
J. Parallel Distrib. Comput. 102 (2017) 163–174
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

An adaptive cache coherence protocol: Trading storage for traffic
Lucia G. Menezo ∗, Valentin Puente, Jose-Angel Gregorio
University of Cantabria, 39005, Santander, Spain

h i g h l i g h t s

• A new adaptive non-inclusive cache coherence protocol.
• Combination of snoop-based and directory-based coherence protocol.
• Non-inclusive directory able to reconstruct sharing information when needed.
• Adaptive filter to minimize coherence traffic.

a r t i c l e i n f o

Article history:
Received 12 February 2016
Received in revised form
15 November 2016
Accepted 18 December 2016
Available online 28 December 2016

Keywords:
Coherence protocol
Multicore
CMPs

a b s t r a c t

This paper introduces a new adaptive cache coherence protocol which minimizes energy requirements
and guarantees scalability. It includes two complementary parts: a non-inclusive sparse-directory to track
only actively shared blocks and a structure to determine the presence of a block in the private caches
based on an improved counting bloom filter. It uses token counting to preserve the system correctness, to
improve performance and to reduce the implementation complexity. Combining all these characteristics,
the proposal has a low storage overhead and is able to suppress most of the traffic inherent to snoop-
based protocols and reduce the size of directory-based structures. Using a capacity to track only 40% of all
the blocks allocated in the private caches, this coherence protocol is able to achieve better performance
than an over-provisioned sparse-directory with a capacity to track 160% of the blocks kept in private
caches. The complementarity of both structures enables the coherence controller to change dynamically
the way the storage available is dedicated according to the data-sharing properties of the application.
Thus, applications with high-sharing degree will need more directory space while low-sharing degree
patterns will need more private block-presence space to include more information. With only 5% of the
private cache entries tracked, the average performance degradation is less than 8% compared to a 160%
over-provisioned sparse-directory.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Cache coherence is a huge challenge of future chipmultiproces-
sors (CMPs). In order to maintain the performance improvement,
the number of cores will keep on increasing and the pressure on
the bandwidth off-chip will continue to grow. One way of alleviat-
ing this problem comes by increasing the amount of memory on-
chip. However, this increased amount of on-chipmemoryprovokes
longer access times, which need to be palliated using a more com-
plex memory hierarchy.

It is the coherence protocol’s responsibility to make sure that
all potential copies of any block that are scattered over different

∗ Corresponding author.
E-mail addresses: gregoriol@unican.es (L.G. Menezo), vpuente@unican.es

(V. Puente), monaster@unican.es (J.-A. Gregorio).

http://dx.doi.org/10.1016/j.jpdc.2016.12.020
0743-7315/© 2016 Elsevier Inc. All rights reserved.
caches are coherent, i.e. any processor should see the same content
of all the memory locations under any circumstance. There is no
universal solution and the chosen one will depend on the system.
When the number of cores is low, the chosen solution is to use
broadcast-based coherence protocols. Actually, this is the method
used by current high-performance commercial systems [14,8,16].
Its main advantages come with better performance and lower
complexity when compared with other coherence proposals such
as directory-based coherence protocols. However, this is achieved
with an increment in the total amount of traffic and cache snoops,
which will decrease the energy efficiency of the system. It is
clear that when the size of the system grows, the impact of this
disadvantage will become unsustainable. A more subtle effect,
but not less relevant, is the on-chip resource contention that
characterizes these protocols. As a result, on-chip access latency
can be affected, perhaps degrading the CMP performance under
some particular usage scenarios.

http://dx.doi.org/10.1016/j.jpdc.2016.12.020
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.12.020&domain=pdf
mailto:gregoriol@unican.es
mailto:vpuente@unican.es
mailto:monaster@unican.es
http://dx.doi.org/10.1016/j.jpdc.2016.12.020

164 L.G. Menezo et al. / J. Parallel Distrib. Comput. 102 (2017) 163–174
On the other hand, there are directory-based coherence
protocols. Broadcast cache snoops are avoided by using a specific
structure to track the block’s copies present in the cache hierarchy.
However, with this solution new limitations emerge. On the one
hand, this approach demands inclusivity. This property requires
that the contents of all the smaller caches of a multi-level cache
hierarchy have to be a subset of the last-level cache (LLC).
When a line is evicted from the LLC, inclusion is enforced by
removing that line from all the caches in the hierarchy where it
is present. Although from a performance and a cost stand point
of view non-inclusiveness is desired, the common assumption
is that inclusiveness is difficult to avoid in order to maintain
coherence protocol complexity limited. On the other hand, the
associativity needed in the directory increases as the number of
cores does, making solutions like the duplicate-tag unviable [20].
The solution adopted to overcome this issue is to overprovision
the directory to minimize unnecessary evictions in the private
caches due to directory conflicts under constrained (and realistic)
associativity [15]. However, this method also causes scalability
problems as the private cache sizes increase and so the number
of tracked blocks does too [35].

From this standpoint, it would appear that a pure coherence
protocol might not be the most suitable approach to tackle
the problem. Intuitively, it seems that the coherence protocol
should somehow hybridize the best of both types: trying to
attain the performance effectiveness and implementation cost of
a broadcast-based coherence protocol with the energy efficiency
of a directory-based one. This paper addresses this task and
successfully attains a new coherence protocol, denoted Flask
(FiLtered and Allocated just by Shared block Keeper) coherence,
which can scale as a directory-based coherence protocol does,
while achieving cache effectiveness similar to a broadcast-based
one. A previous version of this paper was presented in [28]. Now,
several additional explanations with rewritten sections have been
added to clarify the description proposal and a more realistic
memory model has been used to produce new results, generating
a complete and self-contained work.

Flask is based on the idea of having two complementary
structures working together on one logical framework. One of
them, called Dir-P, which is basically an improved Bloom filter [6]
to determine the presence or not of any block in the private
caches. The other one, called Dir-S, works as a sparse directory
and tracks the blocks that are actively shared among the cores.
The whole system uses token counting to guarantee correctness
while maintaining the complexity limited. The whole framework
keeps detailed information about the location of data that are being
actively sharedwhile recording only the presence of the blocks that
are allocated privately in the caches (with no sharers), which is the
most common case.

In a directory-based protocol every block inside a private cache
must be tracked by using an entry in the directory. This is known
as directory inclusivity and it means that if a new block has to be
tracked and there are no available entries in the directory, one
of the existing ones has to be replaced. Thus, the block being
tracked by the replace-to-be entry has to be invalidated in all the
private caches where it is present. However, our protocol is able to
handle incomplete information given by the framework, i.e. with
the information of both structures, the protocol does not have
exact information. This circumvents directory inclusivity and so
it avoids the invalidation of blocks in the private caches due to
conflicts in the directory structure. When a shared block is not
being tracked by Dir-S, after a new request to the controller, a
broadcast is sent to all coherence agents (the system structures
in charge of the coherence maintenance). The replies are used
to reconstruct the corresponding entry in the directory. This
approach of reconstructing the directory entries on demand was
first introduced by Mosaic [27]. Nevertheless Mosaic allocates
directory entries for any on-chip miss (i.e. for both private and
shared blocks) and it always generates a broadcast if there is amiss
in the directory. On the contrary, the Flask structureDir-P includes
the (probable) presence informationwhich avoids the unnecessary
search for the block inside the chip. If the block is not present inside
the chip, i.e.Dir-P does not include the block’s information, it sends
the request directly to the memory controller. Thus, nearly all of
the off-chip requests are not delayed. In the least common case,
misses in a private cache of an actively shared block are always
tracked by Dir-P and dealt with through a multicast to the on-chip
coherence agents inside the chip, but avoiding unnecessary off-
chip requests.

Finally, the framework introduced allows us to dynamically
assign, according to the sharing degree of the running workload,
storage capacity in the coherence controller either to track shared
blocks in Dir-S or to identify privately held blocks in Dir-P. This
characteristic enables the area dedicated to both structures to be
reduced considerably.

The main contributions of the paper are as follows:

• The hybridization of a directory-based and a broadcast-based
coherence protocol in a unified logic substrate with optimized
implementation and energy costs.

• The proposed strategy achieves the performance of a conven-
tional, over-provisioned sparse directory, while tracking less
than 40% of the private cache entries. Similarly, it improves on
Token coherence protocol performance by 10% and energy de-
lay product by 20%.

• With only 5% of tracked private cache entries, average
performance degradation is less than 10%with respect to a 160%
over-provisioned sparse-directory.

• We show that, using an adaptive storage assignation at the
coherence controller according to the workload properties, we
can reduce even further the resources of the proposal. Matching
a sparse-directory performance while tracking only 20% of
private cache entries.

