simulation, further increasing the
evaluation cost.

This work introduces a simulation methodology, based on
network traces, to estimate the impact that a given network has
on the execution time of parallel applications. This
methodology allows the study of the network design space with
a level of accuracy close to that of execution-driven simulations
but with much shorter simulation times. The network trace,
extracted from an execution-driven simulation, is processed to
substitute the temporal dependencies produced by the
simulated network with an estimation of the message
dependencies caused by both the application and the applied
cache-coherent protocol. This methodology has been tested on
two direct networks, with 16 and 64 nodes respectively,
running the FFT and Radix applications of the SPLASH2
suite. The trace-driven simulation is 3 to 4 times faster than the
execution-driven one with an average error of 4% in total
execution time.

1. INTRODUCTION

Scalable distributed shared-memory (DSM) systems,
represented by the cache coherent non-uniform memory
access (cc-NUMA) systems, are emerging as the trend in
building parallel systems since they provide much desired
programmability. The network delay when accessing remote
data is one of the basic overheads that limits parallel
performance. Therefore, the design of interconnection
networks that are optimized to handle DSM traffic is an
important area of research.

The evaluation of interconnection network designs for a
given parallel architecture is carried out via network
simulation. In the first stages of design, networks are
compared using synthetic loads, which provide a first

University of Cantabria, Spain, e-mail:{vpuente, prellezo,
ja, mon}@atc.unican.es., 'University of Adelaide, Australia,
e-mail: cruz@cs.adelaide.edu.au

: This Work is supported in part by TI98-1162-C02-01.

approximation to real applications [2]. Notwithstanding, the
analysis of the impact that the interconnection network has
on system performance can hardly be forecast unless we use
realistic application loads, similar to those the network is
being designed to support.

The traffic in a cc-NUMA system, generated implicitly by
the application's memory accesses, depends on the cache-
coherent protocol used. Thus, precise loads can only be
obtained by execution of the selected applications under a
real or simulated system. The monitoring of a real system
alters the network traffic, and it is constrained by the given
network subsystem. In short, the extraction of realistic
application loads can only be achieved using execution-
driven simulations of the whole multiprocessor system with
the high computational cost they entail.

This work tries to reduce the cost of evaluation of the
interconnection network for a cc-NUMA system by
introducing a new simulation methodology. Network traces
are extracted from the execution driven simulation,
processed to approximate the dependencies of cc-NUMA
traffic, and then used by a trace-driven simulator to evaluate
the network performance. This new methodology is
compared with the original execution-driven simulation in
terms of simulation cost and accuracy.

Our evaluation will show that the new proposal introduces
an average error around 4%, and succeeds in reducing
execution time by a factor of 2 to 4. We intend to use this
trace-driven simulation as a partial substitute for execution-
driven simulation, which should still be used in the latter
stages of the design. The impact on the network design
cycle will be quite large because of the cumulative speed-up
in successive refinements of the router design.

The rest of the paper is organized as follows. Section 2
reviews the most relevant simulation methodologies for
interconnection networks. Section 3 describes the trace-
driven simulation with feedback. Section 4 describes the
application of our methodology for performance evaluation
and discusses the results and, finally, in Section 5 we draw
some conclusions.

II. APPLICATION LOADS FOR ANALYZING INTERCONNECTION
NETWORKS.

Various simulation techniques can be used to model
network loads in a cc-NUMA system, depending on the
accuracy of the prediction desired and the complexity of the
simulator itself. On one extreme of the scale, we can
generate accurate network loads from a parallel application
by simulating the complete parallel system, including each
processor, the memory hierarchy and the network
subsystem. By simulating the application, instruction by
instruction, we can generate the exact memory references,
and capture the requests passed from the memory simulator
to its network interface. This method provides very accurate
results, but the simulator itself is very costly in terms of
both development and computation.

On the other extreme, we can make simulation more
affordable by using an abstract model that reflects some
statistical properties of current loads such as the random
traffic model or other widely used permutation patterns.
However, this approach does not capture the details of a
specific application, and therefore, it cannot accurately
predict its performance.

Trace-driven simulation is a third approach with a level of
complexity in between the above two. The trace is a time
ordered sequence of events (message generation events in
our case) that happened during the execution of the
application. If the trace is carefully extracted and processed,
it can be powerful enough to represent all the necessary
characteristics of the application load. We must use a
detailed simulator to obtain an accurate trace, with the
associated cost, but we can reuse the trace as many times as
needed during the network design cycle.

