Memory Hierarchy Characterization of NoSQL Applications through Full-system Simulation

Transactions on Parallel and Distributed Systems, IEEE.


In this work, we conduct a detailed memory characterization of a representative set of modern data-management software (Cassandra, MongoDB, OrientDB and Redis) running an illustrative NoSQL benchmark suite (YCSB). These applications are widely popular NoSQL databases with different data models and features such as in-memory storage. We compare how these data-serving applications behave with respect to other well-known benchmarks, such as SPEC CPU2006, PARSEC and NAS Parallel Benchmark. The methodology employed for evaluation relies on state-of-the-art full-system simulation tools, such as gem5. This allows us to explore configurations unattainable using performance monitoring units in actual hardware, being able to characterize memory properties. The results obtained suggest that NoSQL application behavior is not dissimilar to conventional workloads. Therefore, some of the optimizations present in state-of-the-art hardware might have a direct benefit. Nevertheless, there are some common aspects that are distinctive of conventional benchmarks that might be sufficiently relevant to be considered in architectural design. Strikingly, we also found that most database engines, independently of aspects such as workload or database size, exhibit highly uniform behavior. Finally, we show that different data-base engines make highly distinctive demands on the memory hierarchy, some being more stringent than others.