2. Motivation

2.1. Directory and broadcast coherence approaches

While directory-based protocols seem to be an attractive
approach to enforce cache coherence in a CMP, when the number
of cores is high and the on-chip hierarchy complexity grows, the
directory is difficult to scale. Themain cause is the large number of
blocks that have to be tracked as the caches sizes grow. In an on-
chip cache, similar to state-of-the-art systems [14,16,9], in order
to close the gap in the access time between a small L1 (dominated
by processor clock cycle) and a very large LLC (dominated by main
memory access time), at least one intermediate level is required.
As a consequence the number of blocks that the directory has to
track is even larger. Additionally, those intermediate levels usually
have a substantial associativity. Moreover, recent designs [14,16]
also require a large associativity for L1. In summary, the number of
blocks that can be mapped in a set of the directory is high.

Although in some early CMPs [20] the directory has enough
capacity to keep information about all the blocks allocated in
the private caches, when the number of cores or private cache
complexity and size grows, this is not feasible due to the enormous
associativity required by the directory. However, reducing this
associativity increases the eviction of blocks in the private caches
due to conflicts in the directory. A rule of thumb [15] suggests
that over-provisioning the directory with twice the capacity
required to track the private caches will diminish the number
of invalidations [11]. Nevertheless, the larger number of tracked

L.G. Menezo et al. / J. Parallel Distrib. Comput. 102 (2017) 163–174 165
Fig. 1. Flow diagram followed by a miss request.

blocks as well as the size of the sharing vector cause a square
growth of the directory cost with the increase in the number of
cores in the CMP.

Oneway of handling this over cost in the directory is to consider
the semantics of the applications. It is known that most memory
regions are accessed privately by a single core most of the time
[10,3]. If the directory is aware (actively [10,3] or passively [27,11]),
we can reduce the number of private blocks thatwehave to track in
the directory. Consequently, we can reduce the number of entries
without interfering with the private cache performance.

Additionally, with a restricted number of cores, broadcast-
based coherence approaches seem to be the most suitable choice.
They do not need any type of structures to track the cache
blocks’ information and their performance is better than the
directory-based ones under restricted circumstances. Proof of this
is that many commercial high-performance processors use them
[14,16,9]. However, similarly to the directory, when the number
of cores increases, their scalability is negatively affected due to
additional traffic and to the extra cache snoops that each cache
miss triggers in the rest of the caches.

In this case, one way to tackle the problem is to use
suitable interconnections thatminimize the utilization of the same
resource in the network by copies of the same message. This will
be done by supporting on-network broadcast and/or on-network
gather [18,21]. At the same time, to avoid both communication
and tag snoop overheads, many works advocate filtering [9,29]
or adapting the protocol behavior to the bandwidth availability
[26,31]. In order to filter out unnecessary memory controller (MC)
accesses or off-chip coherence fabric interfaces (XC), additional
mechanisms should be provided [16,9]. In order to reduce the
directory overhead, Bloom filtering mechanisms or similar ones
are used. For example, to filter coherence messages to eliminate
needless lookups [23]; to avoid having to store the tag in the
directory [40,41]; or by using hash functions to reduce its size
[35,13,34].

2.2. Cache coherence hybridization

Many of the previous solutions proposed to alleviate the limita-
tions of both types of protocols, directory and broadcast, are based
on a complementary design alternative. For example, in a directory
for shared blocks, the approach followed is to snoop all or a subset
of the coherence agents to see whether they have a copy of the
block when a request misses in the directory and/or LLC [11,27].
In other works, the coherence protocol acts as a snoop-based pro-
tocol does. Therefore, the resulting protocol mimics a directory
protocol in some cases and a broadcast-based protocol in others.
The same observation could bemade for some broadcast-based co-
herence protocols, which reduce the energy overhead through the
insertion of structures to filter unnecessary cache snoops [29] or,
for a different target architecture, predictingmulticast destinations
and using the directory to verify the selection [4]. In some way,
most of these solutions use a ‘‘base’’ approach (either directory or
broadcast) and use the complementary one to compensate for the
inherent limitations. Similarly, our proposal combines both strate-
gies: a standard sparse directory [15] and token coherence [24].
We will use a directory-like structure to track most of the shared
blocks (with precision in a sharing vector) and private block pres-
ence (in an approximate way). In both cases, token coherence is
used to discover when, after a miss, a block should be classified in
one or other group. The information present in this structure will
be used to minimize the on-chip and off-chip traffic. Then, intu-
itively, we can say that both facets of the coherence protocol oper-
ate with similar levels of relevance.

3. Flask coherence

3.1. Cache coherence protocol: basic idea

The coherence controller is based on a similar structure to an
N-way directory, but divided in two different parts: Dir-P and
Dir-S. The Dir-P or Private structure (P could also be considered
for presence in the private caches) contains the basic information
about whether a block is present in the private caches, either being
shared or not. It is based on a d-left Counting BloomFilter (dlCBF) [6].
The other part, Dir-S or Shared, contains detailed information
about the sharers of all or some of the blocks that are being shared.
Its structure correspondswith a sparse directory [15]. In both cases,
the information does not have to be exact. In theDir-P, the protocol
admits false positives so the structure might say that the block is
present in the private cache, when really it is not. In the Dir-S, false
negatives can happen so the absence of any information about a
block does not mean that is not being shared.

In summary, when a block is allocated in some private cache,
its presence should be detected in the private part of the directory
(Dir-P), while if the same block is being shared among several
cores, then the shared part of the directory (Dir-S) could include
its sharing information (but it is not mandatory). In the case that
a block is only present in the LLC, then it is not necessary for the
directory to include any information about it in either of the two
parts (it is not a private block or a shared block).

The logical process (not the real one) that a core miss request
goes through can be seen in the flow diagram in Fig. 1. If the block
is present in the LLC, then the request should be forwarded there so
it can be dealt with. If it is not, then it is necessary to checkwhether
the block is inside the chip, i.e. if it is allocated in any private

166 L.G. Menezo et al. / J. Parallel Distrib. Comput. 102 (2017) 163–174
cache. If it is not, then the request is sent directly to memory so
it can forward the necessary data back to the requestor. If the Dir-P
structure gives a positive answer then it is probable that the data is
present in some private cache (but not sure). The next fact to check
is whether the Dir-S includes information about the requested
block, which would mean that the block is being actively shared
among the cores. If it is, then the directory controller will know
exactly who to send the request to in order to be able to deal with
it. On the contrary, if the Dir-S does not include an entry with the
block information, then the directory controller has to distinguish
two different situations: (a) the Dir-P gave a false positive and
the block is not really inside the chip, or (b) there is no entry
because either Dir-S did not have enough space for that shared
block or the block is privately allocated in some private cache.
In any case, the directory controller sends a broadcast request to
all the private caches asking for information about the requested
block. If no private cache has the block allocated, then it is a case
(a) situation and the controller detects the false positive given by
Dir-P. As soon as the controller confirms that the block is actually
inside the chip (case b), it forwards the request to the correct sharer
and it allocates a new entry in the Dir-S for the address requested,
setting all its sharers.

3.2. Update and replacement

When a block is sent from memory and enters the chip for
the first time the Dir-P information for that address is updated to
indicate that the block is present in the chip. The Dir-S information
is still not modified, as the block corresponds to a private block
which will be held by only one core (the one requesting it). From
the moment that a private block is requested by another core,
a new entry has to be allocated in the Dir-S since the block is
then considered to be an actively shared one. If this new entry
causes a conflict with another one already present, the old one
is evicted silently, without notifying the sharers of the block as a
conventional directory would do. This means that even if all the
sharing information is lost, the sharers will not have to invalidate
their copy of the block, because the coherence protocol is prepared
to ‘reconstruct’ the sharing information in case it is needed in the
future. Since directory inclusivity is not mandatory, unnecessary
invalidations of the blocks present in private caches are avoided.

Last, when a block is replaced from all the private caches, the
coherence controller removes the corresponding information in
thedirectory. It removes the entry from theDir-S if it is present, and
removes the address information from the Dir-P since the block is
not present in the private caches anymore. Any subsequent request
for that address will find the data block in the LLC or in memory.

3.3. Flask basic framework

To achieve the coherence controller functionality that has
been previously described, it is necessary to implement the two
different functional parts of the directory-like structure: Dir-P and
Dir-S Fig. 2. For the Dir-P part, and due to the large number
of blocks that have to be tracked, Flask favors efficiency and
sacrifices determinism by using a probabilistic structure. The
chosen solution is a d-left Counting Bloom Filter (dlCBF) [6] that at
least doubles the efficiency of the counters of a conventional Bloom
Filter [5], with a similar implementation cost. For the other part,
the Dir-S, where most of the blocks that are being shared have to
be stored, the chosen structure is an n-way sparse directory [15].