Trace-driven simulation has been widely used in studies of
memory hierarchies of uniprocessor systems. This strategy
is limited by the characteristics of the simulated system. For
example, memory traces assume that the sequence of
addresses accessed is deterministic; this is correct for simple
processors but is not applicable to ILP processors with out-
of-order execution and non-blocking loads, which can cause
large errors [6].

Like simple processors, message-passing architectures are
easier to model using traces because of the deterministic and
explicit ordering in which the messages are generated by the
application. There is a large body on research of
interconnection networks from this point of view [2].
However, network traffic in a cc-NUMA system is not
deterministic because the characteristics of the network,
contention for instance, will influence on the number of
messages generated by the cache-coherent protocol. In
addition, the processing nodes are ILP processors. Hence,
the lack of trace-driven simulations for this environment.

For this reason, our first approach to model application
workloads was based on an existing execution-driven
simulator of a cc-NUMA machine with ILP processors
called RSIM[3]. As our research is focused on network
design, we substituted its simple network module NETSIM
by our own network simulator SICOSYS [9], which takes
into account the key parameters from the router's low-level
implementation. The resulting system, RSIM-S reflects
quite accurately the impact that a particular network design
will have on the application's execution time [10]. The only
drawback is the simulation time, e.g. simulating the
execution of Radix on a 64-node machine takes
approximately 11 hours on a R10000 processor at 200 MHz
for the selected problem size. The volume of simulations
required to refine and thoroughly test a new network design
renders this approach unworkable, even for systems with a
low number of nodes.

Recent studies have attempted to reduce the computational
cost of execution-driven simulators in the context of
analysis of memory hierarchies, using direct execution [5]
which replaces full processor emulation with a functional
and timing model. Another proposal modeled the benefits of
ILP by increasing the clock rate of a simple processor by a
factor equal to the ILP processor's peak instruction issue
rate. However, such an approximation is a source of large
errors as shown in [6].

Nevertheless, the complexity of the memory subsystem
cannot be reduced in a similar way so we explore another
avenue to speed up network simulation based on the use of
traces. Trace extraction in a cc-NUMA system with ILP
processors is not a straightforward process due to the non-
deterministic characteristics of memory access and the
influence of the network performance on the cache
coherence protocol. Next section will describe our approach
to trace extraction and post-processing.

III. TRACE-DRIVEN SIMULATION WITH NETWORK
FEEDBACK (TDS-NF).

We proposed a new methodology for modeling the impact
of network design on application loads. An application's
network trace is obtained from the execution-driven
simulator RSIM-S, which then feeds our network simulator
SYCOSYS. We called this simulation strategy Trace-driven
simulation with network feedback (TDS-NF). If the trace
information is correct, the resulting trace-driven simulation
will model the network effect on the application's execution
time with an accuracy close to that of RSIM-S but with a
much lower computational cost.

The network trace should reflect the key parameters of a
network load: number of messages and their distribution
both in time and destinations. Most traffic in a cc-NUMA
system follows a reactive pattern: a remote memory request
triggers the transmission of the requested data, and the
processing of the received remote data may trigger other
remote accesses. Similarly, cache coherence control packets

are triggered by the movement of remote data. The
application's trace should reflect this property by recording
the time when a message is generated as relative to the
message that triggered its generation as shown in Figure 1.

For example, Figure 1.(a) represents the communication of
the processes P; and Py, as observed during trace extraction.
Process P, sends a message m; to process P; at time ¢,;, and,
after some computations, process P; sends message m, at
time ¢, as the reply to message m;.

Py P,

tll:
AV

Fig. 1.- Scheme of (a) absolute temporization and (b)
relative temporization.

The former trace, showing absolute times, does not
encapsulate the impact of the network on the trace
extraction. After the arrival of message m;, which
experimented a network latency of #y units, process P,
carries out some computations and generates message m,.

Figure 1.(b) shows this dependency between network
performance and the time generation for m,, by making the
time #,« relative to the arrival of the message m;. Thus #«
only reflects the computation time, while ¢, includes also the
communication cost.

In short, the generation time for each message depends on
the current network status. Thus, we must provide a bi-
directional flow of information between the network
simulator and the module that interprets the trace to
generate the remote memory references. This feedback
mechanism distinguishes our approach from conventional
trace-driven simulation of networks in which the message
generator feeds messages to the simulator solely based on
the trace information.