In order to obtain a coherence protocol which is adaptive to the
application necessities, both structures need to be independent of
the storage space available and the performance of the protocol
should not depend on it. In fact, it is possible to reduce to zero
the storage space available and the coherence protocol would still
work. Reducing each of the structures in the directory separately
does not have very different consequences. As the area dedicated
to the Dir-P is reduced, the number of false positives will increase
and therefore will also increase the number of broadcasts needed
to check whether the block is present in any private cache. When
this Dir-P area is null, any check into this structure will give
a false positive and only the presence of the block in LLC will
avoid the exhaustive search for the block. A similar thing happens
as the area dedicated to the Dir-S is reduced. The number of
shared blocks whose sharing information is not available at the
directory becomes larger and consequently more broadcasts will
be necessary to obtain the data block. If the system did not have
any storage space at all, every request that does not find the data in
the LLCwould cause a broadcast. On the contrary, if both structures
arewell set, only the blocks that change from private to sharedwill
require a broadcast to all the cores in the CMP.

This independency gives the Flask coherence protocol the
possibility of completely adapting the area available to the
necessities of each of the applications according to their sharing
degree.

3.4. Broadcasts. Token coherence

With all the previous framework characteristics, it seems
obvious that the coherence protocol is able to trade storage space
for traffic. This introduces new possibilities in the CMP as the area
used to store presence or sharing information can be adjusted to
the available resources of the interconnection network. Thus, if
the area to keep the blocks’ information is large, the necessity to
broadcast requests is considerably reduced. On the other hand, as
the amount of block information decreases, the requirements of
the interconnection network resources will increase.

In any case, the broadcast mechanism should be optimized to
minimize its negative effects. This can be done in two ways. From
the physical point of view, the existence in the interconnection
network of special support for broadcast traffic can reduce the
load on the network by up to 70% [18] of what is generally
accepted, making the broadcast process less costly in time and
energy. From a coherence point of view, the broadcast technique
introduced by the Token Coherence protocol [24] presents many
advantages over other proposals. This technique is based on the
assignment of a fixed number of tokens to all the cache blocks
(usually the same number as the number of cores in the system).
To read a block, it is necessary to have a copy of the block with
at least one of the tokens. To write a block, it is necessary to
have a copy of the block and the set of all the tokens assigned
to that block. Thus, the single writer/multiple reader invariant is
guaranteed. This mechanism considerably reduces the complexity
of broadcast-based coherence protocols and, specifically for our
protocol proposal, offers three notable positive effects: (a) it
reduces the latency response of the write requests. When the
coherence controller broadcasts awrite request, the requestor only
needs the response of those having tokens and not from all of the
cores; (b) it helps Dir-P to determine when the last copy of the
block is entering or leaving the private caches, making it easier to
control; (c) as happened in Mosaic [27], the use of tokens makes
it possible for the LLC to work as a filter of a large number of
unnecessary broadcasts, because if any requested block is present
in the LLC and it includes all the tokens, the coherence controller is
sure that there is no other copy of the block in the whole chip. In
this case, the request can be sent only to the LLC so it can forward
the requested data block to the requesting core.

4. Implementation details

This section introduces the main aspects of both structures
mentioned previously: Dir-S and Dir-P.

L.G. Menezo et al. / J. Parallel Distrib. Comput. 102 (2017) 163–174 167
Fig. 2. High-level representation of a lookup in Flask coherence controller (Dir-P: a parallel counting bloom filter with r counters and h hash functions. Dir-S: an N-way
sparse directory).
4.1. Dir-S: sparse directory

In order to avoid using a broadcast to deal with all the private
cachemisses, Flask uses a sparse-like directoryDir-S to track some
of the shared blocks. In contrast to conventional sparse directories,
this one will tend to track only actively shared blocks. This means
that when a block is missing in the chip, no entry is necessary
in this part of the directory. If the block remains private as it is
replaced, it will be progressively moved to further levels until it
gets evicted to the non-inclusive LLC.We denote the time between
these two points the private caching period. The block becomes
actively shared if during the private caching period it is accessed by
another core in the system. If this circumstance arises, we need to
allocate an entry in the Dir-S with its sharing information, i.e. with
the two cores if the second request was a read, or with the last core
if it was a write.

As was mentioned previously, when a Dir-S entry is evicted,
no external invalidations are sent to the private caches that hold
a copy of the block. Thus, when a processor misses in its private
cache, it is not possible to determine whether there are other
copies in other private caches just by checking if there is an entry
allocated in the Dir-S or not.

At first, when a request arrives at the directory, and assuming
for now that Dir-P says that the block is within a private cache
and there is a miss in the Dir-S, the coherence protocol initiates
a reconstruction process. This process will snoop the remaining
coherence agents in order to recreate the sharing vector of the
requested block. By using token counting, the directory will be
aware of when the information received is enough to unblock
the pending memory operation. The on-chip coherence agents
will respond with the count of tokens owned for the requested
data. The reconstruction approach is based on the one proposed
inMosaic [27]. Nevertheless, Flask never allocates an entry in the
directory unnecessarily (i.e. for a private block).

If any response comes from any of the cores, i.e. from their
private caches, we know that the block is being actively shared
and so a Dir-S entry is allocated. If the pending operation is a
load, the directory instructs the private cache with the owner
token to forward the data to the requestor and it keeps counting
incoming answers. When the location of all the tokens is known,
the sharer vector is accurate. If the pending operation is a store, the
directory instructs all the private caches with tokens to forward
them to the requestor core (consequently invalidating the data)
and also requests the cache where the owner token is allocated,
to forward the data block to the requestor processor. When all the
tokens are received by the requesting core, it knows that it can
proceed with the operation, and unblock the directory entry. On
the contrary, if the requesting data is not in any private cache, then
the request is forwarded tomemory and its responsewill not cause
any allocation in the Dir-S as the data block enters the chip as a
private block (its presence information will be included in the Dir-
P part as is explained in the next section).

A miss in the Dir-S structure could happen for four reasons:
1. The entry allocated with the requested information was

removed from the directory because of lack of space (remember
that this is done silently).

2. The requested block is privately allocated in someprivate cache.
3. The block has been evicted from the private caches and it is

present in the LLC.
4. The block is present in memory, outside the chip.

If no additional structure is added, any of these cases would
cause a broadcast request to all the coherence agents in the system.
If the block is present in main memory all the private cache tag
snoops are an unnecessary overhead of traffic and energy. If the
block is present in any of the private caches, it is not necessary to
waste such a scarce resource as the off-chip bandwidth is with a
memory request. Then, if we include a chip presence information
structure like the one described next, the unnecessary private
snoops and the off-chip requests could be reduced drastically.

4.2. Dir-P: D-left Counting Bloom Filter (dlCBF)

Dir-P is the structure in charge of determining if a block is
present in any private cache or not. It is composed of counting
bloom filters [5] attached to each Dir-S entry, in order to track all
the tags (roughly) thatmap onto its entries. A counting bloom filter
is an efficient, approximate setmembership check that enables the
tracking of a tag’s presence in the private caches at a fraction of
the regular cost. The storage space dedicated to this structure will
determine its approximation degree. In any case, the coherence
protocol must tolerate false positives which will become more
frequent as the dedicated area is reduced.

Each time a block arrives at any private cache or leaves it, we
need to increment or decrement the counters of the filter. The
event that triggers the increment in the counters will be an on-
chip miss. This situation can be identified when the data arrives at
the chip after a miss. On the contrary, decrementing each counter
might be a significantly harder task. It requires identifying when
there is no longer a copy of the block in the private caches. We
will again use token counting for this purpose. When a block has
been evicted fromevery private cache, the directory knows that the
block, with all its tokens, is in the LLC and the counters of the Dir-P
can be decremented. This is the common case (>99.99%) because
the reuse distance supported by private caches is much shorter
than that supported by the LLC, given the size ratios between
the two caches. Finally, the scenario in which a block that has to
be evicted from LLC without having all the tokens could be very
difficult to handle, but we opt for invalidating any private copy of
the block through a broadcast, collecting the tokens, and evicting
the block. This seems costly but, fortunately, it is very unlikely.