The goal of trace post-processing is to identify the time
dependencies (zyi) ntroduced by the network employed
when the trace was obtained. Thus, any change in network
design will change the relative time at which messages are
generated and delivered, and the trace-driven simulation
will reflect its impact on the application's execution time.

Obviously, this temporization is oriented to reflect the
changes in the communication subsystem. Severe changes in
the processor architecture or in the memory hierarchy could
invalidate previous traces as representative of the
application loads for that new system.

A. Applying this methodology to cc-NUMA
architectures.

1) Extraction of message dependencies.

Finding the correlation amongst messages described in
the previous section is not an easy task in cc-NUMA
architectures. It is not the application code that implicitly
generates messages but the memory hierarchy subsystem.
Furthermore, ILP processors that use non-blocking loads
add complexity because message dependencies are then
indirect.

To be able to deal with this problem we have ignored
any changes in message ordering that are not causal. A first
approximation consists of considering the last received
message at that processing node as the cause of any
outgoing messages. Figure 2 illustrates this approach. In
this example, the reception of message m, at node P;
triggers this node to send three messages, two for node P,
and one for node P;. Let's assume that m,, was a request for
a cache line located at P; Our approximation is correct in
considering this reception as the trigger for m,, the message
that contains the data requested. The time ¢, models the time
to access Pj's directory and locate the requested data.
However, the remaining messages may or may not be
related to the reception of my,. They may be request
messages or replies to previous requests.

P, P, Ps

mry

15}

m

Fig. 2.- Initial approximation.

Due to the reactive nature of the DSM traffic, in which each
request will trigger a reply, it is easy to identify such
message pairs. A request message arriving at node d from
node s will trigger, at least, one message reply from node d
to node s.

Besides, we have to consider what is the trigger for the
control packets that implement the cache-coherent protocol.
This requires an in-depth analysis of the chosen protocol,
which in our case is the invalidation-based MESI directory
cache-coherent protocol.

Type of Type of messages triggered.
message
received
REPLY SH
= DATA
READ_SH REPLY_EXCL
COPYBACK COHERENCY
REPLY_EXCL
= DATA
RELPY_EXCLDY
READ_OWN =
- COPYBACK_INVL
= COHERENCY
INVL
RELPY_EXCLDY
= DATA
REPLY EXCL
UPGRADE =
REPLY_UPGRADE COHERENCY
INVL
ANY REPLY READ_SH / READ_OWN / UPGRADE

Table 1.- Trigger relationships between message types.

Considering all these criteria, we have constructed a table
(see Table 1) that describes the correlation between the type
of messages received and the set of messages it may trigger
(only appear message types seen in the network).

As well as finding the trigger message based on this type of
relationships, it is also necessary to compare both the
source-destination pair and the memory addresses of the
trigger and triggered packet.

This approach identifies the trigger for sending a data
packet, but we still have to find a trigger for the original
request. We have taken a rough approximation that consists
of assuming that request messages are triggered by the last
data packet received at that node.

2) Trace format

The trace extraction records one entry for each packet sent,
containing the basic packet information and its generation
time. The message label records the memory address that
the packet is referring to.

During trace post-processing, the dependencies with other
messages are identified as described in the previous section
and three additional fields created: the frigger label, the
trigger delay and the trigger count, as shown in Figure 3.

The trigger label indicates the message that must be
received prior to this message generation. The trigger delay
specifies the time elapsed between the reception of the
trigger label message and that generation (¢« as shown in
Figure 2.(b)). The trigger count indicates the number of
messages that will be triggered upon reception of this
message at its destination. Both the message label and the
trigger count will travel with the packet, carrying this causal
information to the destination node. When the message
reaches that node, we must search the messages whose
trigged labels match the received message label. All

messages found are trigged after their corresponding trigger
delays.

Source | Destination Msg. M.SQ' Absolute Time
Label Size
POST—PROCESS]N@
— Msg. Msg. Trigger | Trigger | Trigger
Source | Destination Label Size Label Delay Count

Fig. 3.- Trace entry format.