168 L.G. Menezo et al. / J. Parallel Distrib. Comput. 102 (2017) 163–174
4.2.1. Counter overflow and false positives
As in any counting bloom filter structure, a problem we must

deal with is that counters can overflow [7]. This situation might
affect the system correctness since it could cause false negatives,
i.e. requests sent to memory for blocks potentially modified in
the chip. The coherence protocol should contemplate this event
and handle it accordingly. As this is a very unusual case, it is not
cost effective to increase the complexity of the coherence protocol
because of it. Instead, we opt for avoiding counter saturation
through invalidation. If after an on-chip miss (and subsequent
addition), some of the counters reach the maximum value, we
invalidate all the private cache sets mapped on Dir-P. Although at
first sight this might seem to have a huge performance impact,
in practice, with a large variety of configurations and workloads,
we have seen that it is extremely unlikely that this event would
ever happen. This is consistent with the fact that the probability of
having a counter overflow, is very unlikely [12].

A second possible event that the protocol needs to be aware
of is the false positives given by the Dir-P. Although they are
quite unlikely if the structure is well dimensioned, they are not
impossible. When there is a hit in the filter (Dir-P), most of the
times it will mean that the block is inside the chip, becoming
unnecessary to interrogate the memory. However, with a low
but non-zero probability, it could happen that this hit is a false
positive and the data block is not really inside the chip. If we
proceed as usual, i.e. broadcasting request and waiting for an
answer from token holders, the system might reach starvation
because no one will reply. Instead of treating this situation
through starvation detection [24], we prevent it from happening
by forcing cores without tokens to acknowledge directory entry
reconstructions. In contrast to other protocols [9], the overhead
of these acknowledgments is only present when there is a hit in
Dir-P (and a miss in Dir-S). The directory coherence controller
will wait for all these negative acknowledgments before sending
a request to the memory. For this reason, on-chip misses in which
the counting bloom filter returns a false positive will be delayed
until the coherence controller is aware of this block not being
inside the chip. Consequently, memory accesses will be delayed by
a few tens of cycles in the worst case. The positive effect of this
approach is that the memory controllers do not have to be filter or
cancel unnecessarymemory requests [9], considering that the cost
of this functionality might be substantial.

5. Storage efficiency

5.1. dlCBF representation

The storage capacity budget of the coherence controller should
be used to keep block sharers in the sparse directory, Dir-S, and an
indication of the presence of a tag in any private cache in Dir-P. For
a conventional Counting Bloom Filter (CBF) with n private blocks
mapped onto one entry and m counters with the optimal number
of hashes, according to [7], the probability of a false positive is
approximately:

Pfp_CBF ≈ (ln 2)m/n .

For example, to achieve a false positive probability of 5%, we
require that m/n > 8, which is equivalent to having at least
8 counters per private cache entry. To minimize the saturation
probability, we need at least 4 bits per counter. In this case,
the overflow probability is approximately e− ln 2(ln 2)16/16! =

6.8 · 10−17 [7]. Therefore, we need at least 32 bits per private block.
This represents a saving of 50% for a 64-bit tag.

Unfortunately, conventional hash functions behave far from
ideally, which unbalances counter usage in a CBF [32]. However,
a quasi-perfect alternative is d-left hashing [39]. Over this base,
Fig. 3. Sketch of a dlCB filter.

Bonomi et al. [6] introduce a new structure called a d-left Counting
Bloom Filter (dlCBF) that at least doubles the efficiency of the
counters of a CBF, with a similar implementation cost.

Fig. 3 shows a high-level representation of this type of filter.
It works as follows: the table is divided in d sub-tables (d = 3 in
Fig. 3, but four in practice might be enough). Each table is divided
into b buckets (b = 4 in our example) and each bucket is divided
into multiple cells (six in our figure). These cells include a few
bits to store the address signature R, called remainder and a small
counter c. The counter is only used for the unusual case in which
different addresses have the same remainder (in practice 2 or 3
bits suffice). For a corresponding address, to compute the bucket
bi and the remainder R, we apply a conventional hash function
H(·) to that address, obtaining log2 b + r bits and next we apply
d permutations this value Πi(H(x)). Each of these permutations
will result in a pair (bi, ri) corresponding to the i sub-table. After
computing the bucket for each sub-table, an entry is allocated in
the least used bucket, i.e. the bucket with fewest elements. Here
is where the key element of these structures, the d-left hashing,
makes the difference. It states that for an address, when there are
several destination buckets with the same number of entries, the
left one should always be chosen [39]. This allows near-perfect cell
load usage, and consequently better coverage for the filter.

Next, we will describe the process with a simplified example.
We will assume that the d permutations are obtained with the
function:

Πi = aH (x) mod 2(log b+r) with odd a < 2log b+r .

If we assume only 2 buckets for each sub-table (which means
1 bit for the counter) and 3 bits for the remainder, the result
of p = H(x) must be a number between 0 and 15, where the
most significant bit indicates the bucket and the rest will be the
remainder. Considering p = H(x) = 6 and choosing three odd
values (one for each of the sub-tables: 3, 7 and 11), the resulting
values of applying the permutations are as follows:

P0 = 3 · 6 · mod 24
= 2− > bucket 0, remainder 010

P1 = 7 · 6 · mod 24
= 10− > bucket 1, remainder 010

P2 = 11 · 6 · mod 24
= 2− > bucket 0, remainder 010.

Then, bucket 0 would be chosen for the first and third sub-table
and bucket 1 for the second one. The decision would depend on
the occupation and in the case of a tie, it would always be the one
on the left (bucket 0 and sub-table 0). Note that for any addresses
y ≠ x so that H(y) = q, if q ≠ p, the permutation application will
give as a result a different pair (bucket, remainder). In the example,
P0(q) ≠ 2, P1(q) ≠ 10yP2(q) ≠ 2. The exception happens when
both address have the same fingerprint, in which case the counter
is increased.

L.G. Menezo et al. / J. Parallel Distrib. Comput. 102 (2017) 163–174 169
One important aspect is that if invertible permutations are
chosen, any value from any of the d sub-tables may be moved to
any of the d-1 remaining. It is a similar process to what it is done in
the Cuckoo directory [13]. For instance, if the datumof the previous
example was put in bucket 0 of sub-table 2, it could be moved to
bucket 0 of sub-table 0 or to bucket 1 of sub-table 1. The practical
consequence of this is that the whole structure can be adaptive.
Thus, a sub-table may be added with an additional permutation or
any sub-table could be discarded bymoving each of its elements to
the ‘‘other’’ possible choices.

Looking up in the structure is a similar operation. Note that
the total number of bits per bucket is pretty small (about 16),
so the search can be done in an external register avoiding the
need for a content addressable memory. Since all sub-tables are
handled independently, like in a parallel bloom filter, we can use
a conventional single-ported SRAM memory. Therefore, like in a
conventional CBF, we can use the same storage to keep either Dir-S
or Dir-P information. The controller logic should route each access
in accordance with its use. Note that Dir-P updates are done on
LLC replacement or on-chip misses; in the former case, outside the
critical path, and in the latter one, overlapped with main memory
access. Since the directory is banked, even in the case of having
thousands of pending on-chip memory operations, the number of
pending operations per bank will be low. Consequently, we can
assume that the cost of updating Dir-P will be negligible. The look-
up of this structure with d sub-tables is similar to a conventional
parallel counting bloom filter with d hash functions: each bucket
in the corresponding sub-table is read in parallel. We should look
up the presence of the remainder in the bucket. This is equivalent
to a tag search in a d-associative cache so we will assume that the
look-up operation is the same as the one required for an equivalent
directory.

5.1.1. False positives and counter overflow probabilities
For a dlCBF structure, the probability of false positives, with a d

sub-table configuration of b buckets each, r bits per remainder and
n private blocks mapped onto one entry, is given by [6]:

Pfp_dlCBF = 1 −

1 −

1
d · b · 2−r

n

≈
n

d · b
2−r .

Assuming cl cells per bucket and a utilization factor of ρ(< 1), and
choosing a total number of buckets depending on n as n/(ρ · cl ·d):

Pfp_dlCBF ≈ ρ · cl · d · 2−r .

Thus, assuming four sub-tables (d = 4), eight cells per
bucket (cl = 8) and a 3/4 usage per bucket (ρ = 0.75), to
achieve a 5% false positive probability, the number of bits per
remainder is 9. Considering a 3-bit counter, each cell requires 12
bits. To compensate for bucket utilization, we have tomultiply this
number by 1/ρ, giving approximately 16 bits per element tracked.
This is less than half the number required by the conventional
bloom filter mentioned above.

In practice, for a 64-bit physical tag (which might include
sharing vector and block state), this will lead to a 77% saving. For a
256 kB L2 and 32 kB L1I, 32 kB L1D and block sizes of 64 bytes, we
will require ∼9.2 kB per core (less than 3% of the tracked cache
size), whereas a conventional CBF will require about 20 kB. For
this configuration each bucket uses 128 bits, which simplifies the
table lookup. If we reduce the filter size (to save area), the false
positive probability might increase, but not in a significant way.
Note that all the theoretical estimations are made assuming no
spatial locality or sharing in the stream of addresses.