IV. VALIDATION OF TDS-NF METHODOLOGY.

A. Trace extraction.

As the previous section has described, we had to take some
rough approximations in order to reduce the complexity of
the cc-NUMA system with ILP processors. This fact may
suggest that the level of accuracy of the network evaluation
will drop when using trace files. Thus, we need to estimate
the validity of these approximations by comparing the
results of the trace-driven simulation with those of the
accurate but time-intensive execution-driven simulation.

Figure 4 shows the process carried out to validate our
methodology. As we mentioned before, we already have the
simulator RSIM-S, which combines the cc-NUMA
simulator RSIM with our own network module SICOSYS.

The trace is extracted from this simulator by capturing and

post-processing all the references sent to the network
interface as described in the previous Section.

Application Network

RSIM

Trace SICOSYS
SICOSYS H
|_| H
<Lt
Execution
Fig. 4.- Trace extraction and validation of trace-driven
results.

RSIM-S

Execution
time(approx

time

Once we have a trace that represents the load generated by
one application, we can validate our new simulator in two
phases. The first phase runs the trace-driven simulator using
the same network configuration applied during trace
extraction. As both simulators are emulating the same

parallel system, the execution time should be similar, the
more accurate the trace, the closer the results.

As we mentioned before, the advantage of having a trace
which is independent of the given network configuration is
that it will reflect the impact of changes to that network on
the application's execution time. Therefore, the second
phase runs the TDS-NF simulation with the same trace, after
changing the network configuration. Again, we run the
execution-driven simulation with the new network
configuration and use its results as the baseline for
accuracy, as shown in Figure 5.

All simulations run on a SGI Power Challenge LX, with
MIPS R10000 processor at 200 MHz, 1 GB of RAM and 2
Mb of L2 cache. Both simulators were compiled and
optimized by the C/C++ MIPSPro 7.2 compiler.

Application Network
Modified

RSIM-S
RSIM 7'g

v 4

SICOSYS

SICOSYS

I.]
=

Execution
time(approx

Execution
time

Fig. 5.- Validate the usage of the trace to analyze the
impact of network changes.

B. Evaluation of TDS-NF for two applications: FFT y
Radix.

We run the two-phase validation process for two
applications - FFT and Radix, both from the SPLASH-2

suite IE‘]I

We chose these applications because they are
communication-intensive, so they are very sensitive to the
characteristics of the interconnection network. We
considered two system sizes: 16 nodes and 64 nodes. The
problem size was 64K complex double points for the FFT,
and 512K integer keys with a maximum radius of 512K for
Radix.

The network does not play a critical role in the initialization
and completion phases of parallel applications, so these two
stages are eliminated to speed up testing.

The system configuration for the memory and processor
subsystem is the default one provided by RSIM 600
MHz nodes with 32-byte cache lines for both L1 and L2.
The size of cache coherence commands is 8 bytes.

The network configuration for the first phase is a 2D mesh
with adaptive routing. Requests and replies share the same
physical medium. The network channels are 4 bytes wide
and the network rate is 275 MHz. The router uses Virtual
Cut-Through (VCT) flow control and has two virtual
channels: a deterministic one and a fully adaptive one. Each
virtual channel has a buffer attached with capacity for 4 data
packets (160 bytes).

Deadlock due to overflow of the consumption channel
capacity is prevented by providing a large buffer size at the
network interface's consumption ports (with N request-
packet capacity for a network of N nodes), and restricting
the number of pending memory references in face of a
possible overflow.

The number of messages traced from each application under
these conditions is shown in Table 2.

Radix FFT

16 Nodes 64 Nodes 16 Nodes 64 Nodes

564,189 1,220,718 311,985 342,107

Table 2.- Number of messages generated by each
application under the two system sizes.

In the second phase of validation, we have considered three
changes to the network configuration as follows:
- Change topology, from a 2D mesh to a 2D torus. The
adaptive torus implementation is based on
- Reduce the channel width from 4 bytes down to 2 bytes.
- Double the network clock rate.

These three changes in network configuration will have a
significant impact on the application's execution time. We
selected such severe changes so that any error introduced by
the tracing mechanism will be magnified under such
different scenarios.

Table 3 shows the set of results obtained from the validation
process: the speed-up achieved by the TDS-NF simulation
and the error in the execution time estimation when
compared to the RSIM-S baseline.

Note that the differences in execution time between the
TDS-NF simulation and the baseline are always less than
10%, for any of the 16 cases considered. As you can see in
table 4, the average error is just above 4%. This level of
accurracy is quite satisfactory considering the
approximations discussed in section 3.

The severe changes in network configuration have a great
impact on application execution time and this is reflected in
the simulation results. For example, halving the router
bandwidth resulted in a significant increment of the
execution time of FFT-64 (16) by 70% (30%) as estimated
by the execution-driven simulation, or by 65% (31%) as
estimated by the TDS-NF simulation.

Obviously, the other two changes increased network
performance and resulted in shorter execution time for all
the applications. The largest average error corresponds to
the networks with a clock rate of twice the original one.
This may be due to our conservative correlation between
messages which may not correctly model non-blocking
accesses, but attributes to them false triggers that may delay
their generation unnecesarily in a faster network.

FFT 16 Processors
6 450

s M + 400

4 1 300

T 350

T 250
T 200

21 r 150

w
Relative Speed(%)

T 100

Error in Execution Time(%)

T 50

550 Mhz Net

Configuration

Original 2B Flit Size Torus QError

B Speedup

4.

Error in Execution Time(%)

0.

3.

2.

1.

The speed-up achieved by using traces ranges from 200% to
400%. For example, the time to run Radix in a 64 node
system (RADIX-64) is reduced from 11 hours to 3 hours.
We should point out that SICOSYS, being a low-level
network emulator, exhibits a higher computational cost than
other functional network simulators. On the other hand, it
provides the necessary accuracy to model a particular VSLI
router design. In short, SICOSYS complexity limits the
speed-up (%) achieved by eliminating RSIM's memory
hierachy and processor modules.

Considering the number of simulations needed for a
complete network design, the time reduction is very
considerable and clearly outweighs the cost of trace
extraction and processing.

FFT 64 Processors

5 300
5 —
A | 250
1 S
5 200 §
3 8
&
5 t1so @
2
3
k]
['4

54

54

Original 550 Mhz Net 2B Flit Size
Configuration

Torus BError

B Speedup

Fig. 6.- Relative error by the trace-driven simulation when compared to the execution-driven simulation
for the FFT application.

Radix 16 Processors

350

T 300

+ 250

T 200

r 150

Relative Speed(%)

T 100

Error in Execution Time(%)

r 50

o AN W s OO N ® O

+ 0 QError

Original 550 Mhz Net 2B Flit Size Torus

B Speedup

Configuration

Radix 64 Processors

450

400

350

300

250

200

Relative Speed(%)

150

Error in Execution Time(%)

100

o - N w B O O N ® ©

50

Original 550 Mhz Net 2B Flit Size
Configuration

Torus OError

B Speedup

Fig. 7.- Relative error by the trace-driven simulation when compared to the execution-driven simulation
for the Radix application.

FFT16 FFT64 RADIX16 RADIX 64

Configuration

Error | SpeedUp | Error | SpeedUp | Error | SpeedUp | Error | SpeedUp | Error | SpeedUp

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
Bascline 4.6 407 4.23 283 1.99 328 0.37 332 |2.8 338
Net. Speedx? 485 | 397 | 467 | 235 | 894 | 268 | 793 | 265 |6.59 |291
Flit Size/2 5.48 302 1.1 200 1.33 278 7.97 283 |3.97 265
Torus Network 0.28 412 -1.1 261 9.45 330 5.76 402 | 4.14 351
Average 3.80 379 2.75 245 5.45 301 5.55 396 4.37 311

Table 3.- Speed-up and error obtained by the TDS-NF simulation when compared with the execution-driven simulation
(average error calculated using absolute values).

+20%Clock -20%Clock
RSIM-S TDS-NF RSIM-S TDS-NF
Radix 16 Processors 7.5% 8.69% -5.63% -1.5%
Radix 64 Processors 8.5% 6.45% -10.1% -15.5%
FFT 16 Processors 7.2% 8.7% -4.6% -10.0%
FFT 64 Processors 14.6% 11% -15.3% -13.3%

Table 4.- Change (%) in execution time estimated by simulation of a faster (slower) network.

We are interested in using traces to estimate the the impact
of any network redesign on the execution time of parallel
applications. Thus, we consider a more realistic variation of
120% network speed.

Table 4 shows the variations obtained by the execution-
driven simulation and the trace-driven simulation after
increasing (decreasing) the network clock rate.

V.-CONCLUSIONS AND FUTURE WORK.