The counters associated with each remainder may suffer
overflow. Although, as was mentioned before, the protocol
includes a fallback mechanism to avoid any possible starvation
situation, it is important to remark that the probability of this
occurring is very low. For example, using a 3-bit counter with 5k
of private blocks, a higher bound is given by [6]:

n
2c

+ 1

1

#buckets · 2r

2c+1

≈

5000
9

1

256 · 29

9

≈ 4.6 · 10−19.

5.2. Dir-P/Dir-S resource partitioning. Scalability

Each of the active entries allocated in Dir-S means a lower
pressure on the Dir-P, because several copies of the same block
in the private caches will only count as one element in the Dir-
P. Taking this into account, we can state that the two structures
are complementary. Restricting theDir-P capacitywill increase the
probability of false positives,whichwill increase the on-chip traffic
and the delay of the off-chip misses. On the other hand, restricting
the Dir-S capacity to the point that the working set of the actively
shared blocks does not fit in will increase the reconstruction
probability. This could be used effectively to provide a low tracking
capability (perhaps for less than 20% of private cache blocks).

As shown in Section 5.1, if the permutation used to fill the filter
tables is invertible [6], then it is possible to reconstruct a sub-
table by observing the remainder of any stored value and simply
rolling back the permutation. Thus, it is possible to ‘‘move’’ the
tracking of a block from one sub-table to another. In this way, if
we detect that the Dir-S is highly loaded (through the frequency
of reconstructions), we can adaptively de-allocate one of the sub-
tables in Dir-P and expand the number of ways in the directory.
Similarly, if the workload is not using the entries of the shared
part because all/most of the data are private, we can expand the
private partwith additional sub-tables, reducing the false positives
without increasing the reconstruction frequency. Note that this
operation is not possible in a conventional CBF.

Initially, for all of our workloads, we will split the storage
capacity equally between the two parts of the directory. Later,
and after observing the application’s behavior, we will explore
workload-dependent partitioning in order to see how beneficial
this approach can be for reducing adverse effects in extreme cases.
Wewill not discuss implementation cost, although it does not seem
to be an issue. Perhaps some multiplexors will be necessary to
connect the SRAM content to the coherence controller. In any case,
note that the dynamic behavior will have a negligible impact on
performance since the one-by-one migration of Dir-P sub-table
entries to Dir-S could be done in the background with the normal
system operation. The opposite operation is direct (just requires
invalidating directory entries that will be used as a sub-table). We
will not discuss themechanism for triggering this process since the
sharing pattern of the applications is quite stable throughout the
execution. The most cost-effective way is to trigger it by software
at the beginning of the workload.

6. Evaluation methodology

6.1. System configuration

To analyze the proposal, we model a CMP with out-of-order
cores that mimic the execution resources and on-chip cache
hierarchy of the Intel Haswell processor [16]: using 6-wide issue
cores with 196 in-flight instructions and up to 64 pendingmemory
operations. The number of cores in the CMP is 16. Therefore, the
coherence fabric has to support up to 1024 concurrent memory
operations. There are three levels of cache. The first two are private,
strictly non-inclusive (i.e. L2 acts as a victim cache of L1). The third
level is shared and uses a mesh network, which is characterized
by better on-chip bandwidth scalability than a ring network. We

170 L.G. Menezo et al. / J. Parallel Distrib. Comput. 102 (2017) 163–174
Table 1
Summary of 16-core CMP system configuration.

Core Arch.
Functional Units 4xI-ALU/4xFP-ALU/

4xD-MEM
ROB size/Issue width 196, 6-way
Frequency, count 3 GHz, 16 cores

Private
caches

(L1) Size/Associativity/Block
size/Access time/Repl.

32 kB I/D, 4-way, 64 B, 1
cycle, LRU

(L2) Size/Associativity/ Block
size/Access time/Repl.

256 kB Unified, 8-way,
64 B, 2 cycles, LRU,
Exclusive with L1

Outstanding requests per core 64

Shared L3
Size/Associativity/Block
size/Repl.

16 MB (16 × 1 MB),
16-way, 64 B, LRU

NUCA mapping Static, interleaved by LSB
Slice access time 6 cycles

Mem Capacity/Memory
controllers/ranks/banks

4 GB, DDR3-1600, 4 ranks,
16 banks (4 per controller)

Network Topology/Link latency/Link
width/Clock

4 × 4 Mesh, 1 cycle, 16 B,
3 GHz

Router latency (low-load)/Flow
control/Routing/ Buffering

1–3 cycle,
Wormhole,DOR,10 kB

Table 2
Multithreaded workloads.

SERVER [2]

OLTP IBM DB2 DBMS, TPC-C like
10000 transactions

Apache Apache web server, SpecWeb
like, 25 000 transactions

JBB SpecJBB, 70 000 transactions
Zeus Zeus web server, SpecWeb

like, 25 000 transactions

NPB [19]
Multi-Grid (MG) CLASS A
Fast Fourier Transform (FT) CLASS W
LU Diagonalization (LU) CLASS A

SPEC [37]
Astar Native, 15 thr.
Hmmer Native, 15 thr.
Omnetpp Native, 15 thr.

will assume that the routers in the network can handle multicast
traffic natively [18], have single-cycle low-load pass-through [22],
separate virtual-networks to avoid end-to-end protocol deadlock
and over-provisioned buffering (90 flits per port). Similarly to the
LLC, the directory is banked and interleaved by the least significant
bits.

In order to compare our proposal to snoop and directory-
based protocols, we have implemented two reference protocols
based on TokenB [24] and on a sparse-directory [15], respectively.
TokenB has been selected because it allows a scalable unordered
network to be used without adding extra mechanisms outside
the coherence controllers. Using the same methodology and
tools, all coherence protocols have been optimized fairly. A full
SLICC (Specification Language for Implementing Cache Coherence)
specification for a 3-level hierarchy can be found in [36].

The memory access has been modeled in a realistic way
using four DDR3 controllers with four memory banks each.
This is an important aspect for the confidence in the latency
results of the simulation. In fact, we will see that in a realistic
scenario, broadcast protocols should be handled carefully to
avoid unnecessary memory requests wasting the scarce off-chip
bandwidth resource [9]. A summary of the main parameters used
in our analysis is shown in Table 1.

6.2. Workloads & simulation stack

We will use GEMS [25] as the main tool for our evaluation.
With GEMS, it is possible to perform full-system simulations.
Coherence protocols have been implemented using the SLICC
language. In order to model accurately interconnection network
contention and its impact on the average access time, we replace
the original networkwith TOPAZ [1]. For power and costmodeling,
we use CACTI 6.5 [30] for the cache and DSENT [38] for the
network. Ten workloads, shown in Table 2, are considered in
this study, including both multi-programmed and multi-threaded
applications (scientific and server) running on top of the Solaris
10 OS. The numerical applications are three of the NAS Parallel
Benchmarks suite (OpenMP implementation version 3.4 [19]).
The server benchmarks correspond to the whole Wisconsin
Commercial Workload suite [2]. The remaining class corresponds
to multi-programmed workloads using part of the SPEC CPU2006
suite [37] running in rate mode (where one core is reserved
to run OS services). The mix of workloads has been selected
trying to cover diverse usage scenarios, varying the sharing degree
(from none in SPEC applications to a large amount in Server
Workloads) and sharing contention (from none in SPEC to a large
amount in scientific applications). Among the NAS applications,
we chose the three with the highest sharing contention. From the
SPEC suite, we chose three applications with a variable range in
working set size. We should emphasize that the three families of
applications exhibit quite dissimilar behavior from the coherence
protocol perspective, but they have to be considered, given the
usage scenarios of general purpose CMPs. Focusing the evaluation
on a single suite of benchmarks, it is hard to consider all the
characteristics we have represented with the selected mix.

We model hardware-assisted TLB fill and register window
exceptions for all target machines. Multiple runs are used to
fulfill strict 95% confidence intervals (error bars are not visible
in most cases). Benchmarks are fast-forwarded to the point of
interest, during which page tables, TLBs, predictors, and caches
are warmed up. In iteration-based applications, such as NPB, a
warm checkpoint is taken in the middle of the execution and with
a reduced number of iteration runs. Transactional workloads are
warmed up by running hundreds of thousands of transactions,
and accurately simulated for a fixed number of transactions. SPEC
workloads are fast-forwarded to the point of interest and simulate
∼8 billion instructions.