This paper has introduced a new methodology to analyze
the effect that the interconnection network has on the
performance of a cc-NUMA system with ILP processors.

A network trace of a given application is extracted from a
execution-driven simulation, and processed to convert
absolute-time references into network-relative ones. The
processed trace encapsulates the reactive properties of DSM
traffic. The message generator interprets this trace and the
network feedback information to timely generate the remote
memory references. This feedback mechanism
distinguishes our approach from conventional trace-driven
simulation. The same trace can be repeatedly used to
evaluate the impact of different network configurations on
the initial application at a much lower computational cost.

This methodology has been tested over direct networks (2D
mesh and 2D torus) with 16 and 64 nodes, using the FFT
and RADIX applications from the SPLASH2 suite. This
approach significantly reduces computational times, 2 to 4
times, with a minimal loss of accuracy. The average error
compared with the execution-driven simulation baseline is
only 4.4%.

Considering the approximations made during trace
processing, and the possibilities for further refining this
trace extraction, the TDS-NF methodology is very
promising. It can also be extended to model message-
passing traffic.

[10]

[11]

[12]

VI.- REFERENCES

M. S. Lam and R. P. Wilson, “Limits of Flow Control on
Parallelism”, Proc. 19th Annual International Symposium on
Computer Architecture, May 1992.

S. Chodenekar et al. “Towards a Communication
Characterization Methodology for Parallel Applications” Proc. 3rd
High Performance Computer Architecture, Feb. 1997.

V. S. Pai, P. Ranganathan, S. Adve "Rsim: An execution-Driven
Simulator for ILP-Based Shared-Memory Multiprocessors and
Uniprocessors”, IEEE TCCA Newsletter, Oct. 1997.

A.S. Vaidya, A. Sivasubramaniam, C.R. Das, “Performance
benefits of virtual channels and adaptive routing: An application-
driven study”, in Proc. of International Conference on
Supercomputing, July, 1997

H. Davis, S.R. Goldschmidt, J. Hennessy, “Multiprocessor
Simulation and Tracing Using Tango”, Proc. Intl. Conf. On Parallel
Processing, 1991.

M. Durbhakula, V.S. Pai, S. Adve, “Improving the Acuracy vs.
Speed Tradeoff for Simulating Shared-Memory Multiprocessor with
ILP Processors”, Proc. 5rd High Performance Computer
Architecture, Jan. 1999.

C.Holt, J. P. Singh, J. Hennessy, “Application and Architectural
Bottlenecks in Large Scale Distributed Shared Memory Machines”,
Proc. 23" Intl. Symp. On Computer Architecture, May 1996.

M. Rosemblum et al., “Using the SimOS Machine Simulator to
Study Complex Computer Systems”, ACM Transactions on
Modeling and Computer Simulation, 1997.

J.M. Prellezo, V. Puente, J.A. Gregorio, R. Beivide, “SICOSYS:
an interconnection network simulator for parallel computers”
Technical Report available at http://www.atc.unican.es/
REPORTS/TR-ATC2-UC98.pdf, June 1998.

V. Puente, J.A. Gregorio, C. Izu, R. Beivide and F. Vallejo,
“Low-level Router Design and its Impact on Supercomputer
Performance”, Proc. of International Conference on
Supercomputing, June 1999.

V. Puente, J.A. Gregorio, J. M. Prellezo, R. Beivide, J. Duato, C.
Izu, “Adaptive Bubble Router: a Design to Balance Latency and
Throughput in Networks for Parallel Computers”, Proc. of
International Conference on Parallel Processing, Sept. 1999..

S. C. Woo, M. Ohara, E. Torrie, J.P. Singh, A. Gupta “The
SPLASH-2 Programs: Characterization and Methodological
Considerations”. Proc. of the 22nd International Symposium on
Computer Architecture, June 1995.

	A Case Study of Trace-driven Simulation for Analyzing Interconnection Networks: �cc-NUMAs with ILP Processors*
	INTRODUCTION
	Application loads for analyzing Interconnection Networks.
	Trace-Driven Simulation with Network Feedback (TDS-NF).
	Applying this methodology to cc-NUMA architectures.

	Validation of TDS-NF methodology.
	Trace extraction.
	Evaluation of TDS-NF for two applications: FFT y Radix.
	Radix
	4.67

	V.-Conclusions and Future Work.
	VI.- References