7. Performance results

7.1. Comparative results with reference protocols

Figs. 4–6 show the fundamental parameters of the systems that
have to be considered when running coherence protocols, namely
execution time, average access-time and memory hierarchy and
network energy delay product (EDP). With the aim of normalizing
the total storage, we denoted it as SDE (Sparse-Dir Equivalent)
capacity, i.e. the capacity to track all the entries of the private
cache blocks (5 K SDE entries in the particular case of Table 1’
values). Directory sizes to establish the comparative range from
8 K SDE entries (over-provisioning to track 160% of the private
cache blocks) to just 256 SDE entries (about 5%). Obviously, to keep
implementation cost constant, in Flask this capacity is devoted to
both Dir-S and Dir-P structures. At this point, we assume half and
half, but different assignments will be discussed later.

As the reader might realize, in contrast to [28], there are
no results corresponding to token coherence protocol for some
benchmarks. This occurs because we are modeling a realistic
memory controller where each of the requests sent to memory
is actually using memory bandwidth. In spite of using a well-
dimensioned network (see Table 1) and routers with state-of-the-
art features [18,22], since the token coherence protocol sends a
request to memory for each of the misses in the private caches,
the memory controller saturates. The queues grow to a level
when the memory is unable to send the data to the requesting
node before reaching the deadlock threshold of the system.

L.G. Menezo et al. / J. Parallel Distrib. Comput. 102 (2017) 163–174 171
Even modifying the number of retries before issuing persistent
requests (themechanismof token coherence protocol for starvation
avoidance) or increasing the fixed timeout before issuing a retry
broadcast, the latency of some packets reaches unrealistic values.
This unstable behavior caused by the mechanism for starvation
avoidance (persistent request) under realistic conditions has been
reported by other authors [33]. However, this protocol is important
for comparison because under unlimited bandwidth it provides the
best performance.

As expected, when the directory size is below one fourth of
the aggregate private caches’ capacity, the sparse-directory perfor-
mance is degraded. This degradation is shown after a significant
directory size reduction. Even though in other workloads this
degradation is seen sooner [11], in this case we have two levels of
private caches where the second one acts as a victim cache for L1.
Thus, a directory-induced privatemiss is eight timesmore frequent
in L2 than in L1. Considering that the block reuse in L2 is low [17],
the results seem reasonable. We could obtain more noticeable ef-
fects with an inclusive L1/L2, but still not too acute. Besides, hav-
ing such a configuration for an aggressive out-of-order core and a
shared LLC does not seem very interesting. Additionally, it should
be noted that for an in-order core, any directory-induced private
miss will have more effect on performance. The memory level of
parallelism present in the evaluated system allows the impact to
be partially hidden.

As Fig. 5 shows, the number of hits in private caches is reduced
when the count of tracked blocks is decreased only in the sparse
directory protocol. Thus, there is a substantial latency increment
with this protocol as data must be retrieved from LLC (for private
blocks) like in numerical ormulti-programmedworkloads, or from
other private caches (for actively shared blocks) like in server
workloads. These results are consistent with the applications’
sharing degree. For applicationswith a large portion of shared data,
the latency degradation when reducing the directory size from
160% to 5% is even doubled, degrading their performance by more
than 40% on average. For these cases the intense coherence traffic
due to directory-induced invalidations and subsequent LLC hits
makes the activity in the network increase substantially, degrading
the energy properties.

Figs 4, 5 and 6 enable the comparison of our proposal
behavior to the other two protocols mentioned. As the storage
capacity is changed from having an overprovisioned directory
of 160% of a SDE to only 5%, Flask shows a much better
behavior than its counterparts. On the one hand, the average
performance degradation is only 10% compared to 40% seen in
the sparse directory. On the other hand, although part of the
Flask implementation is based on the token coherence protocol, it
does not show any of its anomalies. Since there are no starvation
issues, Flask does not need persistent requests. Besides, even
in the most extreme configuration (5%) there is no saturation
when using realisticmemory controllers, and the applicationswith
low sharing-degree barely show any performance degradation.
Obviously, whenDir-S only has capacity to track 256 private blocks
per core, there are more reconstructions which delay the access to
shared data after a miss in the private caches, slightly lengthening
LLC access time. In the multi-programmed workloads, in spite of
having a minimal Dir-P structure (just 32 buckets per sub-table),
the effects of this extreme configuration both on performance and
energy are negligible.

As shown in Fig. 6, the energy requirements of Flask protocol
are smaller to Token (in those applications where this does not
collapse) and are quite steady regardless of the directory size. Note
that this metric is pessimistic, since we exclude the cores’ power
consumption. As Flask is the best performer inmost cases, the EDP
of these components will be low.

In summary, with almost no tracking capability, Flask is more
stable and energy efficient than broadcast-based protocol, and its
performance degrades much more gracefully than conventional
sparse-directory when directory size is reduced.
7.2. Reducing broadcasts. false positives

The performance advantage of Flask over the other options
mainly comes from the reduction of broadcasts compared with
snoop-based protocols while maintaining their efficiency. A part
of this reduction corresponds to theDir-S. Access to actively shared
blocks is directly obtained looking up in this structure. Obviously,
the smaller size ofDir-S compared to the sparse directory is paid by
broadcasts to find the data. However, a significant number of them
are unnecessary (if the requested data is not in the private caches)
and therefore should be eliminated. This is precisely the task of
the Dir-P structure. However, again because of the limited size of
the structure, not all unnecessary broadcasts are eliminated. These
are the false positives that unnecessarily increase on-chip energy
and memory access time because they delay the memory request
until the coherence controller realizes that there is no on-chip copy
present.

The use of a real memory controller invalidates part of
the results of [28] concerning the TokenB coherence protocol
as shown in Figs 4, 5 and 6. Nevertheless, this protocol has
to be considered as an important counterpart because, when
considering no bandwidth limitations, it is the one that offers the
best performance. Since the amount of traffic is not affected by the
memory latency and attempting to provide a comparison among
the three protocols for all the benchmarks, we will continue this
analysis with an ideal memory controller. Thus, we can compare
Flask’s results with the number of multicasts done in TokenB,
which are an upper limit.

Under these conditions, Fig. 7 shows the total number of
multicasts sent by Flask with the number of broadcasts that
were avoided by Dir-P, all normalized to the total number of
broadcasts sent by TokenB. It must be taken into account that, if
the network is able to handle multicast traffic and the cache snoop
energy contribution, this might not be directly transferred to link
utilization or energy consumption, as we can contrast these results
with Fig. 6.

When the directory is dimensioned for 20% of the private cache
capacity, the number of false positives seems to be consistent with
the theoretically expected proportion of 5%. When we shrink the
SDE capacity to just 5% of the private caches, different behaviors
can be observed. In some cases, even with such a small size the
number of on-chipmisses detected is quite reasonable. Concerning
the number of true positives, i.e. private cache misses for actively
shared data, which are compulsory broadcasts; these vary among
the applications. In some of them they grow when we reduce the
size of the directorywhile in others they remain almost unchanged.
This happens because Dir-S is not able to maintain the shared
working set in all cases. In contrast, when true positives are
maintained, false positives can bemore numerous because a higher
number of private blocks increase the number of elements that
have to be tracked byDir-P. Even in such extreme situations, where
the false positives increase noticeably, counter saturation never
occurs in any of the runs of our evaluations.

7.3. Adaptive Dir-S/Dir-P size ratio

So far the directory space available has been divided in equal
parts between the two structures; Dir-S and Dir-P. However, Fig. 7
clearly indicates thatmulti-programmed andnumericalworkloads
require a lower number of Dir-S entries while they would benefit
from having a large Dir-P store. On the contrary, on-chip traffic
of commercial workloads are dominated by the compulsory
reconstructions. Therefore, althoughwe did not implement the on-
line adaptation, we can statically choose the best configuration for
the application. For example, we could select a few-way Dir-S and
several sub-tables for Dir-P for the first two classes and vice versa,

172 L.G. Menezo et al. / J. Parallel Distrib. Comput. 102 (2017) 163–174
Fig. 4. Directory normalized execution time. Results have been normalized against the overprovisioned directory (160%).
Fig. 5. Directory normalized average memory access time.
Fig. 6. Directory normalized on-chip memory hierarchy EDP.
Fig. 7. TokenB normalized filter efficiency for different SDE sizes using ideal memory controllers.
Fig. 8. TokenB normalized traffic filtering with adaptive partitioning.
i.e. several-wayDir-S for the last classwith just a few sub-tables for
Dir-P. Although the protocol works with zero size assigned to any
of the two structures, it must be taken into account that a small
number of OS addresses might be shared, so we need at least a
1-way in Dir-S.

Selecting the bestDir-S/Dir-P configuration for each application
shows that it is possible to reduce the storage resources with
negligible impact. This can be seen comparing Figs. 7 and 8. The
former shows the number of broadcasts obtained with half of the
space devoted to each structure and the latter employing the best
configuration for each application. We see that the amount of false
positives is practically halved when storage come down under 20%
of SDE capacity. This is translated to performance results as is
shown in Fig. 9. For example, the performance penalty with 10%

L.G. Menezo et al. / J. Parallel Distrib. Comput. 102 (2017) 163–174 173
Fig. 9. 40% SDE static normalized execution time of Flaskwith static and dynamic allocation.
Fig. 10. 160% SDE sparse directory normalized performance for different associativities (20% SDE).
and 5% of SDE capacity is about 3% and 6%, respectively. Thismeans
that, under these conditions, with 10% SDE capacity the traffic
requirements are close to those obtainedwith 20% of SDE statically
halved.

These promising results suggest the search for online mecha-
nisms capable of modifying the ratio of sizes Dir-S/Dir-P to adapt
to the characteristics of the application. Althoughwewill leave this
analysis for future work, we believe that this adaptation should be
performed in the software layer as the change of behavior is quite
infrequent.

7.4. Comparing Flaskwith other directory cost reduction alternatives

There are numerous alternatives which focus on the same goal
as Flask [10,11,13,27,35]. Many of them can be combined with
our proposal to improve its performance. However, it is interest-
ing to make a comparison between Flask and those works which
eliminate the directory overprovision by emulating large asso-
ciativity through multi-hashing indexing and insertion [35,34].
The aim in all cases is to obtain similar values of application per-
formance but with a lower cost of implementation. Therefore, the
comparison can be established based on the impact caused by the
limited associativity of the directory that ultimately is what causes
conflict and loss of performance.

In Fig. 10, the execution time of the workloads has been
represented varying the associative of the directory in a range from
1-way to 64-waywith a fixed capacity of 20% SDE to appreciate the
evictions caused by conflicts in the directory. The values have been
normalized to the 160% SDE over-provisioned sparse directory.
Except in the case of the FT workload, whose counterintuitive
behavior is caused by very low directory reuse [35], increasing
the associativity reduces the directory conflicts, which provides a
slight performance degradation. Obviously, reduction to a 1-way
directory is not realistic. However, the comparison is important
because as you gradually increase the number of cores and the
associativity of private caches, the number of blocks that map into
the same directory entry (unless wewant to quadratically increase
its size) will increase.

It can be seen from Fig. 10 that 1-way directory in Flask
is able to outperform the sparse directory even with 64 ways.
In Flask, the impact of directory conflicts on performance
is negligible. Therefore, our proposal outperforms techniques
focused on minimizing directory conflicts such as [10,11,27].

This is because: (1) in Flask, is not necessary to perform inval-
idations in private caches after a directory eviction, (2) only the
actively shared blocks are tracked, (3) the need for inclusiveness
is removed, and (4) both search times and bandwidth are reduced
by using tokens and the tracking structure, Dir-P. This allows a sig-
nificant reduction in storage devoted to directory, with little or no
performance degradation.

8. Conclusions

This work introduces a proposal for a new coherence protocol
for CMPs which is able to take advantage of both main types
of protocol: snoop-based and directory-based mechanisms. The
directory size can be reduced by dividing it into two different
structures. One to track only the blocks that are being actively
shared among the cores and the other to determine the presence
of a block in the private caches. In our mechanism, inclusivity is
avoided by using a token-basedmechanismwhich is also helpful to
simplify the correctness of the solution. The pressure on each of the
structures is complementary and its assignment can be modified
based on the sharing degree of the applications that will be run in
the system. This also helps by further reducing the total storage
space dedicated to each of them.

Exhaustive searches for the requested blocks through broad-
casts are reduced by only using them when there is not enough
space to assign to each of the structures and when a block state
changes from private to shared. In both cases, these searches are
limited to being done inside the chip in order to avoid saturating
the off-chip bandwidth. The results enable a balanced approach
that improves system performance in a wide range of applications.

The proposalmight be beneficial to scale the coherence protocol
for many-core systems or for medium-sized CMPs, as we have
demonstrated in the results section; especially so bearing in mind
recent and forthcoming commercial systems. In any case, we have
shown that even for CMPs with sixteen aggressive cores there are
both power and performance benefits versus other protocols.

174 L.G. Menezo et al. / J. Parallel Distrib. Comput. 102 (2017) 163–174
Acknowledgments

This work was supported by the Spanish Secretary of State
for R&D&i under contracts TIN2016-80512-R and TIN2015-66979-
R (MINECO/FEDER, UE) and by the HiPEAC European Network of
Excellence.

References

[1] P. Abad, P. Prieto, L.G. Menezo, A. Colaso, V. Puente, J.-Á. Gregorio, TOPAZ: An
open-source interconnection network simulator for chip multiprocessors and
supercomputers, in: International Symposium on Networks-on-Chip, NOCS,
2012, pp. 99–106.

[2] A.R. Alameldeen, M.M.K. Martin, C.J. Mauer, K.E. Moore, M.D. Hill, D.A. Wood,
D.J. Sorin, Simulating a $2M commercial server on a $2K PC, Comput. (Long.
Beach. Calif) 36 (2) (2003) 50–57.

[3] M. Alisafaee, Spatiotemporal coherence tracking, in: International Symposium
on Microarchitecture, MICRO, 2012, pp. 341–350.

[4] E.E. Bilir, R.M. Dickson, Y. Hu, M. Plakal, D.J. Sorin, M.D. Hill, D.a. Wood,
Multicast snooping: a new coherence method using a multicast address
network, in: Proc. ISCA ’99, Vol.0, no. c, 1999, pp. 294–304.

[5] B.H. Bloom, Space/time trade-offs in hash coding with allowable errors,
Commun. ACM 13 (7) (1970) 422–426.

[6] F. Bonomi, M. Mitzenmacher, R. Panigrahy, An improved construction
for counting bloom filters, in: Annual European Symposium, ESA, 2006,
pp. 684–695.

[7] A. Broder, M. Mitzenmacher, Network applications of bloom filters: A survey,
Internet Math. 1 (4) (2004) 485–509.

[8] M. Butler, AMD ‘Bulldozer’ Core - a new approach to multithreaded compute
performance for maximum efficiency and throughput, in: Symposium on
High-Performance Chips, HotChips, 2010.

[9] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, B. Hughes, Cache
hierarchy and memory subsystem of the AMD opteron processor, IEEE Micro
30 (2) (2010) 16–29.

[10] B.A. Cuesta, A. Ros, M.E. Gómez, A. Robles, J.F. Duato, Increasing the
effectiveness of directory caches by deactivating coherence for private
memory blocks, in: Int. Symposium on Computer Architecture, ISCA, 2011,
p. 93.

[11] S. Demetriades, S. Cho, Stash directory: A scalable directory for many-core
coherence, in: Int. Symp. on High Perf. Computer Architecture, HPCA, 2014.

[12] L. Fan, P. Cao, J. Almeida, A.Z. Broder, Summary cache: a scalable wide-area
Web cache sharing protocol, IEEE/ACM Trans. Netw. 8 (3) (2000) 281–293.

[13] M. Ferdman, P. Lotfi-Kamran, K. Balet, B. Falsafi, Cuckoo directory: A scalable
directory for many-core systems, in: International Symposium on High
Performance Computer Architecture, HPCA, 2011, pp. 169–180.

[14] E.J. Fluhr, J. Friedrich, D. Dreps, V. Zyuban, G. Still, C. Gonzalez, A. Hall, D.
Hogenmiller, F. Malgioglio, R. Nett, J. Paredes, J. Pille, D. Plass, R. Puri, P.
Restle, D. Shan, K. Stawiasz, Z.T. Deniz, D. Wendel, M. Ziegler, POWER8: A 12-
core server-class processor in 22nm SOI with 7.6Tb/s off-chip bandwidth, in:
International Solid-State Circuits Conference, ISSCC, 2014, pp. 96–97.

[15] A. Gupta, W. Weber, T. Mowry, Reducing memory and traffic requirements
for scalable directory-based cache coherence schemes, in: International
Conference on Parallel Processing, ICPP, 1990, pp. 312–321.

[16] P. Hammarlund, A.J. Martinez, A.A. Bajwa, D.L. Hill, E. Hallnor, H. Jiang, M.
Dixon, M. Derr, M. Hunsaker, R. Kumar, R.B. Osborne, R. Rajwar, R. Singhal, R.
D’Sa, R. Chappell, S. Kaushik, S. Chennupaty, S. Jourdan, S. Gunther, T. Piazza,
T. Burton, Haswell: The fourth-generation intel core processor, IEEE Micro 34
(2) (2014) 6–20.

[17] A. Jaleel, K.B. Theobald, S.C. Steely, J. Emer, High performance cache
replacement using re-reference interval prediction, RRIP, in: International
Symposium on Computer Architecture, ISCA, 2010, pp. 60–72.

[18] N.E. Jerger, L.S. Peh, M. Lipasti, Virtual circuit tree multicasting: A case for on-
chip hardware multicast support, in: International Symposium on Computer
Architecture, ISCA, 2008, pp. 229–240.

[19] H. Jin, M. Frumkin, J. Yan, The OpenMP implementation of NAS parallel
benchmarks and its performance, Technical Report NAS-99-011, NASA Ames
Research Center, Citeseer, 1999.

[20] P. Kongetira, K. Aingaran, K. Olukotun, Niagara: A 32-waymultithreaded sparc
processor, IEEE Micro 25 (2) (2005) 21–29.

[21] T. Krishna, L.-S. Peh, B.M. Beckmann, S.K. Reinhardt, Towards the ideal on-
chip fabric for 1-to-many and many-to-1 communication, in: International
Symposium on Microarchitecture, MICRO, Vol. 2, 2011, pp. 71–80.

[22] A. Kumary, P. Kunduz, A.P. Singhx, L.-S. Pehy, N.K. Jhay, A 4.6Tbits/s 3.6GHz
single-cycle NoC router with a novel switch allocator in 65nm CMOS, in:
International Conference on Computer Design, CCD, 2007, pp. 63–70.

[23] P. Lotfi-Kamran,M. Ferdman, D. Crisan, B. Faisafi, TurboTag: Lookup filtering to
reduce coherence directory power, in: LowPower Electron. Des. ISLPED 2010
ACM IEEE Int. Symp., 2010, pp. 377–382.

[24] M.M.K. Martin, M.D. Hill, D.A. Wood, Token Coherence: decoupling per-
formance and correctness, in: Int. Symp. on Computer Arch. ISCA, 2003,
pp. 182–193.

[25] M.M.K. Martin, D.J. Sorin, B.M. Beckmann, M.R. Marty, M. Xu, A.R. Alameldeen,
K.E. Moore, M.D. Hill, D.A. Wood, Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset, ACM SIGARCH Comput. Archit.
News 33 (4) (2005) 92.
[26] M.M.K. Martin, D.J. Sorin, M.D. Hill, D.A. Wood, Bandwidth adaptive snooping,
in: International Symposium on High Performance Computer Architecture,
HPCA, pp. 251–262.

[27] L.G.Menezo, V. Puente, J.A. Gregorio, The case for a scalable coherence protocol
for complex on-chip cache hierarchies inmany-core systems, in: International
Conference on Parallel Architectures and Compilation Techniques, PACT, 2013,
pp. 279–288.

[28] L.G. Menezo, V. Puente, J.-A. Gregorio, Flask coherence: A morphable hybrid
coherence protocol to balance energy, performance and scalability, in:
2015 IEEE 21st International Symposium on High Performance Computer
Architecture, HPCA, 2015, pp. 198–209.

[29] A. Moshovos, RegionScout: Exploiting coarse grain sharing in snoop-based
coherence, in: International Symposium on Computer Architecture, ISCA,
2005, pp. 234–245.

[30] N.Muralimanohar, R. Balasubramonian, N. Jouppi, OptimizingNUCA organiza-
tions and wiring alternatives for large caches with CACTI 6.0, in: International
Symposium on Microarchitecture, MICRO, 2007, pp. 3–14.

[31] A. Raghavan, C. Blundell, M.M.K. Martin, Token tenure: PATCHing token
counting using directory-based cache coherence, in: International Symposium
on Microarchitecture, MICRO, 2008, pp. 47–58.

[32] M.V. Ramakrishna, E. Fu, E. Bahcekapili, Efficient hardware hashing functions
for high performance computers, IEEE Trans. Comput. 46 (12) (1997)
1378–1381.

[33] A. Ros, M. Davari, S. Kaxiras, Hierarchical private/shared classification: the key
to simple and efficient coherence for clustered cache hierarchies Alberto, in:
High Performance Computer Architecture, HPCA, 2015, pp. 186–197.

[34] D. Sanchez, C. Kozyrakis, The ZCache: Decoupling ways and associativity, in:
International Symposium on Microarchitecture, MICRO, 2010, pp. 187–198.

[35] D. Sanchez, C. Kozyrakis, SCD: A scalable coherence directory with flexible
sharer set encoding, in: International Symposium on High Performance
Computer Architecture, HPCA, 2012, pp. 1–12.

[36] SLICC specification of Flask and Counterpart Coherence Protocols. [Online].
Available: http://www.atc.unican.es/galerna/flask.

[37] SPEC Standard Performance Evaluation Corporation, ‘‘SPEC 2006’’.
[38] C. Sun, C.-H.O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S. Peh, V.

Stojanovic, DSENT - A tool connecting emerging photonics with electronics
for opto-electronic networks-on-chip modeling, in: International Symposium
on Networks-on-Chip, NOCS, 2012, pp. 201–210.

[39] B. Vöcking, How asymmetry helps load balancing, J. ACM 50 (4) (2003)
568–589.

[40] J. Zebchuk, A. Moshovos, A tagless coherence directory, Comput. Eng. (2009)
423–434.

[41] H. Zhao, A. Shriraman, S. Dwarkadas, V. Srinivasan, SPATL: Honey, I shrunk
the coherence directory, in: 20th International Conference on Parallel
Architectures and Compilation Techniques, PACT’11, 2011, pp. 33–44.

Lucia G. Menezo received her B.S. and M.S. from the
University of Basque Country in 2007. In 2014, she
received her Ph.D. degree from the University of Cantabria,
where she works as a researcher since then. Her research
interests focus on the memory hierarchy, mainly on cache
coherence protocols for chips multiprocessor (CMPs).

Valentin Puente received the B.S., M.S. and Ph.D. degrees
from the University of Cantabria, Spain, in 1995 and 2000,
respectively. He is currently an associate professor of
computer architecture at the Department of Computers
and Electronics of the same University. His research
interests focus on memory hierarchy design and the
impact that incoming technology changes might have on
it.

Jose-Angel Gregorio received the B.S., M.S. and Ph.D.
degrees in physics (electronics) from the University of
Cantabria, Spain, in 1978 and 1983, respectively. He
is currently a professor of computer architecture in
the Department of Computers and Electronics in the
same university. His main research interests focus on
chip multiprocessors (CMPs) with special emphasis on
the memory subsystem, interconnection network and
coherence protocol of these systems.

http://refhub.elsevier.com/S0743-7315(16)30206-4/sbref2
http://refhub.elsevier.com/S0743-7315(16)30206-4/sbref5
http://refhub.elsevier.com/S0743-7315(16)30206-4/sbref7
http://refhub.elsevier.com/S0743-7315(16)30206-4/sbref9
http://refhub.elsevier.com/S0743-7315(16)30206-4/sbref12
http://refhub.elsevier.com/S0743-7315(16)30206-4/sbref16
http://refhub.elsevier.com/S0743-7315(16)30206-4/sbref19
http://refhub.elsevier.com/S0743-7315(16)30206-4/sbref20
http://refhub.elsevier.com/S0743-7315(16)30206-4/sbref25
http://refhub.elsevier.com/S0743-7315(16)30206-4/sbref32
http://www.atc.unican.es/galerna/flask
http://refhub.elsevier.com/S0743-7315(16)30206-4/sbref39
http://refhub.elsevier.com/S0743-7315(16)30206-4/sbref40

	An adaptive cache coherence protocol: Trading storage for traffic
	Introduction
	Motivation
	Directory and broadcast coherence approaches
	Cache coherence hybridization

	Flask coherence
	Cache coherence protocol: basic idea
	Update and replacement
	Flask basic framework
	Broadcasts. Token coherence

	Implementation details
	Dir-S: sparse directory
	Dir-P: D-left Counting Bloom Filter (dlCBF)
	Counter overflow and false positives

	Storage efficiency
	dlCBF representation
	False positives and counter overflow probabilities

	Dir-P/Dir-S resource partitioning. Scalability

	Evaluation methodology
	System configuration
	Workloads & simulation stack

	Performance results
	Comparative results with reference protocols
	Reducing broadcasts. false positives
	Adaptive Dir-S/Dir-P size ratio
	Comparing Flask with other directory cost reduction alternatives

	Conclusions
	Acknowledgments
	References

